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UJF-Grenoble 1 / UPMF-Grenoble 2 / Grenoble INP / CNRS, LIG UMR 5217, Grenoble, F-38041 France

Firstname.Lastname@imag.fr

Abstract

This article presents a demo of person search in audio-

visual broadcast using only the text available in a video

and in resources external to the video. We also present

the different steps used to recognize characters in video

for multi-modal person recognition systems. Text detection

is realized using the text features (texture, color, contrast,

geometry, temporal information). The text recognition it-

self is performed by the Google Tesseract free software.

The method was successfully evaluated on a broadcast news

corpus that contains 59 videos from the France 2 French TV

channel.

1. Introduction

Accessing information in videos is challenging due to

the so-called ”semantic gap”. Addressing this problem can

be done by taking advantage of different modalities that are,

explicitly or implicitly, present in the video. Recognition

of persons in video documents was initially a mono-modal

problem (face recognition, speaker recognition). As other

information can help recognizing persons, the problem is

now addressed through a multi-modal fusion strategy. Fol-

lowing this trend, we aim at extracting the text available in

the video frame with a focus on named entities.

The recognition of text embedded in a video – like e.g.

a name, a place, a position – can provide information about

the presence or citation of a person.

The availability of this text can help us to disambiguate a

name that was cited or vice versa. It can help to understand

the context of the video, or the main topic of a report. Tak-

ing advantage of this extracted text could be done using a

classical text based Information Retrieval (IR) system, that

could be enhanced using external information such as elec-

tronic newspapers, web pages related to specific keywords

(e.g. people, locations, . . . ).

Several steps are needed to obtain this information. First,

the detection of the text area must be done accurately, sec-

ond, an Optical Character Recognition (OCR) system is ap-

plied on the parts of the images selected and filtered dur-

ing the previous step. A final post-processing step is then

performed. As the processes are cascaded, the quality of a

given one (e.g the text detection) has a great influence of the

following ones (e.g. the recognition step). We concentrate

in this paper on the first step.

The paper is organized as follows: section 2 presents

related works. Our contribution is then detailed: text

detection, Optical Character Recognition, a light post-

processing, use of external information. Section 4 addresses

the problem of the experimental evaluation on a broadcast

news corpus taken from the France 2 French TV channel.

The last section is dedicated to the conclusion.

2. Related works

All the methods share three steps: text detection, text

recognition and post-processing.

Regarding text detection two kinds of texts has to be con-

sidered: the scene text (e.g. a text written on a T-shirt), and

the overlaid text. When detecting the latter, the technique

will change if the text is known to be horizontal [6], or can

be in any orientation; in such a case corner detection can be

used as in [5]. In our case, the text is known to be horizontal

and the closest work is the one from Wolf et al. [8] which

propose a detection scheme‘s pressing the cumulative mea-

sure of directional gradient. Our detection procedure will

follow quite closely this work.

Regarding the text recognition problem, two solutions

are possible: using a conventional OCR system with image

adaptation or produce a specific video one. For the sec-

ond, we refer the interested reader to [1]. In our case, we

will rely on an external OCR system as the text we aim at

recognizing follows some strict rules: horizontal overlaid

text, fixed font and fixed position. We will thus rely on the

Tesseract free software from Google. In order to opti-

mize the performances of Tesseract, images have to be



scaled to a resolution similar to the one of scanned images.

For the last step, namely the post-processing, the string

edit distance can be computed between the obtained string

and a pre-defined corpus [7]. Another post-processing can

be done using external resources: Zhao et al. [9] have

worked on multimodal fusion for people recognition using,

not only conventional recognition but also OCR and Auto-

matic Speech Recognition (ASR) systems. In addition to

these various methods external resources were used to im-

prove recognition: a corpus of text (namely AQUAINT),

some news site and search engine. Merging was done using

the RANKBOOST algorithm [2].

3. Our contribution

We focus our study on the transcription of named enti-

ties from the video frames. Proper names and positions of

a person have been our first target to highlight the interest

of video text to recognize people. To do this, we had to de-

sign a detection system with several steps (Fig.1): From a

frame (Fig.1a), a Sobel filter is applied to detect character

edges. The obtained images are then thresholded (Fig.1b),

then treatment of dilatation and erosion connects the charac-

ters together (Fig.1c). Most of the noise is then suppressed

using an erosion followed by a dilatation (Fig.1d).

(a) Original image (b) Edge detection

(c) Character connection (d) Noise suppression

Figure 1. Images taken from the France 2

news of February 1, 2007, INA source

After this coarse filter, a more accurate corner detection

is performed on each connected component: a horizontal

(Fig. 2b) (resp. vertical (Fig. 2c)) dilatation allows to de-

tect the box height (resp. the box width). The connected

components that do not hold a mandatory geometry are fil-

tered. Fig. 2d shows a resulting image.

(a) A box after first detection

(b) find abscissa with vertical dilatation

(c) find ordinate with horizontal dilatation

(d) Image with boxes

Figure 2. precise detection of the box coordi-

nates

We perform the detection on each frame in order to have

a follow up of each text box (Fig. 3). Only the boxes

sufficiently stable over time are kept. We thus have, for

each kept box, a range of presence (starting/ending frame).

The box images are then processed by the Otsu algorithm

for binarization. Every 10 frames, an average images is

computed. Since the text lasts more than 10 frames, we

have many candidates images for the same text. Each of

these candidate image is sent to Tesseract, thus lead-

ing to many transcriptions for the target text. Note that

Tesseract being quite sensible to the resolution of the

input images, a Bi-cubic interpolation is applied to obtain

the required resolution.

Last but not least, an average image over the whole appear-

ing / disappearing range is computed. This image will serve

as a reference for the combination step: a weighted lattice is

built using all the transcriptions provided by Tesseract.

A viterbi search outputs the path with the maximum weight,

thus giving the most likely transcription.

4. Evaluation issues

The corpus used for evaluation consists of 59 videos of

France 2 TV News from 1 February to 31 March 2007.

The average length of these videos is about 38 minutes,

which represents an overall of 37 hours of video. 29,166

key frames were extracted by segmentation of videos. The

texts extracted from these key frames have been manually

annotated. We also annotated if the text corresponds to a

person’s name or to the person’s position and if the person

was present or not on the image.



Figure 3. Temporal detection

We conducted our evaluation on 29k frames, with focus

on person name and person position written on the screen

(excluding those credited late reporting). Spatial position

of the detected text has not been evaluated as it requires

a more complex annotation setting. We nevertheless anno-

tated presence/absence of the boxes in the annotated frames.

From the 29k images assessed, 4,414 frames containing text

with 9,257 text boxes. The performance of our detection

text system is 91% recall. Although a bit weak, this re-

sult can be improved by a better tuning1 of the system; an

annotation that specifies the coordinates of the text boxes

should also allow us to improve this result. A simple ad-

hoc post-processing was applied to the recognized texts to

correct some errors (for example, changing “ii” into “m” in

the Tesseract output, . . . ).

We used as a metric for assessing the recognition of texts,

the Levenshtein distance, given by the Sclite2 tool, on

the words and characters. This distance is calculated be-

tween the reference text (in our case, the human post-edition

of the recognized text) and the hypothesis (the text automat-

ically recognized by our system).

Results are presented in Table 1 and examples of such

texts in Fig 4. For sake of completeness we provide the

word error rate even through the words were not yet post-

processed. The error mentioned is thus over-estimated.

Consequently, we focus our analysis on the character er-

ror rate. As can be seen, the names of people tend to be

more readable by our system (line FT, vs N). In the corpus

we use, the names are often written with a font of 10 pix-

els high where the person position is usually written with a

font of 7 pixels high. This can explain the difference in per-

formance between the name only category (N: 3.7%), and

the position (P: 8.4%). Moreover, one can see that the NO

performances are lower than the N ones (5.0% vs 3.7%). It

appears that the places in the video where the name does not

appear alone are mainly in the news summary and are con-

sequently written in lowercase. Moreover, in these video

parts, the image is much less stable than in the main track.

1At the moment a non systematic tuning of the system is manually

performed.
2Sclite: http://www.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm

Table 1. Results for character recognition

Type boxes words character err rate err rate

words character

FT 9257 30912 154941 21.1% 9.8%

N 1440 3230 19248 8.3% 3.7%

NP 1394 3126 18589 8.5% 3.7%

NO 1683 4263 23984 11.9% 5.0%

NOP 1491 3566 20484 10.7% 4.6%

P 1394 5794 32472 27.5% 8.4%

PP 1360 5657 31717 27.7% 8.5%

FT: Full Text;

N: Name appears alone (without credit).

NP: N and person present a priori (alone or accompanied) in the frame.

NO: Name appears alone or with other words (without credit).

NOP: NO and person present a priori (alone or accompanied) in the frame.

P: Person position present.

PP: P and person present a priori (alone or accompanied) in video.

When a name is written alone on a box text, the person is

present in 96,8% of cases.

(a) TC (b) N+O

(c) N (d) P

Figure 4. Example of localized texts

5. Demonstration

We developed a search person system in video based

only on the text. When a user type a person name, or a

position (job, title ...) and a date (between February 2 and

March 31, 2007) the system localizes a part of a newscast

from the France 2 corpus, where the person is likely to ap-

pear on the screen.

At indexing time, the system will cascade different steps:

text detection followed by character recognition. This pro-



(a) (b)

Figure 5. Text localization / recognition in a video frame

vides a set of words used to find out complementary infor-

mation from external ressources. We end up with a list of

persons, functions, dates and places which will be used to

accurately localize persons in the video. At query time, the

system will be able to display relevant video parts related to

the text query.

6. Conclusion and further work

This work allows us to assess the contribution that OCR

can provide person name detection from video. Subse-

quently, the study of other types of named entities (place,

date, ...) can still provide useful information for recognizing

people. In our future work, we also plan to integrate some

control of the Tesseract software (like post-processing

using word lists and language models) in order to improve

the quality of the transcriptions. The last question to address

is the use of the obtained information. Currently, the text

cannot be used directly by a classical IR system as a docu-

ment (i.e the text in the box) has a non-classical size (only a

few words). Indexing such small documents can be done us-

ing methods inherited from Speech Information Retrieval,

in which trigram of characters are indexed instead of full

words (as for example in [7] or [4]). Another strategy can

be to directly match the query terms with the text output by

our system. In order to integrate some tolerance, the match

can be done fuzzily using, for example, the Levenshtein dis-

tance through some efficient Nearest Neighbor [3].
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