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John A. Lee, Sébastien Lefèvre, Michael Mix, Valery Naranjo, Xiaodong Wu, Habib ZaidiSenior Member, IEEE,

Ziming Zeng and Heikki Minn.

Abstract—The impact of PET on radiation therapy is held1

back by poor methods of defining functional volumes of interest.2

Many new software tools are being proposed for contouring3

target volumes but the different approaches are not adequately4

compared and their accuracy is poorly evaluated due to the ill-5

definition of ground truth. This paper compares the largest cohort6

to date of established, emerging and proposed PET contouring7

methods, in terms of accuracy and variability. We emphasise8

spatial accuracy and present a new metric that addresses the9

lack of unique ground truth. 30 methods are used at 13 different10

institutions to contour functional VOIs in clinical PET/CT and11

a custom-built PET phantom representing typical problems in12

image guided radiotherapy. Contouring methods are grouped13

according to algorithmic type, level of interactivity and how they14

exploit structural information in hybrid images. Experime nts15

reveal benefits of high levels of user interaction, as well as16

simultaneous visualisation of CT images and PET gradients to17

guide interactive procedures. Method-wise evaluation identifies18

the danger of over-automation and the value of prior knowledge19

built into an algorithm.20

I. I NTRODUCTION21

Positron emission tomography (PET) with the metabolic22

tracer 18F-FDG is in routine use for cancer diagnosis and23

treatment planning. Target volume contouring for PET image-24

guided radiotherapy has received much attention in recent25

years, driven by the combination of PET with CT for treatment26

planning [1], unprecedented accuracy of intensity modulated27
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radiation therapy (IMRT) [2] and on-going debates [3], [4]28

over the ability of the standardised uptake value (SUV) to29

define functional volumes of interest (VOIs) by simple thresh- 30

olding. Many new methods are still threshold-based, but either 31

automate the choice of SUV threshold specific to an image32

[5], [6] or apply thresholds to a combination (eg ratio) of33

SUV and an image-specific background value [7], [8]. More34

segmentation algorithms are entering PET oncology from35

the field of computer vision [9] including the use of image36

gradients [10], deformable contour models [11], [12], mutual 37

information in hybrid images [13], [14] and histogram mixture 38

models for heterogeneous regions [15], [16]. The explosionof 39

new PET contouring algorithms calls for constraint in order40

to steer research in the right direction and avoid so-called41

yapetism (Yet Another PET Image Segmentation Method)42

[17]. For this purpose, we identify different approaches and 43

compare their performance. 44

Previous works to compare contouring methods in PET45

oncology [18], [19], [20] do not reflect the wide range of46

proposed and potential algorithms and fall short of measuring 47

spatial accuracy. [18] compare 3 threshold-based methods used 48

on PET images of non-small cell lung cancer in terms of49

the absolute volume of the VOIs, ignoring spatial accuracy50

of the VOI surface that is important to treatment planning.51

Grecoet al. [19] compare one manual and 3 threshold-based52

segmentation schemes performed on PET images of head-and-53

neck cancer. This comparison also ignores spatial accuracy, 54

being based on absolute volume of the VOI obtained by55

manual delineation of complementary CT and MRI. Vees56

et al. [20] compare one manual, 4 threshold-based, one57

gradient-based and one region-growing method in segmenting 58

PET gliomas and introduce spatial accuracy, measured by59

volumetric overlap with respect to manual segmentation of60

complimentary MRI. However, a single manual segmentation61

can not be considered the unique truth as manual delineation62

is prone to variability [21], [22]. 63

Outside PET oncology, the society for Medical Image64

Computing and Computer Assisted Intervention (MICCAI) has65

run a ’challenge’ in recent years to compare emerging methods 66

in a range of application areas. Each challenge takes the67

form of a double-blind experiment, whereby different methods 68

are applied by their developers on common test-data and the69

results analysed together objectively. In 2008, two examples of 70
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pathological segmentation involved multiple sclerosis lesions71

in MRI [23] and liver tumours in CT [24]. These tests72

involved 9 and 10 segmentation algorithms respectively, and73

evaluated their accuracy using a combination of the Dice74

similarity coefficient [25] and Hausdorff distance [26] with75

respect to a single manual delineation of each VOI. In 200976

and 2010, the challenges were to segment the prostate in77

MRI [27] and parotid in CT [28]. These compared 2 and 1078

segmentation methods respectively, each using a combination79

of various overlap and distance measures to evaluate accuracy80

with respect to a single manual ground truth per VOI. The81

MICCAI challenges have had a major impact on segmentation82

research in their respective application areas, but this type83

of large-scale, double-blind study has not previously been84

applied to PET target volume delineation for therapeutic85

radiation oncology, and the examples above are limited by86

their dependence upon a single manual delineation to define87

ground truth of each VOI.88

This paper reports on the design and results of a large-89

scale, multi-centre, double-blind experiment to compare the90

accuracy of 30 established and emerging methods of VOI con-91

touring in PET oncology. The study uses a new, probabilistic92

accuracy metric [29] that removes the assumption of unique93

ground truth, along with standard metrics of Dice similarity94

coefficient, Hausdorff distance and composite metrics. We use95

both a new tumour phantom [29] and patient images of head-96

and-neck cancer imaged by hybrid PET/CT. Experiments first97

validate the new tumour phantom and accuracy metric, then98

compare conceptual approaches to PET contouring by group-99

ing methods according to how they exploit CT information in100

hybrid images, the level of user interaction and 10 distinct101

algorithm types. This grouping leads to conclusions about102

general approaches to segmentation, also relevant to othertools103

not tested here. Regarding the role of CT, conflicting reports in104

the literature further motivate the present experiments: while105

some authors found that PET tumour discrimination improves106

when incorporating CT visually [30] or numerically [31],107

others report on the detremental effect of visualising CT on108

accuracy [32] and inter/intra-observer variability [21],[22].109

Further experiments directly evaluate each method in termsof110

accuracy and, where available, inter-/intra operator variability.111

Due to the large number of contouring methods, full details112

of their individual accuracies and all statistically significant113

differences are provided in the supplementary material and114

summarised in this paper.115

The rest of this paper is organised as follows. Section116

II describes all contouring algorithms and their groupings.117

Section III presents the new accuracy metric and describes118

phantom and patient images and VOIs. Experiments in section119

IV evaluate the phantom and accuracy metric and compare120

segmentation methods as grouped and individually. Section121

V discusses specific findings about manual practices and the122

types of automation and prior knowledge built into contouring123

and section VI gives conclusions and recommendations for124

future research in PET-based contouring methodology for125

image-guided radiation therapy.126

II. CONTOURING METHODS 127

Thirteen contouring ’teams’ took part in the experiment. We128

identify 30 distinct ’methods’, where each is a unique com-129

bination of team and algorithm. Table I presents the methods130

along with labels (first column) used to identify them hereafter. 131

Some teams used more than one contouring algorithm and

TABLE I: The 30 contouring methods and their attributes.

method team type
interactivity CT use
max high mid low none high low none

PLa 01 PL ▲ ∎

WSa 02 WS ▲ ∎

PLb

03
PL

▲ ∎

PLc ▲ ∎

PLd ▲ ∎

T2a T2 ▲ ∎

MDa

04

MD ▲ ∎

T4a

T4
▲ ∎

T4b ▲ ∎

T4c ▲ ∎

MDb
1,2 05

MD ▲ ∎

RGa RG ▲ ∎

HB 06 HB ▲ ∎

WSb 07 WS ▲ ∎

T1a

08
T1

▲ ∎

T1b ▲ ∎

T2b
T2

▲ ∎

T2c ▲ ∎

RGb
1,2 09 RG

▲ ∎

RGc
1,2 ▲ ∎

PLe
10 PL

▲ ∎

PLf ▲ ∎

GR 11 GR ▲ ∎

MDc

12

MD ▲ ∎

T1c T1 ▲ ∎

T3a
T3

▲ ∎

T3b ▲ ∎

T2d
T2

▲ ∎

T2e ▲ ∎

PLg 13 PL ▲ ∎

132

some well-established algorithms such as thresholding were 133

used by more than one team, with different definitions of the134

quantity and its threshold. Methods are grouped according to 135

algorithm type and distinguished by their level of dependence 136

upon the user (section II-B) and CT data (section II-C) in137

the case of patient images. Contouring by methods MDb, 138

RGb and RGc was repeated by two users in the respective139

teams, denoted by subscripts 1 and 2, and the corresponding140

segmentations are treated separately in our experiments. 141

Some of the methods are well known for PET segmentation142

while others are recently proposed. Of the recently proposed 143

methods, some were developed specifically for PET segmen-144

tation (e.g. GR, T2d and PLg) while some were adapted and145

optimised for PET tumour contouring for the purpose of this146

study. The study actively sought new methods, developed147

or newly adapted for PET tumours, as their strengths and148

weaknesses will inform current research that aims to refine or 149

replace state of the art tools, whether those tools are included 150
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here or not. Many of the algorithms considered operate on151

standardised uptake values (SUVs), whereby PET voxel in-152

tensityI is rescaled as SUV =I ×(β/ain) to standardise with153

respect to initial activityain of the tracer inBq ml−1 and154

patient massβ in grams [33]. The SUV transformation only155

affects segmentation by fixed thresholding while methods that156

normalise with respect to a reference value in the image or157

apply thresholds at a percentage of the maximum value are158

invariant to the SUV transformation.159

A. Method types and descriptions160

Manual delineation methods (MD)use a computer mouse161

to delineate a VOI slice-by-slice, and differ by the modes of162

visualisation such as overlaying structural or gradient images163

and intensity windowing.MDa is performed by a board164

certified radiation oncologist and nuclear medicine physician,165

who has over a decade of research and clinical experience in166

PET-based radiotherapy planning.MD b is performed by two167

independent, experienced physicians viewing only PET image168

data. For each dataset, the grey-value window and level were169

manually adjusted.MD c performed on the PET images by a170

nuclear medicine physicist who used visual aids derived from171

the original PET: intensity thresholds, both for the PET and172

the PET image-gradient, were set interactively for the purpose173

of visual guidance.174

Thresholding methods (T1 - T4)are divided into 4 types175

according to whether the threshold is applied to signal (T1 &176

T2) or a combination of signal and background intensity (T3177

& T4) and whether the threshold value is chosena priori,178

based on recommendations in the literature or the team’s179

own experience (T1 & T3) or chosen for each image, either180

automatically according to spatial criteria or visually bythe181

user’s judgement (T2 & T4). Without loss of generalisation182

the threshold value may be absolute or percentage (e.g. of183

peak) intensity or SUV.T1a & T1b employ the widely used184

cut-off values of 2.5 SUV and 40% of the maximum in the185

VOI, as used for lung tumour segmentation in [34] and [35]186

respectively. Method T1a is the only method of all in table187

I that is directly affected by the conversion from raw PET188

intensity to SUVs. The maximum SUV used by method T1b
189

was taken from inside the VOI defined by T1a. To calculate190

SUV for the phantom image, where patient weightβ is191

unavailable, all voxel values were re-scaled with respect to192

a value of unity at one end of the phantom where intensity is193

near uniform, causing method T1a to fail for phantom scan 2194

as the maximum was below 2.5 for both VOIs.T1c applies195

a threshold at 50% of the maximum SUV. MethodT2a is196

the thresholding scheme of [6], which automatically finds the197

optimum relative threshold level (RTL) based an estimate of198

the true absolute volume of the VOI in the image. The RTL199

is relative to background intensity, where background voxels200

are first labelled automatically by clustering. An initial VOI201

is estimated by a threshold of 40% RTL, and its maximum202

diameter is determined. The RTL is then adjusted iteratively203

until the absolute volume of the VOI matches that of a sphere204

of the same diameter, convolved with the point-spread function205

(PSF) of the imaging device, estimated automatically from the206

image. MethodsT2b & T2c automatically define thresholds207

according to different criteria. They both use the results of 208

method T1a as an initial VOI, and define local background209

voxels by dilation. Method T2b uses two successive dilations210

and labels the voxels in the second dilation as background.211

The auto-threshold is then defined as 3 standard deviations212

above the mean intensity in this background sample. Method213

T2c uses a single dilation to define the background and finds214

the threshold that minimises the within-class variance between 215

VOI and background using the optimization technique in [36]. 216

Finally, method T2c applies a closing operation to eliminate217

any holes within the VOI, which may also have the effect218

of smoothing the boundary.MethodT2d finds the RTL using 219

the method of [6] in common with method T2a but with 220

different parameters and initialisation. Method T2d assumes a 221

PSF of 7 mm full width at half maximum (FWHM) rather than222

estimating this value from the image. The RTL was initialized 223

with background defined by a manual bounding box rather224

than clustering and foreground defined by method T3a with a 225

50% threshold rather than 40% RTL. Adaptive thresholding 226

method T2e starts with a manually defined bounding box227

then defines the VOI by the iso-contour at a percentage of228

the maximum value within the bounding box. MethodsT3a
229

& T3b are similar to T1c, but incorporate local background230

intensity calculated by a method equivalent to that Daisne231

et al. [37]. A threshold value is then 41% and 50% of the 232

maximum plus background value, respectively. MethodT4a
233

is an automatic SUV-thresholding method implemented in234

the ’Rover’ software [38]. After defining a search area that235

encloses the VOI, the user provides an initial threshold which 236

is adjusted in two steps of an iterative process. The first step 237

estimates background intensityIb from the average intensity 238

over those voxels that are below the thresholdand within 239

a minimum distance of the VOI (above the threshold). The240

second step re-defines the VOI by a new threshold at 39% of 241

the differenceImax− Ib, whereImax is the maximum intensity 242

in the VOI. MethodsT4b & T4c use the source-to-background243

algorithm in [8]. The user first defines a background region244

specific to the given image, then uses parametersa and b to 245

define the thresholdt = aµVOI+bµBG, whereµVOI +andµBG are 246

the mean SUV in the VOI and background respectively. The247

parameters are found in a calibration procedure by scanning248

spherical phantom VOIs of known volume. As this calibration249

was not performed for the particular scanner used in the250

present experiments (GE Discovery), methods T4b and T4c 251

use parameters previously obtained for Gemini and Biograph252

PET systems respectively. 253

Region growing methods (RG)use variants of the classical254

algorithm in [39], which begins at a ’seed’ voxel in the255

VOI and agglomerates connected voxels until no more satisfy256

criteria based on intensity. InRGa, the user defines a bounding257

sphere centred on the VOI, defining both the seed at the centre258

of the sphere and a hard constraint at the sphere surface to259

avoid leakage into other structures. The acceptance criterion 260

is an interactively adjustable threshold and the final VOI is261

manually modified in individual slices if needed. Methods262

RGb & RG c use the region growing tool in Mirada XD 263

(Mirada Medical, Oxford, UK) with seed point location and264
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acceptance threshold defined by the user. In RGb only, the265

results are manually post-edited using the ’adaptive brush’ tool266

available in Mirada XD. This 3D painting tool adapts in shape267

to the underlying image. Also in method RGb only, CT images268

were fused with PET for visualisation and the information used269

to modify the regions to exclude airways and unaffected bone.270

Watershed methods (WS)use variants of the classical271

algorithm in [40]. The common analogy pictures a gradient-272

filtered image as a ’relief map’ and defines a VOI as one or273

more pools, created and merged by flooding a region with274

water. MethodWSa, adapted from the algorithm in [41] for275

segmenting natural colour images and remote-sensing images,276

makes use of the content as well as the location of user-277

defined markers. A single marker for each VOI (3× 3 or278

5 × 5 pixels depending on VOI size) is used along with a279

background region to train a fuzzy classification procedure280

where each voxel is described by a texture feature vector.281

Classification maps are combined with image gradient and the282

familiar ’flooding’ procedure is adapted for the case of multi-283

ple surfaces. Neither the method nor the user were specialized284

in medical imaging. MethodWSb, similar way to that in [42],285

uses two procedures to overcome problems associated with286

local minima in image gradient. First, viscosity is added to287

the watershed, which closes gaps in the edge-map. Second, a288

set of internal and external markers are identified, indicating289

the VOI and background. After initial markers are identified290

in one slice by the user, markers are placed automatically in291

successive slices, terminating when the next slice is deemed292

no longer to contain the VOI according to a large drop in293

the ’energy’, governed by area and intensity, of the segmented294

cross section. If necessary, the user interactively overrides the295

automatic marker placement.296

Pipeline methods (PL)are more complex, multi-step algo-297

rithms that combine elements of thresholding, region growing,298

watershed, morphological operations and techniques in [43],299

[44], [15]. MethodPLa is a deformable contour model adapted300

from white matter lesion segmentation in brain MRI. The main301

steps use a region-scalable fitting model [45] and a global302

standard convex scheme [46] in energy minimization based on303

the ’Split Bregman’ technique in [43]. MethodsPLb – PLd are304

variants of the ’Smart Opening’ algorithm, adapted for PET305

from the tool in [44] for segmenting lung nodules in CT data.306

In contrast to CT lung lesions, the threshold used in region307

growing can not be seta priori and is instead obtained from308

the image interactively. Method PLb was used by an operator309

with limited PET experience. The user of method PLc had310

more PET experience and, to aid selection of boundary points311

close to steep PET gradients, also viewed an overlay of local312

maxima in the edge-map of the PET image. Finally, method313

PLd took the results of method PLc and performed extra pro-314

cessing by dilation, identification of local gradient maxima in315

the dilated region, and thresholding the gradient at the median316

of these local maxima. MethodsPLe & PLf use the so-called317

’poly-segmentation’ algorithm without and with post editing318

respectively. PLe is based on a multi-resolution approach,319

which segments small lesions using recursive thresholding320

and combines 3 segmentation algorithms for larger lesions.321

First, the watershed transform provides an initial segmentation.322

Second, an iterative procedure improves the segmentation by 323

adaptive thresholding that uses the image statistics. Third, a 324

region growing method based on regional statistics is used.325

The interactive variant (PLf ) uses a fast interactive tool for 326

watershed-based sub-region merging. This intervention isonly 327

necessary in at most two slices per VOI. MethodPLg is a 328

new fuzzy segmentation technique for noisy and low resolution 329

oncological PET images. PET images are first smoothed using330

a nonlinear anisotropic diffusion filter and added as a second 331

input to the fuzzy C-means (FCM) algorithm to incorporate332

spatial information. Thereafter, the algorithm integrates the 333

à trous wavelet transform in the standard FCM algorithm to334

handle heterogeneous tracer uptake in lesions [15]. 335

The Gradient based method (GR)method is the novel 336

edge-finding method in [10], designed to overcome the low337

signal-to-noise ratio and poor spatial resolution of PET im- 338

ages. As resolution blur distorts image features such as iso- 339

contours and gradient intensity peaks, the method combines340

edge restoration methods with subsequent edge detection.341

Edge restoration goes through two successive steps, namely342

edge-preserving denoising and deblurring with a deconvo-343

lution algorithm that takes into account the resolution of a344

given PET device. Edge-preserving denoising is achieved by345

bilateral filtering and a variance-stabilizing transform [47]. 346

Segmentation is finally performed by the watershed transform 347

applied after computation of the gradient magnitude. Over-348

segmentation is addressed with a hierarchical clustering of 349

the watersheds, according to their average tracer uptake. This 350

produces a dendrogram (or tree-diagram) in which the user351

selects the branch corresponding to the tumour or target.352

User intervention is usually straightforward, unless the uptake 353

difference between the target and the background is very low. 354

TheHybrid method (HB) is the multi-spectral algorithm in 355

[14], adapted for PET/CT. This graph-based algorithm exploits 356

the superior contrast of PET and the superior spatial resolution 357

of CT. The algorithm is formulated as a Markov Random358

Field (MRF) optimization problem [48]. This incorporates an 359

energy term in the objective function that penalizes the spatial 360

difference between PET and CT segmentation. 361

B. Level of interactivity 362

Levels of interactivity are defined on an ordinal scale of363

’max’, ’high’, ’mid’,’low’ and ’none’, where ’max’ and ’none’ 364

refer to fully manual and fully automatic methods respectively. 365

Methods with a ’high’ level involve user initialisation, which 366

locates the VOI and/or representative voxels, as well as run- 367

time parameter adjustment and post-editing of the contours. 368

’Mid’-level interactions involve user-initialisation and either 369

run-time parameter adjustment or other run-time information 370

such as wrongly included/excluded voxels. ’Low’-level inter- 371

action refers to initialisation or minimal procedures to re- 372

start an algorithm with new information such as an additional 373

mouse-click in the VOI. 374

C. Level of CT use 375

We define the levels at which contouring methods exploit376

CT information in hybrid patient images as ’high’, ’low’ or 377
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’none’, where ’high’ refers tonumericaluse of CT together378

with PET in calculations. The ’low’ group makesvisualuse of379

CT images to guide manual delineation, post-editing or other380

interactions in semi-automatic methods. The ’none’ group381

refers to cases where CT is not used, or is viewed incidentally382

but has no influence on contouring as the algorithm is fully383

automatic. None of the methods operated on CT images alone.384

III. E XPERIMENTAL METHODS385

A. Images386

We use two images of a new tumour phantom [29], man-387

ufactured for this study and two clinical PET images of388

different head-and-neck cancer patients. The test images are389

available on-line [49], along with ground truth sets described390

in section III-C. All imaging used the metabolic tracer18F-391

Fluorodeoxyglucose (FDG) and a hybrid PET/CT scanner392

(GE Discovery), but CT images from phantom scans were393

omitted from the test set. Table II gives more details of each394

image type. The tumour phantom contains glass compartments395

of irregular shapes shown in figure 1 (top row), mimicking396

real radiotherapy target volumes. The tumour compartment

1cm 1cm

(a) (b)

Fig. 1: (a) tumour and (b) nodal chain VOIs of the phantom.
Top: Digital photographs of glass compartments.Middle: PET
images from scan 1 (sagittal view).Bottom: 3D surface view
from an arbitrary threshold of simultaneous CT, lying within
the glass wall.

397

(a) has branches to recreate the more complex topology of398

some tumours. This and the nodal chain compartment (b) are399

based on cancer of the oral cavity and lymph node metastasis400

respectively, manually segmented from PET images of two401

head and neck cancer patients and formed by glass blowing.402

The phantom compartments and surrounding container were403

filled with low concentrations of FDG and scanned by a hybrid404

device (1, middle and bottom rows). Four phantom VOIs result405

from scans 1 and 2, with increasing signal to background ratio406

achieved by increasing FDG concentration in the VOIs. Details407

of the 4 phantom VOIs are given in the first 4 rows of table408

III. Figure 2 shows the phantom VOIs from scan 1, confirming409

qualitatively the spatial and radiometric agreement between410

phantom and patient VOIs.411

TABLE III: Properties of VOI and background (BG) data
(volumes in cm3 are estimated as in section III-C

VOI
image initial

activity
(kBq ml−1)

volume
(cm3)

source of
ground truth

tumour phantom 8.7 (VOI) 6.71 thresholds
node scan 1 4.9 (BG) 7.45 of
tumour phantom 10.7 (VOI) 6.71 simultaneous
node scan 2 2.7 (BG) 7.45 CT image
tumour patient 1 2.4 ×105

35.00 multiple
node 2.54 expert
tumour patient 2 3.6 ×105 2.35 delineations
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Fig. 2: Axial PET images of phantom and real tumour (top)
and lymph node (bottom) VOIs with profile lines traversing
each VOI. Plots on the right show the image intensity profiles
sampled from each image pair.

For patient images, head and neck cancer was chosen as it412

poses particular challenges to PET-based treatment planning 413

due to the many nearby organs at risk (placing extra demand on414

GTV contouring accuracy), the heterogeneity of tumour tissue 415

and the common occurrence of lymph node metastasis. A large416

tumour of the oral cavity and a small tumour of the larynx were417

selected from two different patients, along with a metastatic 418

lymph node in the first patient (figure 3). These target volumes 419

were chosen as they were histologically proven and have a420

range of sizes, anatomical locations/surroundings and target 421

types (tumour and metastasis). Details of the 3 patient VOIs422

are given in the last 3 rows of table III. 423

B. Contouring 424

With the exception of the hybrid method (HB) that does not425

apply to the PET-only phantom data, all methods contoured426

all 7 VOIs. In the case of patient VOIs, participants had427

the option of using CT as well as PET, and were instructed428

to contour the gross tumour volume (GTV) and metastatic429

tissue of tumours and lymph node respectively. All contouring 430
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TABLE II: Details of phantom and patient PET/CT images.

Image PET (18F FDG) CT
type frame length

(min)
width/height
(pixels)

depth
(slices)

pixel size
(mm)

slice depth
(mm)

width/height
(pixels)

depth
(slices)

pixel size
(mm)

slice depth
(mm)

phantom 10.0 256 47 1.17×1.17 3.27 512 47 0.59×0.59 3.75
patient 3.0 256 33,37 2.73×2.73 3.27 512 42,47 0.98×0.98 1.37

(a) (b) (c)

Fig. 3: Axial neck slices of18F-FDG PET images overlain on
simultaneous CT. (a)& (b) Oral cavity tumour& lymph node
metastasis in patient 1 (c) Laryngeal tumour in patient 2.

methods were used at the sites of the respective teams using431

their own software and workstations. Screen-shots of each432

VOI were provided in axial, sagittal and coronal views, with433

approximate centres indicated by cross-hairs and their voxel434

coordinates provided to remove any ambiguity regarding the435

ordering of axes and direction of increasing indices. No other436

form of ground truth was provided. Teams were free to refine437

their algorithms and practice segmentation before accepting438

final contours. This practicing stage was done without any439

knowledge of ground truth and is considered normal practice.440

Any contouring results with sub-voxel precision were down-441

sampled to the resolution of the PET image grid and any442

results in mm were converted to voxel indices. Finally, all443

contouring results were duplicated to represent VOIs first by444

the voxels on their surface, and second by masks of the solid445

VOI including the surface voxels. These two representations446

were used in surface-based and volume-based contour evalu-447

ation respectively.448

C. Contouring evaluation449

Accuracy measurement generally compares the contour be-450

ing evaluated, which we denoteC, with some notion of ground451

truth, denotedGT . We use a new probabilistic metric [29]452

denoted AUC’, as well as a variant of the Hausdorff distance453

[26] denoted HD’ and the standard metric of Dice similarity454

coefficient [25] (DSC). AUC’ and HD’ are standardised to the455

range0 . . . 1 so that they can be easily combined or compared456

with DSC and other accuracy metrics occupying this range457

[50], [51], [52]. Treated separately, AUC’, HD’ and DSC458

allow performance evaluation with and without the assumption459

of unique ground truth, and in terms of both volumetric460

agreement (AUC’ and DSC) and surface-displacement (HD’)461

with respect to ground truth.462

AUC’ is a probabilistic metric based on receiver operating463

characteristic (ROC) analysis, in a scheme we callinverse-464

ROC(I-ROC). The I-ROC method removes the assumption of465

unique ground truth, instead using a set ofp arbitrary ground 466

truth definitions{GT i}, i ∈ {1 . . . p} for each VOI. While 467

uniquely correct ground truth in the space of the PET image468

would allow deterministic and arguably superior accuracy469

evaluation, the I-ROC method is proposed for the case here,470

and perhaps all cases except numerical phantoms, where such471

truth is not attainable. The theoretical background of I-ROC is 472

given in Appendix A and shows that the area under the curve473

(AUC) gives a probabilistic measure of accuracy provided that 474

the arbitrary set can be ordered by increasing volume and475

share the topology and general form of the (unknown) true476

surface. The power of AUC’ as an accuracy metric also relies477

on the ability to incorporate the best available knowledge of 478

ground truth into the arbitrary set. This is done for phantom479

and patient VOIs as follows. 480

For phantom VOIs, the ground truth set is obtained by481

incrementing a threshold of Hounsfield units (HU) in the CT482

data from hybrid imaging (figure 4). Masks acquired for all

(a) (b)

Fig. 4: (a) 3D visualisation of phantom VOI from CT thresh-
olded at a density near the internal glass surface. (b) Arbitrary
ground truth masks of the axial cross section in (a), from 50
thresholds of HU.

483

CT slices in the following steps: 484

(i) reconstruct/down-sample the CT image to the same485

pixel grid as the PET image 486

(ii) define a bounding box in the CT image that completely487

encloses the glass VOI as well asC 488

(iii) threshold the CT image at a value HUi 489

(iv) treat all pixels below this value as being ’liquid’ and490

all above it as ’glass’ 491
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(v) label all ’liquid’ pixels that areinside the VOI as492

positive, but ignore pixels outside the VOI.493

(vi) repeat for p thresholds HUi, i ∈ {1 . . . p} between494

natural limits HUmin and HUmax.495

This ground truth set is guaranteed to pass through the internal496

surface of the glass compartment and exploits the inherent497

uncertainty due to partial volume effects in CT. It follows498

from derivations in Appendix A.2-3 that AUC is equal to499

the probability that a voxel drawn at random from below the500

unknown CT threshold at the internal glass surface, lies inside501

the contourC being evaluated.502

For patient VOIs, the ground truth set is the union of503

an increasing number of expert manual delineations. Experts504

contoured GTV and node metastasis on PET visualised with505

co-registered CT. In the absence of histological resection, we506

assume that the best source of ground truth information is507

manual PET segmentation by human experts at the imaging508

site, who have experience of imaging the particular tumour-509

type and access to extra information such as tumour stage,510

treatment follow-up and biopsy where available. However, we511

take the view that no single manual segmentation provides512

the unique ground truth, which therefore remains unknown.513

In total, 3 delineated each VOI on 2 occasions (denoted514

Nexperts = 3 and Noccasions = 2) with at least a week in515

between. The resulting set ofp = Nexperts×Noccasionsground516

truth estimates were acquired to satisfy the requirements in517

Appendix A.3 as follows:518

(i) define a bounding box in the CT image that completely519

encloses allNexperts × Noccasions manual segmentations520

{GT i} and the contourC being evaluated521

(ii) order the segmentations{GT i} by absolute volume in522

cm3
523

(iii) use the smallest segmentation asGT 2524

(iv) form a new VOI from the union of the smallest and525

the next largest VOI in the set and use this asGT 3526

(v) repeat until the largest VOI in the set has been used527

in the union of allNexperts×NoccasionsVOIs528

(vi) create homogeneous masks forGT 1 andGT p, having529

all negative and all positive contents respectively.530

The patient ground truth set encodes uncertainty from inter-
/intra-expert variability in manual delineation and AUC isthe
probability that a voxel drawn at random from the unknown
manual contour at the true VOI surface, lies inside the contour
C being evaluated. Finally, we rescale AUC to the range
{0 . . .1} by

AUC′ = AUC − 0.5
0.5

, 0 ≤ AUC′ ≤ 1= maximum accuracy.

(1)
Reference surfacesthat profess to give the unique ground531

truth are required to measure the Hausdorff distance and Dice532

similarity. We obtain the ’best guess’ of the unique ground533

truth, denotedGT ∗ from the sets of ground truth definitions534

introduced above. For each phantom VOI we select the CT535

threshold having the closest internal volume in cm3 to an536

independent estimate. This estimate is the mean of three537

repeated measurements of the volume of liquid contained by538

each glass compartment. For patient VOIs,GT ∗ is the union539

mask that has the closest absolute volume to the mean of all540

Nexperts×Noccasionsraw expert manual delineations. 541

HD’ first uses the reference surfaceGT ∗ to calculate the
Hausdorff distance HD, being the maximum for any point on
the surfaceC of the minimum distances from that point to
any point on the surface ofGT ∗. We then normalise HD with
respect to a length scaler and subtract the result from 1

HD′ = 1 −min(HD, r)
r

, 0 ≤ HD′ ≤ 1= maximum accuracy,

(2)
wherer = 3

√
3

4π
vol(GT ∗) is the radius of a sphere having the542

same volume asGT ∗ denoted vol(GT ∗). Equation 2 trans- 543

forms HD to the desired range with 1 indicating maximum544

accuracy. 545

DSC also uses the reference surfaceGT ∗ and is calculated
by

DSC= 2NC∩GT ∗

NC +NGT ∗
, 0 ≤ DSC≤ 1= maximum accuracy,

(3)
whereNv denotes the number of voxels in volumev defined 546

by contours or their intersect. 547

Composite metrics are also used. First, we calculate a
synthetic accuracy metric from the weighted sum

A* = 0.5 AUC′ + 0.25 DSC+ 0.25 HD′, (4)

which, in the absence of definitive proof of their relative548

power, assigns equal weighting to the benefits of the proba-549

bilistic (AUC′) and deterministic approaches (DSC and HD’).550

By complementing AUC’ with the terms using the best guess551

of unique ground truth, A* penalises deviation from the ’true’ 552

absolute volume, which is measured with greater confidence553

than spatial truth. Second, we create composite metrics based 554

on the relative accuracy within the set of all methods. Three555

composite metrics are defined in table IV and justified as556

follows: Metric n(n.s.d) favours a segmentation tool that is

TABLE IV: Composite accuracy metrics that condense ranking
and significance information.

n(n.s.d): the number between 0 and 4, of accuracy metrics AUC’, DSC,
HD and A*, for which a method scores an accuracy of no significant
difference (n.s.d) from the best method according to that accuracy
n(>µ+σ): the number between 0 and 4, of accuracy metrics AUC’, DSC,
HD and A*, for which a method scores more than one standard deviation
(σ) above the mean (µ) of that score achieved by all 32 methods (33 in
the case of patient VOIs only)
median rank: the median, calculated over the 4 accuracy metrics, of
the ranking of that method in the list of all 32 methods (33 forpatient
VOIs only) ordered by increasing accuracy

557

as good as the most accurate in a statistical sense and, in the558

presence of false significances due to the multiple comparison 559

effect, gives more conservative rather than falsely high scores. 560

Metric n(>µ+σ) favours the methods in the positive tails of561

the population, which is irrespective of multiple comparison 562

effects. The rank-based metric is also immune to the multiple 563

compatrison effect and we use the median rather than mean564

rank to avoid misleading results for a method that ranks highly 565

in only one of the metrics AUC’, DSC, HD and A*, considered566

an outlier. 567
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Intra-operator variability was measured by the raw Haus-568

dorff distance in mm between the first and second seg-569

mentation result from repeated contouring (no ground truth570

necessary). However, this was only done for some contouring571

methods. For fully automatic methods, variability is zero by572

design and was not explicitly measured. Of the remaining573

semi-automatic and manual methods, 11 were used twice by574

the same operator: MDb1, MDb
2, RGa, HB, WSb, RGb

1,575

RGb
2, RGc

1, RGc
2, GR and MDc and for these we measure576

the intra-operator variability which allows extra, directcom-577

parisons in section IV-E.578

IV. EXPERIMENTS579

This section motivates the use of the new phantom and580

accuracy metric (IV-A), then investigates contouring accuracy581

by comparing the pooled accuracy of methods grouped ac-582

cording to their use of CT data (section IV-B), level of user583

interactivity (section IV-C) and algorithm type (section IV-D).584

Section IV-E evaluates methods individually, using condensed585

accuracy metrics in table IV. With the inclusion of repeated586

contouring by methods MDb, RGb and RGc by a second587

operator, there are a total of n = 33 segmentations of each588

VOI, with the exception of phantom VOIs where n = 32 by the589

exclusion of method HB. Also, method T1a failed to recover590

phantom VOIs in scan 1 as no voxels were above the pre-591

defined threshold. In this case a value of zero accuracy is592

recorded for two out of 4 phantom VOIs.593

A. Phantom and AUC’594

This experiment investigares the ability of the phantom595

to pose a realistic challenge to PET contouring, by testing596

the null-hypothesis that both phantom and patient VOIs lead597

to the same distribution of contouring accuracy across all598

methods used on both image types. First, we take the mean599

accuracy over the 4 phantom VOIs as a single score for each600

contouring method. Next, we measure the accuracy of the same601

methods used in patient images and take the mean over the602

3 patient VOIs as a single score for each method. Finally,603

a paired-samples t-test is used for the difference of means604

between accuracy scores in each image type, with significant605

difference defined at a confidence level ofp ≤ 0.05. Figure 5606

shows the results separately for accuracy defined by AUC′,607

DSC and HD′. There is no significant difference between608

accuracy in phantom and patient images measured by AUC′
609

or DSC. A significant difference is seen for HD′, which610

reflects the sensitivity of HD’ to small differences between611

VOI surfaces. In this case the phantom VOIs are even more612

difficult to contour accurately than the patient images, which613

could be explained by the absence of anatomical context in614

these images, used by operators of manual and semi-automatic615

contouring methods. A similar experiment found no significant616

difference between phantom and patient VOIs in terms of617

intra-operator variability. On the whole we accept the null-618

hypothesis meaning that the phantom and patient images pose619

the same challenge to contouring methods in terms of accuracy620

and variability.621
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Fig. 5: Contouring accuracy in phantom and patient images,
where ’⌜∗⌝’ indicates significant difference.

Figure 5 also supports the use of the new metric AUC’.622

Although values are generally higher than DSC and HD, which623

may be explained by the involvement of multiple ground truth624

definitions increasing the likelihood that a contour agreeswith 625

any one in the set, the variance of accuracy scores is greaterfor 626

AUC’ than the other metrics (table V), which indicates higher 627

sensitivity to small differences in accuracy between any two 628

methods.

TABLE V: Variance of AUC′ and standard accuracy metrics
calculated for all 7 VOIs (second column), and for the 4 and
3 VOIs in phantom and patient images respectively.

metric all VOIs phantom patient

AUC′ 0.028 0.035 0.021
DSC 0.011 0.010 0.012
HD′ 0.011 0.010 0.011

629

B. Role of CT in PET/CT contouring 630

For contouring in patient images only, we test the benefit of631

exploiting CT information in contouring (phantom VOIs are632

omitted from this experiments as the CT was used for ground633

truth definitions and not made available during contouring). 634

This information is in the form of anatomical structure in the 635

case of visual CT-guidance (’low’ CT use) and higher-level,636

image texture information in the case of method HB with637

’high’ CT use. The null-hypothesis is that contouring accuracy 638

is not affected by the level of use of CT information. 639

We compare each pair of groupsi and j that differ by CT 640

use, using a t-test for unequal sample sizes ni and nj, where 641

the corresponding samples have mean accuracyµi andµj and 642

standard deviationσi and σj . For the ith group containing 643

nmethodscontouring methods, each segmenting nVOIs targets, the 644

sample size ni = nmethods× nVOIs andµi andσj are calculated 645

over all nmethods × nVOIs accuracy scores. We calculate the646

significance level from the t-value using the number of degrees 647

of freedom given by the Welch-Satterthwaite formula for un-648

equal sample sizes and sample standard deviations. Significant 649
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differences between groups are defined by confidence interval650

of p ≤ 0.05. For patient images only, nVOIs = 3 and for the651

grouping according to CT use in table I, nmethods= 1, 6 and 26652

for the groups with levels of CT use ’high’, ’low’ and ’none’653

respectively (methods RGb in the ’low’ group and MDb & RGc
654

in the ’none’ group were used twice by different operators in655

the same team). We repeat for 4 accuracy metrics AUC′, DSC,656

HD′ and their weighted sum A*. Figure 6 shows the results657

for all groups ordered by level of CT use, in terms of each658

accuracy metric in turn.
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Fig. 6: Effect of CT use on contouring accuracy in patient
images, measured by (a) AUC′, (b) DSC, (c) HD′ and (d) A*,
where ’⌜∗⌝’ denotes ignificant difference between two levels
of CT use.

659

With the exception of AUC’ the use of CT as a visual660

guidance (’low’), out-performed the ’high’ and ’none’ groups661

consistently but without significant difference. The fact that the662

’high’ group (method HB only) significantly out-performed663

the lower groups in terms of AUC’ alone indicates that the664

method had good spatial agreement with one of the union-of-665

experts masks for any given VOI, but this union mask did not666

have absolute volume most closely matching the independent667

estimates used in calculations of DSC and HD’. We conclude668

that the use of CT images as visual reference (’low’ use)669

generally improves accuracy, as supported by the consistent670

improvement in 3 out of 4 metrics. This is in agreement671

with experiments in [30] and [31], which found the benefits672

of adding CT visually and computationally, in manual and673

automatic tumour delineation and classification respectively.674

C. Role of user interaction675

This experiment investigates the affect of user-interactivity676

on contouring performance. The null hypothesis is that con-677

touring accuracy is not affected by the level of interactivity678

in a contouring method. We compare each pair of groupsi679

and j that differ by level of interactivity, using a t-test for680

unequal sample sizes as above. For the grouping according681

to level of interactivity in table I, groups with interactivity 682

level ’max’, ’high’, ’mid’, ’low’ and ’none’ have nmethods = 683

4, 3, 7, 13 (12 for phantom images by removal of method684

HB) and 6 respectively (methods MDb, RGMDb and RGMDc 685

in the ’max’, ’high’ and ’mid’ groups respectively were used686

twice by different operators in the same team). We repeat for687

patient images (nVOIs = 3), phantom images (nVOIs = 4) and 688

the combined set (nVOIs = 7) and, as above, for each of the689

4 accuracy metrics. Figure 7 shows all results for all groups690

ordered by level of interactivity. 691

The trends for each of phantom, patient and all VOIs692

are consistent over all metrics. The most accurate methods693

were those in the ’high’ and ’max’ groups for phantom and694

patient images respectively. For patient images, the ’max’695

group is significantly more accurate than any other and this696

trend carries over to the pooled accuracies in both image697

types despite having less patient VOIs (n = 3) than phantom698

VOIs (n = 4). For phantom VOIs, with the exception of HD’,699

there are no significant differences between ’high’ and ’max’ 700

groups and these both significantly out-perform the ’low’ and 701

’none’ groups in all metrics. For HD’ alone, fully manual702

delineation is significantly less accurate than semi-automatic 703

methods with ’high’ levels of interaction. This may reflect the 704

lack of anatomical reference in the phantom images, which705

is present for patient VOIs and guides manual delineation.706

As high levels of interaction still appear most accurate, the 707

reduced accuracy of fully manual methods is not considered708

likely to be caused by a bias of manual delineations toward709

manual ground truth, given the levels of inter-user variability. 710

Overall, we conclude that manual delineation is more accurate 711

than semi- or fully-automatic methods, and that the accuracy of 712

semi-automatic methods improves with the level of interaction 713

built in. 714

D. Accuracy of algorithm types 715

This experiment compares the accuracy of different al-716

gorithm types, defined in section II-A. The null hypothesis717

is that contouring accuracy is the same for manual or any718

numerical method regardless of the general approach they719

take. We compare each pair of groupsi and j that differ 720

by algorithm type, using a t-test for unequal sample sizes as721

above. For the grouping according to algorithm type in tableI, 722

nmethods= 4,3,5,2,3,5,2,1,1 (0 for phantom images by removal723

of method HB) and 7 for algorithm-types MD, T1, T2, T3,724

T4, RG, WS, GR, HB and PL respectively (methods MDb in 725

the MD, and RGb & RGc in the RG group were used twice by726

different operators in the same team). As above, we repeat for 727

patient images (nVOIs = 3), phantom images (nVOIs = 4) and 728

the combined set (nVOIs = 7), and for each of the 4 accuracy729

metrics. Figure 8 shows the results separately for all image730

sets and accuracy metrics. 731

Plot (b) reproduces the same anomalous success of the732

hybrid method (HB) in terms of AUC’ alone, as explained733

above. Manual delineation exhibits higher accuracy than other 734

algorithm types, ranking in the top 3 for any accuracy metric735
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Fig. 7: Effect of user interaction on contouring accuracy measured bytop row: AUC′ for (a) phantom, (b) patient and (c) both
VOI types,second row:DSC for (d) phantom (e) patient and (f) both image types,third row: HD′ for (g) phantom, (h) patient
and (i) both image types, andbottom row: A* for (j) phantom, (k) patient and (l) both VOI types. Significant differences
between any two levels of user interaction are indicated by ’⌜∗⌝’.
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Fig. 8: Contouring accuracy of all algorithm types measuredby top row: AUC′ for (a) phantom, (b) patient and (c) both VOI
types,second row:DSC for (d) phantom (e) patient and (f) both image types,third row: HD′ for (g) phantom, (h) patient and
(i) both image types andbottom row:A* for (j) phantom, (k) patient and (l) both VOI types. Significant differences between
any two algorithm types are indicated by ’⌜∗⌝’.
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in phantom images and the top two for any metric in patient736

images. The pooled results over all images reveal manual737

delineation as the most accurate in terms of all 4 metrics. With738

the exception of T4 in terms of HD’ (patient and combined739

image sets), the improvement of manual delineation over any740

of the thresholding variants T1 - T4 is significant, despite741

these being the most widely used (semi-)automatic methods.A742

promising semi-automatic approach is the gradient-based (GR)743

group (one method), which has the second highest accuracy744

by all metrics for the combined image set and significant745

difference from manual delineation. Conversely, the watershed746

group of methods that also rely on image gradients exhibit747

consistently low accuracy. This emphasized the problem of748

poorly-defined edges and noise-induced false edges typical749

of PET gradient filtering, which in turn suggests that edge-750

preserving noise reduction by the bi-lateral filter plays a large751

part in the success of method GR.752

E. Accuracy of individual methods753

The final experiments directly compare the accuracy of754

all methods. Where two algorithms have arguably minor755

difference, as in the case of PLc and PLd which differ by756

an extra processing step applied by PLd, these are treated as757

separate methods because the change in contouring results is758

notable and can be attributed to the addition of the processing759

step, which is informative. Repeated segmentations by two760

different users in the cases of methods MDb
1,2, RGb

1,2 and761

RGc
1,2 are counted as two individual results so there are a total762

of n = 32 ’methods’, or n = 33 for patient VOIs in PET/CT763

only by inclusion of hybrid method HB. The null hypothesis764

is that all n cases are equally accurate. We compare each pair765

of methodsi and j that differ by method, using a t-test for766

equal sample sizes ni = nj = nVOIs, where mean accuracy767

µi and µj and standard deviationσi and σj are calculated768

over all VOIs and there are2nVOIs − 2 degrees of freedom.769

As above, we repeat for all image sets and accuracy metrics.770

Figure 9 shows the results separately for phantom, patient and771

combined image sets in terms of A* only. Full results for all772

metrics and significant differences between methods are given773

in the supplementary material.774

The generally low values of A* in figure 9 and other775

metrics in the supplementary material highlight the problem776

facing accurate PET contouring. These results also reiterate777

the general finding that manual practices can be more accurate778

than semi- or fully-automatic contouring. For patient images,779

and the combined set, the most accurate contours are manually780

delineated by method MDc. Also for these image sets the781

second and third most accurate are another manual method782

(MDb
2) and the ’smart opening’ algorithm (PLb) with mid-783

level interactivity.784

For phantom VOIs only, methods RGb and T1b, with high-785

and low-level interactivity, out-perform manual method MDc
786

with no significant difference. Method RGb is based on SRG787

with post-editing by the adaptive brush and showed low788

accuracy for patient VOIs with RGb2 being significantly less789

accurate than the manual method MDc (see supplementary790

material). Method T1b is based on thresholding and showed791

low accuracy for patient VOIs, being significantly less accurate 792

than the manual methods MDc and MDb
2 (see supplementary 793

material). Their high accuracy in phantom images alone could 794

be explained by methods T1b and RGb being particularly 795

suited to the relative homogeneity of the phantom VOIs. 796

Methods WSa, T1c and T3b have the 3 lowest accuracies797

by mean A* across all 3 image sets. The poor performance798

of method WSa could be explained by its origins (colour799

photography and remote-sensing) and user having no roots800

or specialism in medical imaging. Threshold methods T1c
801

and T3b give iso-contours at 50% of the local peak intensity 802

without and with adjustment for background intensity respec- 803

tively. Their poor performance in all image types highlights 804

the limitations of thresholding. 805

Table VI presents the composite metrics explained in section 806

III-C along with intra-operator variability where available (last 807

two columns), measured by the Hausdorff distance in mm808

between two segmentations of the same VOI, averaged over809

the 3 patient or 4 phantom VOIs. This definition of intra-810

operator variability gives an anomalously high value if thetwo 811

segmentations resulting from repeated contouring of the same 812

VOI do not have the same topology, as caused by an internal813

hole in the first contouring by method RGb1. Notably, we find 814

no correlation between intra-operator variability and thelevel 815

of interactivity of the corresponding methods. The same is816

true for inter-operator variability (not shown) calculated by 817

the Hausdorff distance between segmentations by different818

users of the same method (applicable to methods MDb, RGb
819

and RGc). This finding contradicts the general belief that820

user input should be minimised to reduce variability. Table821

VI reaffirms the finding that manual delineation is the most822

accurate method type, with examples MDc and MDb
1,2 scoring 823

highly in all metrics. The most consistently accurate non-824

manual methods are the semi- and fully-automatic methods825

PLb and PLc. More detailed method-wise comparisons are826

made in the next section. 827

V. D ISCUSSION 828

We have evaluated and compared 30 implementations of829

PET segmentation methods ranging from fully manual to fully830

automatic and representing the range from well established831

to never-before tested on PET data. Region growing and832

watershed algorithms are well established in other areas of833

medical image processing, while their use for PET target834

volume delineation is relatively new. Even more novel ap-835

proaches are found in the ’pipeline’ group and the two distinct 836

algorithms of gradient-based and hybrid segmentation. The837

gradient-based method [10] has already had an impact in the838

radiation oncology community and the HB method [14] is one839

of few in the literature to make numerical use of the structural 840

information in fused PET/CT. The multispectral approach isin 841

common with classification experiments in [13] that showed842

favourable results over PET alone. 843

A. Manual delineation 844

Free-hand segmentation produced among the most accu-845

rate results, which may be counter-intuitive. One explanation 846
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Fig. 9: Mean accuracy measured by A*, of each method used to contour VOIs in phantom (top), patient (middle) and the
combined image set (bottom).

comes from the incorporation of prior knowledge regarding847

the likely form and extent of pathology. In the case of the848

patient images alone, bias toward MD may be suspected as849

the ground-truth set is also built up from manual delineations.850

However, this does not explain the success of manual methods851

as they performed better still for phantom VOIs where the852

ground truth comes from CT thresholds. The use of multiple853

ground truth estimates by I-ROC may falsely favour manual854

delineation due to its inherent variability. However, thistoo855

does not explain the success of manual methods as they also856

perform well in terms of DSC and HD’ that use a unique,857

’best-guess’ of ground truth (at least one MD is among the858

5 highest DSC and HD for each of the patient phantom VOI859

sets). These observations challenge the intuition, that manual860

delineation is less accurate. Although many (semi-)automatic861

methods out-perform free-hand delineation in the literature,862

the inherent bias toward positive results among published work863

makes this an unfair basis for intuition.864

Of the 4 manual delineations (MDa, MDb
1, MDb

2 and865

MDc), method MDc out-performed the rest in all of n(n.s.d),866

n(> µ+σ), median rank and intra-operator variability where867

known, with significant improvement over MDb1,2 in terms of868

AUC’ for patient VOIs (although the multiple comparison ef-869

fect can mean that one or more of these differences are falsely870

detected as significant). The obvious difference between these871

4 is the user. It is interesting, and indicative of no bias in872

terms of user group, that the delineator of MDc was a nuclear 873

medicine physicist while the other users, in common with the874

experts providing ground truth estimates, were experienced 875

physicians. However, while users of MDa and MDb
1,2 only 876

viewed the PET images during delineation, the physicist using 877

MDc also viewed an overlay of the PET gradient magnitude878

and, in the case of patient images, simultaneous CT. These879

modes of visual guidance could in part compensate for the880

relative lack of clinical experience, although no concrete881

conclusion can be made as clinical sites may disagree on the882

correct segmentation. 883

B. Automation vs. user guidance 884

Two method comparisons provide evidence that too much885

automation in a semi-automatic algorithm is detrimental to886

contouring accuracy. First, we compare the accuracy of meth- 887

ods PLc and PLd. Method PLd starts with the same seg-888

mentation achieved by PLc, then performs extra steps in889

the automatic pipeline intended to improve on the results.890

However, these extra steps reduce the final accuracy. Second, 891

we compare the accuracy of methods RGb
1,2 and RGc1,2. 892

These differ in that RGb1,2 also employs post-editing by the893

adaptive brush tool. While the adaptive brush may improve894

accuracy for phantom VOIs, accuracy is reduced for patient895

VOIs indicated by n(n.s.d) and median rank. This suggests896
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TABLE VI: Summarised accuracy and variability of phantom
(ph.) and patient (pt.) contouring by all methods ordered asin
table I and using ranked and other composite accuracy metrics
in section III-C. Data are not available (n/a) for method HB
in phantom results and most methods in variability results.

method
n(n.s.d) n(>µ+σ) median

rank
intra-operator
HD (mm)

ph. pt. ph. pt. ph. pt. ph. pt.

PLa 4 3 0 0 17 19 n/a n/a

WSa 0 0 0 0 1.5 1.5 n/a n/a

PLb 4 4 0 3 24 31.5 n/a n/a

PLc 4 3 1 1 23.5 27 n/a n/a

PLd 3 2 0 0 10.5 12.5 n/a n/a

T2a 0 1 0 0 4 7 n/a n/a

MDa 4 4 2 0 28.5 23 n/a n/a

T4a 0 0 0 0 6 9 n/a n/a

T4b 4 1 0 0 18.5 15.5 n/a n/a

T4c 4 2 0 1 17.5 20.5 n/a n/a

MDb
1 3 3 0 1 13.5 25.5 3.9

±0.9
4.4
±1.2

MDb
2 3 3 0 3 20.5 31.5 4.1

±1.7
5.6
±1.8

RGa 3 3 1 0 14.5 17 3.7
±0.6

2.4
±0.1

HB n/a 3 n/a 1 n/a 12 n/a 5.6
±0.6

WSb 2 2 0 1 8.5 26 3.3
±3.0

7.4
±6.7

T1a 2 3 0 1 3 23 n/a n/a

T1b 4 1 1 0 28.5 11 n/a n/a

T2b 4 3 0 0 13.5 14 n/a n/a

T2c 3 1 0 0 11.5 16.5 n/a n/a

RGb
1 4 3 4 0 31 7 24.0

±38.9
18.2
±20.8

RGb
2 4 2 4 0 31.5 8 4.5

±2.4
3.3
±2.0

RGc
1 3 4 0 0 20 20.5 1.5

±1.7
1.0
±1.5

RGc
2 4 4 0 0 25 22.5 2.6

±2.0
2.7
±0.4

PLe 4 2 0 0 20 12 n/a n/a

PLf 4 3 0 0 27.5 14 n/a n/a

GR 4 0 0 0 25 23 1.2
±0.0

2.3
±0.7

MDc 4 4 1 4 28.5 32.5 2.9
±0.7

3.8
±1.2

T1c 4 0 0 0 3 3.5 n/a n/a

T3a 3 1 0 0 10.5 2 n/a n/a

T3b 4 0 0 0 4.5 3.5 n/a n/a

T2d 0 2 0 0 7 7.5 n/a n/a

T2e 4 3 0 1 18.5 26 n/a n/a

PLg 3 4 0 3 8.5 29.5 n/a n/a

that, where post-editing by unconstrained manual delineation897

generally improves accuracy in other methods, the automated898

component of the adaptive brush may influence the editing899

procedure, and this influence may be detrimental in cases900

where underlying image information is less reliable.901

Conversely, two comparisons give a clear example of the902

benefits of user-intervention. First, methods PLe and PLf903

are almost the same with the difference that PLf employs904

interactive post-editing by user-defined watershed markers 905

and sub-regional merging. Method PLf is consistently more 906

accurate than PLe over all 12 combinations of accuracy metric907

and image type. A second example comes from comparing 5908

thresholding schemes used at the same institution (team 13). 909

Methods T1c, T3a and T3b use intensity thresholds of 50% 910

maximum and 41% & 50% of maximum-plus-background, 911

while T2d and T2e use thresholds chosen to match an estimate912

of the VOI’s absolute volume and the user’s visual judgement913

of VOI extent respectively. Of these five, T2e is most highly 914

influenced by the user and ranks consistently higher than915

the other 4 in all 12 combinations of accuracy metric and916

image set, significantly out-performing T1c once, T3b twice 917

and T3a three times (notwithstanding the possibility of false918

significance by the multiple comparison effect). 919

Fully automated contouring has the potential to reduce the920

user-time involved, whereas contouring speed is not included 921

in the present evaluation strategy. This study focuses on accu- 922

racy, given that even fully automatic results can in principle 923

be edited by medical professionals, who ultimately decide how 924

much time is justified for a given treatment plan as well as just 925

where the final contours should lie. The CPU-time of the more926

computationally expensive algorithms could be quantified as 927

the subject of further work, but its relevance is debatable given 928

that CPUs have different speeds and large data sets can be929

processed off-line, allowing the medical professional to work 930

on other parts of a treatment in parallel. 931

C. Building prior knowledge into contouring 932

As already seen from figure 9 method WSa consistently 933

gave the lowest accuracy. This method was adapted from an934

algorithm designed for segmenting remote sensing imagery935

and its user declared no expertise in medical image analysis. 936

Conversely, two methods were adapted for the application937

of PET oncology, from other areas of medical image seg-938

mentation. Method PLa has origins in white matter lesion 939

segmentation in brain MRI and method PLb is adapted from 940

segmentation of lung nodules in CT images. These two exam-941

ples far out-perform method WSa, with method PLb having 942

the joint second highest median ranking for patient images and 943

no significant difference from the most accurate methods in944

terms of any metric for any image set. 945

Some methods were designed for PET oncology, incorporat-946

ing numerical methods to overcome known challenges. Exam-947

ples are method GR that overcomes poorly defined gradients948

around small volumes due in part to partial volume effects, and 949

method PLg allows for regional heterogeneity that is known950

to confound PET tumour segmentation. These methods rank951

reasonably highly, in patient images, ranking similarly toall 952

manual delineations and the semi-automatic ’smart opening’ 953

algorithm (PLb), despite neither GR nor PLg having any user 954

intervention or making any use of simultaneous CT. Method955

PLg performs relatively poorly in phantom images, where the956

problem of tissue heterogeneity is not reproduced. 957

The benefits of prior knowledge are also revealed by958

comparing 3 thresholding schemes T4a, T4b and T4c used 959

by the same institution (team 04). Of these, method T4a
960
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was considerably less accurate in terms of both n(n.s.d) and961

median rank. Methods T4b and T4c were calibrated using962

phantom data to build in prior knowledge of the imaging963

device. Even though the two devices used to calibrate T4b
964

and T4c are from different vendors (Siemens and Biograph965

devices) than the one that acquired the test images (GE966

Discovery), they are consistently more accurate than method967

T4a implemented at the same site, which does not learn from968

scanner characteristics but instead has an arbitrary parameter969

(39%). Methods T4b and T4c also out-perform the majority970

of the other low-interactivity thresholding schemes, suggesting971

that the calibration is beneficial and generalises across imaging972

devices. This apparent generalisation is further evidenced by973

no significant differences between methods T4b and T4c in974

any individual metric for patient or phantom VOIs.975

Finally, the low accuracy of methods T4a and T4a may be976

due toerroneousprior knowledge. These two implementations977

of the same algorithm [6] inherently approximate the volume978

of interest as a sphere. Both perform poorly, with median rank-979

ing from 4 - 7 over all 4 metrics in contouring both phantom980

and patient VOIs. These low accuracies are likely to arise981

from the spherical assumption rather than the initialisation of982

the method, as the low accuracies are similar despite different983

methods of initialisation described in section II.984

D. Accuracy evaluation985

Accuracy measurement is fundamentally flawed in many986

medical image segmentation tasks due to the ill-definition of987

the true surface of the VOI. It is most common to estimate988

the ground truth by manual delineation performed by a single989

expert (e.g. [53], [19], [54]). However, even among experts,990

inter- and intra-operator variability are inevitable and well991

documented in PET oncology [21], [22]. The new metric992

AUC’ exploits this variability in a probabilistic framework,993

and we have also defined a single ’best guess’ ground truth, for994

use with traditional metrics of DSC and HD, from the union995

of a sub-set of expert contours. For patient VOIs, the I-ROC996

scheme incorporates knowledge and experience of multiple997

experts as well as structural and clinical information into998

accuracy measurement and rewards the ability of an algorithm999

to derive the same information from image data. The I-ROC1000

method considers all ground truth estimates to be equally1001

valid a priori, and any one estimate can become the operating1002

point on the I-ROC curve built for a given contour under1003

evaluation. This is in common with the Simultaneous Truth1004

and Performance Level Estimation (STAPLE) algorithm by1005

Warfield et al. [55]. Theirs is also a probabilistic method,1006

which uses maximum likelihood estimation to infer both the1007

accuracy of the segmentation method under investigation and1008

an estimate of the unique ground truth built from the initial1009

set.1010

Other authors have evaluated segmentation accuracy using1011

phantoms. The most common phantoms used in PET imaging1012

contain simple compartments such as spherical VOIs, attempt-1013

ing to mimick tumours and metastases in head and neck cancer1014

[10], [12], lung nodules [56] and gliomas [20] and cylindrical1015

VOIs, attempting to mimick tumours [37]. The ground truth1016

surface of such VOIs is precisely known due to their geometric 1017

form, but many segmentatiuon algorithms are confounded by1018

irregular surfaces and more complex topology such as branch- 1019

ing seen in clinical cases and in the new phantom presented1020

here. Another limitation of phantom images including those1021

used here is the difficulty of mimicking heterogeneous or1022

multi-focal tumours as seen in some clinical data. 1023

Digital images of histological resection can in some cases1024

provide unique ground truth, removing the need to combine1025

multiple estimates. A recent example demonstrates this for1026

PET imaging of prostate cancer [57]. While this approach1027

could provide the standard for accuracy evaluation where1028

available, histology-based accuracy measurement is currently 1029

limited as described in [58], with errors introduced by de-1030

formation of the organ and co-registration of digital images 1031

(co-registration in [57] required first registering manually to an 1032

intermediate CT image). Furthermore, tumour excision is only 1033

appropriate for some applications. For head-and-neck cancer, 1034

the location of the disease often calls for non-invasive,in vitro 1035

treatment by radiotherapy and in such cases the proposed use1036

of multiple ground truth estimates may provide a new standard. 1037

Neither deterministic metrics with flawed, unique ground1038

truth (DSC and HD) nor probabilistic methods like I-ROC1039

or STAPLE, measure absolute accuracy. However, the relative 1040

accuracy of methods or method groups is of interest to our aim1041

of guiding algorithm development. For this purpose, a large1042

and varied cohort of segmentation methods is desirable, and1043

the composite metrics based on method ranking, distributions 1044

of accuracy scores n(>µ+σ) and the frequency of having no1045

significant reduction in accuracy with respect to the most1046

accurate n(n.s.d) become more reliable as the number of1047

contouring tools increases. However, without a simultaneous 1048

increase in the number of VOIs, significance tests of the1049

difference in accuracy of any one pair of methods becomes1050

less reliable due to multiple comparison effects. 1051

VI. CONCLUSIONS 1052

The multi-centre, double-blind comparison of segmentation 1053

methods presented here is the largest of its kind completed1054

for VOI contouring in PET oncology. This application has1055

an urgent need for improved software given the demands1056

of modern treatment planning. The number and variety of1057

contouring methods used in this paper alone confirms the need1058

for constraint, if the research is to converge on a small number 1059

of contouring solutions for clinical use. 1060

We found that structural images in hybrid PET/CT, now1061

commonly available for treatment planning, should be used for 1062

visual reference during semi-automatic contouring while the 1063

benefits of high-level CT use by multispectral calculationsare 1064

revealed only by the new accuracy metric. We also concluded1065

that higher levels of user interaction improves contouring1066

accuracy without increasing intra- or inter-operator variability. 1067

Indeed, manual delineation overall out-performed all semi- 1068

or fully-automatic methods. However, two methods (T2b and 1069

PLf ) with a low-level of interactivity and two automatic meth-1070

ods (PLa and PLg) are characterized by accuracy scores that1071

are frequently not significantly different from those of thebest 1072
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manual method. Contouring research should pursue a semi-1073

automatic method that achieves the same level of accuracy as1074

expert manual delineation, but must strike a balance between1075

(i) guiding manual practices to reduce levels of variability1076

and (ii) not over-influencing the expert or overriding his or1077

her knowledge. To strike this balance, techniques that show1078

promise are (i) visual guidance by both CT and PET-gradient1079

images, (ii) model-based handling of heterogeneity and blurred1080

edges that characterise oncological VOIs in PET and (iii)1081

departure from the reliance on the SUV transformation and1082

iso-contours of this parameter or another scalar multiple of1083

PET intensity, given its dependence on the imaging time1084

window and countless other confounding factors.1085

These results go a long way towards constraining subse-1086

quent development of PET contouring methods, by identifying1087

and comparing the distinct components and individual methods1088

used or proposed in research and the clinic. In addition, we1089

provide detailed results and statistical analyses in supplemen-1090

tary material for use by others in retrospective comparisons1091

according to criteria or method groups not attempted here, as1092

well as access to the test images and ground truth sets [49] that1093

can be used to evaluate other contouring methods in the future.1094

While our tests focused on head-and-neck oncology, only the1095

fixed threshold method T1a made any assumptions about the1096

tracer or tumour site so results for the remaining methods1097

tested here provide a benchmark for future comparisons.1098

Recently proposed methods in [11], [12] and [59] would be1099

of particular interest to test. However, if the number of tested1100

methods increases without increasing the number of VOIs, the1101

chance of falsely finding significant differences between a pair1102

of methods increases due to the multiple comparison effect so1103

the composite metrics are favoured over pair-wise comparisons1104

for such a benchmark.1105

Future work using the data from the present study should1106

categorise the 30 methods in terms of user-group and compare1107

segmentation methods in more head and neck VOIs. Future1108

work with a larger set of test data (images and VOIs) is1109

expected to provide more statistically significant findingsand1110

should repeat for VOIs outside the realm of FDG in head-1111

and-neck cancer and for images of different signal/background1112

quality. For this purpose the experimental design including1113

phantom, accuracy metrics and the grouping of contemporary1114

segmentation methods, will generalise for other tumour types1115

and PET tracers.1116
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APPENDIX1123

In order to derive the new accuracy metric and explain its1124

probabilistic nature, we recall the necessary components of1125

conventional receiver operating characteristic (ROC) analysis,1126

then demonstrate the principles ofinverse-ROC(I-ROC) for a1127

simple data classification problem and explain the extension 1128

to topological ground truth for contour evaluation. 1129

1130

A.1 Conventional ROC: multiple decision makers 1131

Receiver operating characteristic (ROC) analysis is well1132

established in medical imaging as a means of evaluating1133

region- and voxel-wise data classification [60]. Data comes1134

in the form of N = N+ + N− measurements, comprising1135

N+ ’positive’ data with truth labels+1 and N− ’negative’ 1136

data with labels−1. A binary classifier divides allN data 1137

into positive and negative sets, and has at least one internal 1138

parameter that affects this division. ROC analysis is performed 1139

by varying an internal parameter inp increments. In threshold1140

classification, the threshold is the internal parameter anddata 1141

above the threshold are counted as either true positive (TP)or 1142

false positive (FP) according to agreement or otherwise, with 1143

the ground truth labels. Similarly, true negative (TN) or false 1144

negative (FN) classifications are counted below the threshold. 1145

The counts NTP, NFP, NTN and NFN, of true/false positives and1146

negatives yield the true positive ratio TPRi and false positive 1147

ratio FPRi for the ith threshold and the pair{TPRi , FPRi} 1148

becomes a single point on a ROC curve. The whole curve is1149

generated by varying the internal parameter between natural 1150

limits. For the threshold classifier in figure 10, the limits are 1151

the minimum and maximum value in all N data. The fixed1152

ground truth in figure 10 are drawn from Gaussian distributions 1153

with µ+ = 3.0, µ− = −3.0 andσ+ = σ− = 2.5. 1154

The ROC curve occupies the range{0 . . .1} in both TPR 1155

and FPR and has two limiting cases. The first limit is the1156

diagonal line (−− in figure 10) which has an area under1157

the curve (AUC) of 0.5 and indicates failure to classify data1158

better than random assignment of labels±1. The second 1159

limiting case (⋅ ⋅ ⋅ in figure 10) has AUC = 1 and indicates1160

perfect classification. As a result, AUC is commonly used as1161

a measure of classifier accuracy. ROC analysis simultaneously 1162

yields the operating point of the classifier, defined as the1163

internal parameter setting (e.g. threshold) that minimises the 1164

combined cost of false positives and false negatives. 1165

If positive and negative ground truth are normally dis-
tributed, the ROC curve has exponential form and AUC can
be calculated by fitting an analytic function and integrating
between the limits 0 to 1. In this case, AUC is a monotonic
functionz−1 of the distance between the meansµ+, µ− of the
true distributions, scaled by their standard deviationsσ+, σ−,
where

z(AUC) = µ+ − µ−√
σ2
+ + σ2

−

(5)

and AUC is equal to the Gaussian probability that a measure-1166

ment drawn at random from the positive set will be correctly1167

classified. If the assumption of normally distributed data is 1168

relaxed the probabilistic interpretation still holds, where the 1169

probability is that sought by a Wilcoxon signed ranks test and 1170

AUC is evaluated using the trapezium rule [61]. 1171

In summary, AUC is a probabilistic measure regardless of1172

the underlying distributions and ROC analysis can be used as1173

a metric combining sensitivity and specificity. 1174

1175
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Fig. 10: Conventional ROC analysis of a threshold classifier
performed by fixing the ground truth labelling and varying
the threshold inp = 19 increments (top) to form a ROC curve
(bottom). The operating point is marked green.

A.2 I-ROC: multiple ground truth representations1176

The new ROC technique is referred to asinverse as,1177

rather than unique ground truth labelling and various arbitrary1178

decision makers, it assumes a single classification and varies1179

the definition of ground truth. Figure 11 demonstrates this1180

for the example of threshold classification. In common with1181

figure 10, data being classified in figure 11 are a mixture of1182

Gaussians with meansµ− and µ+ separated by 6 units and1183

standard deviationsσ− = σ+ = 2.5, and the total number of1184

data is fixed at N+ + N− = 2 × 104. To simulate a change1185

in ground truth labelling for the same underlying data, the1186

means of the positive and negative distributions are shifted by1187

δi so thatµ− = −3.0+ δi andµ+ = 3.0+ δi, whereδi increases1188

from an arbitrary (negative) minimum to an arbitrary (positive)1189

maximum inp = 19 increments, and the proportionρ of data1190

in the positive set decreases asρ = 1 − i/p. To classify data1191

that has theith ground truth labelling, we fix the threshold1192

at T=0 for all i ∈ {1 . . . p}. In line with the requirements of1193

conventional ROC, the multiple ground truth definitions are1194

A.2(i) ordered by monotonically (in-) de-creasing N+,1195

A.2(ii) obtained by independent means, not the threshold1196
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Fig. 11: I-ROC analysis of a threshold classifier performed by
varying the ground truth distributions inp = 19 increments
while the threshold is fixed (top) and plotting the correspond-
ing {TPRi , FPRi} pairs to form a ROC curve (bottom). The
operating point is marked green.

classifier being evaluated, 1197

A.2(iii) incorporate the best knowledge of the unique1198

(unknown) ground truth, and 1199

A.2(iv) ’pass through’ the unique (unknown) ground truth1200

as closely as possible. 1201

Requirement A.2(iii) is realised by fixing the difference of1202

meansµ+ − µ− and havingρ increase withµ+. Requirement 1203

A.2(iv) means that there exist labellings{GT i} and{GT i+1} 1204

with µ+ and N+ (similarly µ− and N−) either side of the 1205

operating point. 1206

The shape of the ROC curve in figure 11, the operating1207

point and, within the accuracy of the trapezium integration, 1208

the AUC are the same for the I-ROC as for the equivalent1209

analysis in figure 10 by virtue of the choice of parameters,1210

which merely serves to illustrate the ability to perform1211

equivalent ROC analyses by shifting decision maker (ROC)1212

or ground truth labelling (I-ROC). 1213

1214

A.3 I-ROC with topographic ground truth 1215

In the context of VOI contouring, the notion of ’positives’1216

refers to voxels inside a contour, which is a spatial distinction 1217
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and may or may not correspond to voxel values above a1218

threshold. Truth labels in turn are separated by a surface in1219

image space, and stored as a binary mask of{±1}. We refer1220

to {GT i} as a contour or mask interchangeably. The I-ROC1221

method evaluates the accuracy of a fixed result of a contouring1222

algorithm denotedC, using a set of arbitrary ground truth1223

masks{GT i}, i ∈ {1 . . . p}. The term ’arbitrary’ refers to the1224

fact that no single mask in the set is closesta-priori to the1225

unknown, unique ground truth and does not mean that their1226

shapes are arbitrary. Following from the requirements for the1227

shifting threshold in A.2, the natural limitsGT 1 and GT p1228

contain none and all of the image voxels (inside a bounding1229

box) respectively and the set{GT i}, i ∈ {1 . . . p}1230

A.3(i) is ordered monotonically by volume whereGT i1231

completely enclosesGT i−1,1232

A.3(ii) is obtained independently of the contouring algo-1233

rithm under evaluation,1234

A.3(iii) incorporates the best available knowledge of1235

ground truth, and1236

A.3(iv) ’passes through’ the un-known, unique ground1237

truth surface as closely as possible.1238

Requirement A.3(i) can always be met by defining eachGT i1239

as the union of contours from an original set. Requirements1240

A.3(ii) and (iii) can also always be met, whereby suggested1241

sources of independent information are complementary imag-1242

ing or clinical information unseen to the tool under evaluation.1243

Requirement A.3(iv) means that topology and general shape1244

are conserved within the set as in the analogy of inflating a1245

novelty balloon, and can also always be met by the procedure1246

used to obtaine allGT i, such as the suggested use of union1247

masks.1248

If the general shape common to all{GT i} is representative1249

of the unknown ground truth then AUC is higher when1250

the contour under evaluation shares this shape. Figure 121251

demonstrates this for the case where the ground truth set has1252

a different (a) and the same (c) shape as a circular contour1253

C under evaluation. Using a square ground truth set (a) gives1254

AUC < 1, equivalent to the case of overlapping histograms in1255

figure 11, although the similar form of the curve and value of1256

AUC = 0.98 are only due to the parameters and shapes used1257

for illustration. A circular set, chosen for its agreement with1258

C to illustrate the possibility of achieving AUC = 1, indicates1259

perfect contouring accuracy. More generally, AUC approaches1260

1 as the contourC approaches any contour in the set{GT i}1261

and this indicates perfect agreement with the general form of1262

the unknown, unique ground truth all in the set{GT i} share1263

this form. It follows that AUC is equal to the probability that a1264

voxel drawn at random from inside the optimalGT i, which is1265

not knowna priori, lies inside the contourC being evaluated.1266

Formally, the I-ROC method will generalise for any shape
of ground truth set or contour under evaluation if

N(∈ GT j) =
j

∑
i=1

N(GT i ∨ GT j) and (a)

N(∈ GT j) +N(∉ GT j) = constant ∀j (b)

(6)

where N(∈ GT j) and N(∉ GT j) denote the number of voxels1267

inside and outside thej th ground truth definition. Equation1268

6(a) holds if requirement A.3(i) is met and 6(b) is satisfied by 1269

the fixed bounding box enclosing the set{GT i}. 1270
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