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Abstract. We proposed a re-ranking method for improving the performance of

semantic video indexing and retrieval. Experimental results show that the pro-

posed re-ranking method is effective and it improves the system performance on

average by about 16-22% on TRECVID 2010 semantic indexing task.
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1 Introduction

Semantic indexing and retrieval for multimedia databases has been a very active re-

search field over the past few years. The global goal of multimedia indexing is to

automatically describe documents containing images, sounds or videos. Nevertheless,

allowing users to retrieve them within large collections or to easily navigate in these

collections is still a very hard task.

Semantic indexing is generally achieved by supervised learning where a system is

trained on positive and negative samples of a target concept (the development set) for

producing a model which is then used for predicting the likeliness of new samples to

contain this concept (the test set). This likeliness is often computed homogeneously to

a probability for each data sample to contain the concept. Retrieval can then be done

by ranking the samples according to the probability score. Such ranking is initially

done with a score independently for each sample using only information from the de-

velopment set. It is often possible to improve the indexing or retrieval performance by

re-scoring the samples using the initial scoring information on the whole test collec-

tion. Recently, several ways of re-ranking methods have been proposed and developed,

below we reviewed some of these methods.

Context fusion [1, 2]: the results of different searching models (concept-based search

model, text-based search model and query by example) are used to re-rank the ranked

lists, in fact here the focus is on the fusion of different model outputs. This method

needs to train new classifiers on new descriptors. Since we also use in our work the

fusion of the outputs from multiple models, we took this as a baseline approach.

Classification-based re-ranking [3]: the initial results of a baseline system are used

to discover the co-occurrence patterns between the target semantics and extracted fea-

tures. This is very similar to “learning to rank”[4], which is based on training a ranking

model which can precisely predict the ranking lists in the dataset. In [3] the authors used

the top-ranked and bottom-ranked samples respectively, as pseudo-positive and pseudo-

negative examples to train a new classification model for ranking, and the classification



2 Safadi and Quénot

margin for a target concept is regarded as its (new) re-ranked. The use of SVM as the

classification model, leads to the method called RankSVM[4].

Ordinal re-ranking, in [6]: the author re-ranks an initial results by using the co-

occurrence patterns via the ranking functions. The final score is the weighting combi-

nation of the original score and the re-ranked scores. They adopted a training method

to train the Re-ranking algorithm on some concepts, and the re-ranking algorithm was

applied to re-rank the remaining concepts.

In the case of video collections, the retrieval units are often not the whole videos

themselves (which are generally too coarse grain for the user needs) but the video shots

composing the videos. Our contribution in this paper, is to re-rank the video shots ac-

cording to their scores, which were obtained from the classifiers, according to the video

knowledge and nature. Our work is similar to the work in [5], where the authors re-

ranked the previous results with video knowledge which is described as the mean score

value of the current shots in the same video. The mean scores were adopted to be fused

with the original scores.

The paper is organized as follows: Our re-ranking method is presented in section 2.

Section 3 describes the experimental results, while section 4 presents our concluding

remarks.

2 Re-ranking method

In this paper, we propose an unsupervised method for re-ranking video shots according

to a query or a concept. Our hypothesis is that videos have rather homogeneous contents

and that the presence of a given concept in a video depends a lot on the nature of the

video itself. Scores (here homogeneous to probabilities) are computed independently

for all video shots as their likeliness to contain a target concept using classifiers (or

networks of classifiers) that were trained on the development set. The re-ranking is

actually done by a re-scoring which is done in two steps. First, we compute a global

score for each video for containing the target concept; this score is computed from the

scores of all the shots within the video. Then, we re-evaluate the score of each shot

according to the global score of the video it belongs to.

The test collection contains a set of videos V = (v1, v2, . . . , vm), m being the

number of videos in the collection. Each video vi composed of a sequence of shots

vi = (si1, si2, . . . , sini
), ni being the number of shots of vi.

For each shot sij , an initial classification score xij is computed from supervised

learning on the development set. Many options are possible for the computation of a

global score xi for a video vi from the shots that it contains. We tried several formulas

and found that the following one which is a generalization of the mean of the shot scores

was the most effective:

zi =

(

∑ni

j=1
(xij)

α

ni

)1/α

, (1)

where α is the parameter that has to be tuned by cross-validation within the development

collection. Then, we update the score of each shot according to its previous score and
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the global score of the video it belongs to. Again, many options were possible and we

chose a weighted multiplicative fusion:

x′

ij = x
1−γ
ij × z

γ
i , (2)

where γ is a parameter that controls the “strength” of the re-ranking. It also has to be

tuned by cross-validation within the development collection.

3 Experiments

We conducted our experiments on TRECVID 2010, where 130 concepts are provided

with ground truth labels in a training set. The evaluation is done by calculating the Mean

Average Precision (MAP) on only 30 concepts that were chosen by NIST. We evaluated

the re-ranking method on four different initial classification results, which we have

submitted to TRECVID 2010, including different fusion strategies such as weighted

and direct optimized weighted fusion, also the combination of the two fusion types

with genetic fusion. These fusion strategies were applied on score vectors obtained

by training different systems on 45 different descriptors (audio and visual descriptors)

which have been produced by various partners of the IRIM project of the GDR ISIS [7].
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Fig. 1. Tuning of the γ parameter: re-ranking the results after fusion with four different runs;

MAP on the 130 concepts on the development set of TRECVID 2010.

As it is shown, in order to get the best performance from our system, we need to

tune the γ parameter in our re-ranking algorithm; this tuning was conducted on the

development set using four different runs that had different fusion strategies. Fig. 1

shows the results of our re-ranking method on the development set using different values

for γ. Each one of the curves indicates the MAP on the validation set after re-ranking

the fused results with different values of γ. Here the baseline, for each run (curve), is

given when γ = 0. As we can see, for the four runs, the best performance is reached

when γ = 0.4; here the re-ranking is applied directly on the fused results.

We made initial experiments with α = 1 (regular mean) and then tried other α

values. We found a small improvement with higher values with an optimal value close

to 2, corresponding to a root mean square. We then applied the proposed method on
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the TRECVID 2010 test set with γ = 0.4 and α = 2. Table. 1 shows the gain on the

MAP using our re-ranking method on four different initial scoring methods. As we can

see, our proposed re-ranking method can significantly improve the performance: on this

collection the gain is up to 22%.

Run Baseline Re-rank Gain(%)

ALL quaero map 0.0476 0.0577 21

ALL quaero ga map 0.0479 0.0584 22

ALL quaero opt 0.0485 0.0563 16

ALL quaero ga opt 0.0484 0.0568 17

Table 1. Results obtained on the test set; MAP on the 30 concepts of our four submitted results

for TRECVID 2010.

4 Conclusion

We proposed a re-ranking method which improves the performance of semantic video

indexing and retrieval. Experimental results show that the proposed re-ranking method

is effective and that it can improve the performance of our system on average by about

16-22% on TRECVID 2010 semantic indexing task.
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