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radiation therapy (IMRT) [START_REF] Nutting | Intensity-modulated radiotherapy (IMRT): the most important advance in radiotherapy since the linear accelerator?[END_REF] and on-going debates [START_REF] Keyes | SUV: Standardised Uptake or Silly Useless Value?[END_REF], [START_REF] Visser | SUV: From Silly Useless value to Smart Uptake Value[END_REF] over the ability of the standardised uptake value (SUV) to define functional volumes of interest (VOIs) by simple thresholding. Many new methods are still threshold-based, but either automate the choice of SUV threshold specific to an image [START_REF] Nakamoto | Reproducibility of common semi-quantitative parameters for evaluating lung cancer glucose metabolism with positron emission tomography using 2-deoxy-2-[18F]Fluoro-D-Glucose[END_REF], [START_REF] Van Dalen | A novel iterative method for lesion delineation and volumetric quantification with FDG PET[END_REF] or apply thresholds to a combination (eg ratio) of SUV and an image-specific background value [START_REF] Daisne | Tridimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms[END_REF], [START_REF] Schaefer | A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: Derivation from phantom measurements and validation in patient data[END_REF]. More segmentation algorithms are entering PET oncology from the field of computer vision [START_REF] Zaidi | PET-guided delineation of radiation therapy treatment volumes: A Survey of image segmentation techniques[END_REF] including the use of image gradients [START_REF] Geets | A gradientbased method for segmenting FDG-PET images: Methodology and validation[END_REF], deformable contour models [START_REF] El-Naqa | Concurrent multimodality image segmentation by active contours for radiotherapy treatment planning[END_REF], [START_REF] Li | A novel PET tumor delineation method based on adaptive region-growing and dual-front active contours[END_REF], mutual information in hybrid images [START_REF] Yu | Coregistered FDG PET/CT-based textural characterization of head and neck cancer for radiation treatment planning[END_REF], [START_REF] Han | Globally optimal tumor segmentation in PET-CT images: A graph-based co-segmentation method[END_REF] and histogram mixture models for heterogeneous regions [START_REF] Belhassen | A novel fuzzy c-means algorithm for unsupervised heterogeneous tumor quantification in pet[END_REF], [START_REF] Hatt | Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications[END_REF]. The explosion of new PET contouring algorithms calls for constraint in order to steer research in the right direction and avoid so-called yapetism (Yet Another PET Image Segmentation Method) [START_REF] Lee | Segmentation of positron emission tomography images: Some recommendations for target delineation in radiation oncology[END_REF]. For this purpose, we identify different approaches and compare their performance.

Previous works to compare contouring methods in PET oncology [18], [19], [20] do not reflect the wide range of proposed and potential algorithms and fall short of measuring spatial accuracy. [18] compare 3 threshold-based methods used on PET images of non-small cell lung cancer in terms of the absolute volume of the VOIs, ignoring spatial accuracy of the VOI surface that is important to treatment planning. Greco et al. [19] compare one manual and 3 threshold-based segmentation schemes performed on PET images of head-andneck cancer. This comparison also ignores spatial accuracy, being based on absolute volume of the VOI obtained by manual delineation of complementary CT and MRI. Vees et al. [20] compare one manual, 4 threshold-based, one gradient-based and one region-growing method in segmenting PET gliomas and introduce spatial accuracy, measured by volumetric overlap with respect to manual segmentation of complimentary MRI. However, a single manual segmentation can not be considered the unique truth as manual delineation is prone to variability [START_REF] Riegel | Variability of gross tumor volume delineation in head-1357 and-neck cancer using CT and PET/CT fusion[END_REF], [START_REF] Breen | Intraobserver and interobserver variability 1362 in GTV delineation on FDG-PET-CT images of head and neck cancers[END_REF].

Outside PET oncology, the society for Medical Image Computing and Computer Assisted Intervention (MICCAI) has run a 'challenge' in recent years to compare emerging methods in a range of application areas. Each challenge takes the form of a double-blind experiment, whereby different methods are applied by their developers on common test-data and the results analysed together objectively. In 2008, two examples of pathological segmentation involved multiple sclerosis lesions in MRI [START_REF] Styner | Workshop proceedings, 3D segmentation in the clinic: A grand challenge II -MS lesion segmentation[END_REF] and liver tumours in CT [START_REF]Workshop proceedings, 3D segmentation in the clinic: A grand challenge II -Liver tumour segmentation[END_REF]. These tests involved 9 and 10 segmentation algorithms respectively, and evaluated their accuracy using a combination of the Dice similarity coefficient [START_REF] Dice | Measures of the amount of ecologic association between species[END_REF] and Hausdorff distance [START_REF] Huttenlocher | Comparing images using the Haussdorff distance[END_REF] with respect to a single manual delineation of each VOI. In 2009 and 2010, the challenges were to segment the prostate in MRI [START_REF] Hata | Prostate segmentation challenge 2009[END_REF] and parotid in CT [START_REF] Pekar | Head and neck auto-segmentation challenge 2010[END_REF]. These compared 2 and 10 segmentation methods respectively, each using a combination of various overlap and distance measures to evaluate accuracy with respect to a single manual ground truth per VOI. The MICCAI challenges have had a major impact on segmentation research in their respective application areas, but this type of large-scale, double-blind study has not previously been applied to PET target volume delineation for therapeutic radiation oncology, and the examples above are limited by their dependence upon a single manual delineation to define ground truth of each VOI. This paper reports on the design and results of a largescale, multi-centre, double-blind experiment to compare the accuracy of 30 established and emerging methods of VOI contouring in PET oncology. The study uses a new, probabilistic accuracy metric [START_REF] Shepherd | New physical tumour phantom and data analysis technique exploiting hybrid imaging and partial volume effects for segmentation evaluation in radiation oncology[END_REF] that removes the assumption of unique ground truth, along with standard metrics of Dice similarity coefficient, Hausdorff distance and composite metrics. We use both a new tumour phantom [START_REF] Shepherd | New physical tumour phantom and data analysis technique exploiting hybrid imaging and partial volume effects for segmentation evaluation in radiation oncology[END_REF] and patient images of headand-neck cancer imaged by hybrid PET/CT. Experiments first validate the new tumour phantom and accuracy metric, then compare conceptual approaches to PET contouring by grouping methods according to how they exploit CT information in hybrid images, the level of user interaction and 10 distinct algorithm types. This grouping leads to conclusions about general approaches to segmentation, also relevant to other tools not tested here. Regarding the role of CT, conflicting reports in the literature further motivate the present experiments: while some authors found that PET tumour discrimination improves when incorporating CT visually [START_REF] Schöder | Head and neck cancer: Clinical usefulness and accuracy of PET/CT image fusion[END_REF] or numerically [START_REF] Yu | Automated radiation targeting in headand-neck cancer using region-based texture analysis of PET and CT images[END_REF], others report on the detremental effect of visualising CT on accuracy [START_REF] Daisne | Tumor volume in pharyngolaryngeal squamous cell carcinoma: Comparison at ct, mri, and fdg PET and validation with surgical specimen[END_REF] and inter/intra-observer variability [START_REF] Riegel | Variability of gross tumor volume delineation in head-1357 and-neck cancer using CT and PET/CT fusion[END_REF], [START_REF] Breen | Intraobserver and interobserver variability 1362 in GTV delineation on FDG-PET-CT images of head and neck cancers[END_REF].

Further experiments directly evaluate each method in terms of accuracy and, where available, inter-/intra operator variability.

Due to the large number of contouring methods, full details of their individual accuracies and all statistically significant differences are provided in the supplementary material and summarised in this paper.

The rest of this paper is organised as follows. Section II describes all contouring algorithms and their groupings.

Section III presents the new accuracy metric and describes phantom and patient images and VOIs. Experiments in section IV evaluate the phantom and accuracy metric and compare segmentation methods as grouped and individually. Section V discusses specific findings about manual practices and the types of automation and prior knowledge built into contouring and section VI gives conclusions and recommendations for future research in PET-based contouring methodology for image-guided radiation therapy.

II. CONTOURING METHODS

127

Thirteen contouring 'teams' took part in the experiment. We 128 identify 30 distinct 'methods', where each is a unique com-129 bination of team and algorithm. Table I presents the methods 130 along with labels (first column) used to identify them hereafter. 131 Some teams used more than one contouring algorithm and 141 Some of the methods are well known for PET segmentation 142 while others are recently proposed. Of the recently proposed 143 methods, some were developed specifically for PET segmen-144 tation (e.g. GR, T2 d and PL g ) while some were adapted and 145 optimised for PET tumour contouring for the purpose of this 146 study. The study actively sought new methods, developed 147 or newly adapted for PET tumours, as their strengths and 148 weaknesses will inform current research that aims to refine or 149 replace state of the art tools, whether those tools are included 150 the thresholding scheme of [START_REF] Van Dalen | A novel iterative method for lesion delineation and volumetric quantification with FDG PET[END_REF], which automatically finds the The auto-threshold is then defined as 3 standard deviations above the mean intensity in this background sample. Method T2 c uses a single dilation to define the background and finds the threshold that minimises the within-class variance between VOI and background using the optimization technique in [START_REF] Otsu | A threshold selection method from gray-level histograms[END_REF]. Finally, method T2 c applies a closing operation to eliminate any holes within the VOI, which may also have the effect of smoothing the boundary.Method T2 d finds the RTL using the method of [START_REF] Van Dalen | A novel iterative method for lesion delineation and volumetric quantification with FDG PET[END_REF] in common with method T2 a but with different parameters and initialisation. Method T2 d assumes a PSF of 7 mm full width at half maximum (FWHM) rather than estimating this value from the image. The RTL was initialized with background defined by a manual bounding box rather than clustering and foreground defined by method T3 a with a 50% threshold rather than 40% RTL. Adaptive thresholding method T2 e starts with a manually defined bounding box then defines the VOI by the iso-contour at a percentage of the maximum value within the bounding box. Methods T3 a & T3 b are similar to T1 c , but incorporate local background intensity calculated by a method equivalent to that Daisne et al. [START_REF] Daisne | Evaluation of a multimodality image (CT, MRI AND PET) coregistration procedure on phantom and head-and-neck cancer patients: accuracy, reproducibility and consistency[END_REF]. A threshold value is then 41% and 50% of the maximum plus background value, respectively. Method T4 a is an automatic SUV-thresholding method implemented in the 'Rover' software [START_REF]ROVER: ROI Visualisation, Evaluation and Image Registration[END_REF]. After defining a search area that encloses the VOI, the user provides an initial threshold which is adjusted in two steps of an iterative process. The first step estimates background intensity I b from the average intensity over those voxels that are below the threshold and within a minimum distance of the VOI (above the threshold). The second step re-defines the VOI by a new threshold at 39% of the difference I max -I b , where I max is the maximum intensity in the VOI. Methods T4 b & T4 c use the source-to-background algorithm in [START_REF] Schaefer | A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: Derivation from phantom measurements and validation in patient data[END_REF]. The user first defines a background region specific to the given image, then uses parameters a and b to define the threshold t = aµ VOI +bµ BG , where µ VOI +and µ BG are the mean SUV in the VOI and background respectively. The parameters are found in a calibration procedure by scanning spherical phantom VOIs of known volume. As this calibration was not performed for the particular scanner used in the present experiments (GE Discovery), methods T4 b and T4 c use parameters previously obtained for Gemini and Biograph PET systems respectively. [START_REF] Adams | Seeded region growing[END_REF], which begins at a 'seed' voxel in the VOI and agglomerates connected voxels until no more satisfy criteria based on intensity. In RG a , the user defines a bounding sphere centred on the VOI, defining both the seed at the centre of the sphere and a hard constraint at the sphere surface to avoid leakage into other structures. The acceptance criterion is an interactively adjustable threshold and the final VOI is manually modified in individual slices if needed. Methods RG b & RG c use the region growing tool in Mirada XD (Mirada Medical, Oxford, UK) with seed point location and acceptance threshold defined by the user. In RG b only, the results are manually post-edited using the 'adaptive brush' tool available in Mirada XD. This 3D painting tool adapts in shape to the underlying image. Also in method RG b only, CT images were fused with PET for visualisation and the information used to modify the regions to exclude airways and unaffected bone.
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Region growing methods (RG) use variants of the classical algorithm in

Watershed methods (WS) use variants of the classical

algorithm in [START_REF] Beucher | The morphological approach to segmentation: The watershed transformation[END_REF]. The common analogy pictures a gradientfiltered image as a 'relief map' and defines a VOI as one or more pools, created and merged by flooding a region with water. Method WS a , adapted from the algorithm in [START_REF] Lefèvre | Knowledge from markers in watershed segmentation[END_REF] for segmenting natural colour images and remote-sensing images, makes use of the content as well as the location of userdefined markers. A single marker for each VOI (3 × 3 or 5 × 5 pixels depending on VOI size) is used along with a background region to train a fuzzy classification procedure where each voxel is described by a texture feature vector.

Classification maps are combined with image gradient and the familiar 'flooding' procedure is adapted for the case of multiple surfaces. Neither the method nor the user were specialized in medical imaging. Method WS b , similar way to that in [START_REF] López-Mir | Aorta segmentation using the watershed algorithm for an augmented reality system in laprascopic surgery[END_REF], uses two procedures to overcome problems associated with local minima in image gradient. First, viscosity is added to the watershed, which closes gaps in the edge-map. Second, a set of internal and external markers are identified, indicating the VOI and background. After initial markers are identified in one slice by the user, markers are placed automatically in successive slices, terminating when the next slice is deemed no longer to contain the VOI according to a large drop in the 'energy', governed by area and intensity, of the segmented cross section. If necessary, the user interactively overrides the automatic marker placement.

Pipeline methods (PL) are more complex, multi-step algorithms that combine elements of thresholding, region growing, watershed, morphological operations and techniques in [START_REF] Yang | Split bregman method for minimization of region-scalable fitting energy for image segmentation[END_REF], [START_REF] Kuhnigk | Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans[END_REF], [START_REF] Belhassen | A novel fuzzy c-means algorithm for unsupervised heterogeneous tumor quantification in pet[END_REF]. Method PL a is a deformable contour model adapted from white matter lesion segmentation in brain MRI. The main steps use a region-scalable fitting model [START_REF] Li | Minimization of regionscalable fitting energy for image segmentation[END_REF] and a global standard convex scheme [START_REF] Chan | Algorithms for finding global minimizers of denoising and segmentation models[END_REF] in energy minimization based on the 'Split Bregman' technique in [START_REF] Yang | Split bregman method for minimization of region-scalable fitting energy for image segmentation[END_REF]. Methods PL b -PL d are variants of the 'Smart Opening' algorithm, adapted for PET from the tool in [START_REF] Kuhnigk | Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans[END_REF] for segmenting lung nodules in CT data.

In contrast to CT lung lesions, the threshold used in region growing can not be set a priori and is instead obtained from the image interactively. Method PL b was used by an operator with limited PET experience. The user of method PL c had more PET experience and, to aid selection of boundary points close to steep PET gradients, also viewed an overlay of local maxima in the edge-map of the PET image. Finally, method PL d took the results of method PL c and performed extra processing by dilation, identification of local gradient maxima in the dilated region, and thresholding the gradient at the median of these local maxima. Methods PL e & PL f use the so-called 'poly-segmentation' algorithm without and with post editing respectively. PL e is based on a multi-resolution approach, which segments small lesions using recursive thresholding and combines 3 segmentation algorithms for larger lesions.

First, the watershed transform provides an initial segmentation.

Second, an iterative procedure improves the segmentation by 323 adaptive thresholding that uses the image statistics. Third, a 324 region growing method based on regional statistics is used. 325 The interactive variant (PL f ) uses a fast interactive tool for 326 watershed-based sub-region merging. This intervention is only 327 necessary in at most two slices per VOI. Method PL g is a 328 new fuzzy segmentation technique for noisy and low resolution 329 oncological PET images. PET images are first smoothed using 330 a nonlinear anisotropic diffusion filter and added as a second 331 input to the fuzzy C-means (FCM) algorithm to incorporate 332 spatial information. Thereafter, the algorithm integrates the 333 à trous wavelet transform in the standard FCM algorithm to 334 handle heterogeneous tracer uptake in lesions [START_REF] Belhassen | A novel fuzzy c-means algorithm for unsupervised heterogeneous tumor quantification in pet[END_REF].

335

The Gradient based method (GR) method is the novel 336 edge-finding method in [START_REF] Geets | A gradientbased method for segmenting FDG-PET images: Methodology and validation[END_REF], designed to overcome the low 337 signal-to-noise ratio and poor spatial resolution of PET im-338 ages. As resolution blur distorts image features such as iso-339 contours and gradient intensity peaks, the method combines 340 edge restoration methods with subsequent edge detection. 341 Edge restoration goes through two successive steps, namely 342 edge-preserving denoising and deblurring with a deconvo-343 lution algorithm that takes into account the resolution of a 344 given PET device. Edge-preserving denoising is achieved by 345 bilateral filtering and a variance-stabilizing transform [START_REF] Lee | Edge-preserving filtering of images with low photon counts[END_REF]. 346 Segmentation is finally performed by the watershed transform 347 applied after computation of the gradient magnitude. Over-348 segmentation is addressed with a hierarchical clustering of 349 the watersheds, according to their average tracer uptake. This 350 produces a dendrogram (or tree-diagram) in which the user 351 selects the branch corresponding to the tumour or target. 352 User intervention is usually straightforward, unless the uptake 353 difference between the target and the background is very low. 354 The Hybrid method (HB) is the multi-spectral algorithm in 355 [START_REF] Han | Globally optimal tumor segmentation in PET-CT images: A graph-based co-segmentation method[END_REF], adapted for PET/CT. This graph-based algorithm exploits 356 the superior contrast of PET and the superior spatial resolution 357 of CT. The algorithm is formulated as a Markov Random 358 Field (MRF) optimization problem [START_REF] Li | Markov random field models in computer vision[END_REF]. This incorporates an 359 energy term in the objective function that penalizes the spatial 360 difference between PET and CT segmentation.

361

B. Level of interactivity 362

Levels of interactivity are defined on an ordinal scale of 363 'max', 'high', 'mid','low' and 'none', where 'max' and 'none' 364 refer to fully manual and fully automatic methods respectively. 365 Methods with a 'high' level involve user initialisation, which 366 locates the VOI and/or representative voxels, as well as run-367 time parameter adjustment and post-editing of the contours. 368 'Mid'-level interactions involve user-initialisation and either 369 run-time parameter adjustment or other run-time information 370 such as wrongly included/excluded voxels. 'Low'-level inter-371 action refers to initialisation or minimal procedures to re-372 start an algorithm with new information such as an additional 373 mouse-click in the VOI.

374

C. Level of CT use 375

We define the levels at which contouring methods exploit 376 CT information in hybrid patient images as 'high', 'low' or 377 'none', where 'high' refers to numerical use of CT together with PET in calculations. The 'low' group makes visual use of CT images to guide manual delineation, post-editing or other interactions in semi-automatic methods. The 'none' group refers to cases where CT is not used, or is viewed incidentally but has no influence on contouring as the algorithm is fully automatic. None of the methods operated on CT images alone.

III. EXPERIMENTAL METHODS

A. Images

We use two images of a new tumour phantom [START_REF] Shepherd | New physical tumour phantom and data analysis technique exploiting hybrid imaging and partial volume effects for segmentation evaluation in radiation oncology[END_REF], manufactured for this study and two clinical PET images of different head-and-neck cancer patients. The test images are available on-line [START_REF] Shepherd | Contour Evaluation[END_REF], along with ground truth sets described in section III-C. All imaging used the metabolic tracer 18 F-Fluorodeoxyglucose (FDG) and a hybrid PET/CT scanner (GE Discovery), but CT images from phantom scans were omitted from the test set. Table II gives For patient images, head and neck cancer was chosen as it 412 poses particular challenges to PET-based treatment planning 413 due to the many nearby organs at risk (placing extra demand on 414 GTV contouring accuracy), the heterogeneity of tumour tissue 415 and the common occurrence of lymph node metastasis. A large 416 tumour of the oral cavity and a small tumour of the larynx were 417 selected from two different patients, along with a metastatic 418 lymph node in the first patient (figure 3). These target volumes 419 were chosen as they were histologically proven and have a 420 range of sizes, anatomical locations/surroundings and target 421 types (tumour and metastasis). Details of the 3 patient VOIs 422 are given in the last 3 rows of table III.

423

B. Contouring 424

With the exception of the hybrid method (HB) that does not 425 apply to the PET-only phantom data, all methods contoured 426 all 7 VOIs. In the case of patient VOIs, participants had 427 the option of using CT as well as PET, and were instructed 428 to contour the gross tumour volume (GTV) and metastatic 429 tissue of tumours and lymph node respectively. All contouring 430 

C. Contouring evaluation

Accuracy measurement generally compares the contour being evaluated, which we denote C, with some notion of ground truth, denoted GT . We use a new probabilistic metric [START_REF] Shepherd | New physical tumour phantom and data analysis technique exploiting hybrid imaging and partial volume effects for segmentation evaluation in radiation oncology[END_REF] denoted AUC', as well as a variant of the Hausdorff distance [START_REF] Huttenlocher | Comparing images using the Haussdorff distance[END_REF] denoted HD' and the standard metric of Dice similarity coefficient [START_REF] Dice | Measures of the amount of ecologic association between species[END_REF] (DSC). AUC' and HD' are standardised to the range 0 . . . 1 so that they can be easily combined or compared with DSC and other accuracy metrics occupying this range [START_REF] Tanimoto | [END_REF], [START_REF] Tversky | Features of similarity[END_REF], [START_REF] Vargas | The probabilistic basis of jaccard's index of 1474 similarity[END_REF]. Treated separately, AUC', HD' and DSC allow performance evaluation with and without the assumption of unique ground truth, and in terms of both volumetric agreement (AUC' and DSC) and surface-displacement (HD') with respect to ground truth.

AUC' is a probabilistic metric based on receiver operating characteristic (ROC) analysis, in a scheme we call inverse-ROC (I-ROC). The I-ROC method removes the assumption of 465 unique ground truth, instead using a set of p arbitrary ground 466 truth definitions {GT i }, i ∈ {1 . . . p} for each VOI. While 467 uniquely correct ground truth in the space of the PET image 468 would allow deterministic and arguably superior accuracy 469 evaluation, the I-ROC method is proposed for the case here, 470 and perhaps all cases except numerical phantoms, where such 471 truth is not attainable. The theoretical background of I-ROC is 472 given in Appendix A and shows that the area under the curve 473 (AUC) gives a probabilistic measure of accuracy provided that 474 the arbitrary set can be ordered by increasing volume and 475 share the topology and general form of the (unknown) true 476 surface. The power of AUC' as an accuracy metric also relies 477 on the ability to incorporate the best available knowledge of 478 ground truth into the arbitrary set. This is done for phantom 479 and patient VOIs as follows.

480

For phantom VOIs, the ground truth set is obtained by 481 incrementing a threshold of Hounsfield units (HU) in the CT 482 data from hybrid imaging (figure 4). Masks acquired for all (iv) treat all pixels below this value as being 'liquid' and 490 all above it as 'glass'

(v) label all 'liquid' pixels that are inside the VOI as positive, but ignore pixels outside the VOI.

(vi) repeat for p thresholds HU i , i ∈ {1 . . . p} between natural limits HU min and HU max .

This ground truth set is guaranteed to pass through the internal surface of the glass compartment and exploits the inherent uncertainty due to partial volume effects in CT. It follows from derivations in Appendix A.2-3 that AUC is equal to the probability that a voxel drawn at random from below the unknown CT threshold at the internal glass surface, lies inside the contour C being evaluated.

For patient VOIs, the ground truth set is the union of an increasing number of expert manual delineations. Experts contoured GTV and node metastasis on PET visualised with co-registered CT. In the absence of histological resection, we assume that the best source of ground truth information is manual PET segmentation by human experts at the imaging site, who have experience of imaging the particular tumourtype and access to extra information such as tumour stage, treatment follow-up and biopsy where available. However, we take the view that no single manual segmentation provides the unique ground truth, which therefore remains unknown.

In total, 3 delineated each VOI on 2 occasions (denoted The patient ground truth set encodes uncertainty from inter-/intra-expert variability in manual delineation and AUC is the probability that a voxel drawn at random from the unknown manual contour at the true VOI surface, lies inside the contour C being evaluated. Finally, we rescale AUC to the range {0 . . . 1} by AUC ′ = AUC -0.5 0.5 , 0 ≤ AUC ′ ≤ 1= maximum accuracy.

N
(1) Reference surfaces that profess to give the unique ground truth are required to measure the Hausdorff distance and Dice similarity. We obtain the 'best guess' of the unique ground truth, denoted GT * from the sets of ground truth definitions introduced above. For each phantom VOI we select the CT threshold having the closest internal volume in cm 3 to an independent estimate. This estimate is the mean of three repeated measurements of the volume of liquid contained by each glass compartment. For patient VOIs, GT * is the union mask that has the closest absolute volume to the mean of all 540 N experts × N occasions raw expert manual delineations.

541

HD' first uses the reference surface GT * to calculate the Hausdorff distance HD, being the maximum for any point on the surface C of the minimum distances from that point to any point on the surface of GT * . We then normalise HD with respect to a length scale r and subtract the result from 1

HD ′ = 1 -min(HD, r) r , 0 ≤ HD ′ ≤ 1= maximum accuracy, (2) 
where r = 3 3 4π vol(GT * ) is the radius of a sphere having the 542 same volume as GT * denoted vol(GT * ). Equation 2 trans-543 forms HD to the desired range with 1 indicating maximum 544 accuracy.

545

DSC also uses the reference surface GT * and is calculated by

DSC = 2N C∩GT * N C + N GT * , 0 ≤ DSC ≤ 1= maximum accuracy, (3) 
where N v denotes the number of voxels in volume v defined 546 by contours or their intersect.

547

Composite metrics are also used. First, we calculate a synthetic accuracy metric from the weighted sum

A* = 0.5 AUC ′ + 0.25 DSC + 0.25 HD ′ , (4) 
which, in the absence of definitive proof of their relative 548 power, assigns equal weighting to the benefits of the proba-549 bilistic (AUC ′ ) and deterministic approaches (DSC and HD'). Figure 5 also supports the use of the new metric AUC'. 622 Although values are generally higher than DSC and HD, which 623 may be explained by the involvement of multiple ground truth 624 definitions increasing the likelihood that a contour agrees with 625 any one in the set, the variance of accuracy scores is greater for 626 AUC' than the other metrics (table V), which indicates higher 627 sensitivity to small differences in accuracy between any two 628 methods. This information is in the form of anatomical structure in the 635 case of visual CT-guidance ('low' CT use) and higher-level, 636 image texture information in the case of method HB with 637 'high' CT use. The null-hypothesis is that contouring accuracy 638 is not affected by the level of use of CT information.

639

We compare each pair of groups i and j that differ by CT 640 use, using a t-test for unequal sample sizes n i and n j , where 641 the corresponding samples have mean accuracy µ i and µ j and 642 standard deviation σ i and σ j . For the i th group containing 643 n methods contouring methods, each segmenting n VOIs targets, the 644 sample size n i = n methods × n VOIs and µ i and σ j are calculated 645 over all n methods × n VOIs accuracy scores. We calculate the 646 significance level from the t-value using the number of degrees 647 of freedom given by the Welch-Satterthwaite formula for un-648 equal sample sizes and sample standard deviations. Significant 649 differences between groups are defined by confidence interval with experiments in [START_REF] Schöder | Head and neck cancer: Clinical usefulness and accuracy of PET/CT image fusion[END_REF] and [START_REF] Yu | Automated radiation targeting in headand-neck cancer using region-based texture analysis of PET and CT images[END_REF], which found the benefits 672 of adding CT visually and computationally, in manual and 673 automatic tumour delineation and classification respectively.

674

C. Role of user interaction 675

This experiment investigates the affect of user-interactivity 676 on contouring performance. The null hypothesis is that con-677 touring accuracy is not affected by the level of interactivity 678 in a contouring method. We compare each pair of groups i and j that differ by level of interactivity, using a t-test for unequal sample sizes as above. For the grouping according to level of interactivity in table I, groups with interactivity level 'max', 'high', 'mid', 'low' and 'none' have n methods = 4, 3, 7, 13 (12 for phantom images by removal of method HB) and 6 respectively (methods MD b , RGMD b and RGMD c in the 'max', 'high' and 'mid' groups respectively were used twice by different operators in the same team). We repeat for patient images (n VOIs = 3), phantom images (n VOIs = 4) and the combined set (n VOIs = 7) and, as above, for each of the 4 accuracy metrics. Figure 7 shows all results for all groups ordered by level of interactivity.

The trends for each of phantom, patient and all VOIs are consistent over all metrics. The most accurate methods were those in the 'high' and 'max' groups for phantom and patient images respectively. For patient images, the 'max' group is significantly more accurate than any other and this trend carries over to the pooled accuracies in both image types despite having less patient VOIs (n = 3) than phantom VOIs (n = 4). For phantom VOIs, with the exception of HD', there are no significant differences between 'high' and 'max' groups and these both significantly out-perform the 'low' and 'none' groups in all metrics. For HD' alone, fully manual delineation is significantly less accurate than semi-automatic methods with 'high' levels of interaction. This may reflect the lack of anatomical reference in the phantom images, which is present for patient VOIs and guides manual delineation. As high levels of interaction still appear most accurate, the reduced accuracy of fully manual methods is not considered likely to be caused by a bias of manual delineations toward manual ground truth, given the levels of inter-user variability. Overall, we conclude that manual delineation is more accurate than semi-or fully-automatic methods, and that the accuracy of semi-automatic methods improves with the level of interaction built in.

D. Accuracy of algorithm types

This experiment compares the accuracy of different algorithm types, defined in section II-A. The null hypothesis is that contouring accuracy is the same for manual or any numerical method regardless of the general approach they take. We compare each pair of groups i and j that differ by algorithm type, using a t-test for unequal sample sizes as above. For the grouping according to algorithm type in table I, n methods = 4,3,5,2,3,5,2,1,1 (0 for phantom images by removal of method HB) and 7 for algorithm-types MD, T1, T2, T3, T4, RG, WS, GR, HB and PL respectively (methods MD b in the MD, and RG b & RG c in the RG group were used twice by different operators in the same team). As above, we repeat for patient images (n VOIs = 3), phantom images (n VOIs = 4) and the combined set (n VOIs = 7), and for each of the 4 accuracy metrics. Figure 8 shows the results separately for all image sets and accuracy metrics.

Plot (b) reproduces the same anomalous success of the hybrid method (HB) in terms of AUC' alone, as explained above. Manual delineation exhibits higher accuracy than other algorithm types, ranking in the top [START_REF] Keyes | SUV: Standardised Uptake or Silly Useless Value?[END_REF] is that all n cases are equally accurate. We compare each pair of methods i and j that differ by method, using a t-test for equal sample sizes n i = n j = n VOIs , where mean accuracy µ i and µ j and standard deviation σ i and σ j are calculated over all VOIs and there are 2n VOIs -2 degrees of freedom.

As above, we repeat for all image sets and accuracy metrics.

Figure 9 shows the results separately for phantom, patient and combined image sets in terms of A* only. Full results for all metrics and significant differences between methods are given in the supplementary material.

The generally low values of A* in figure 9 
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Methods WS a , T1 c and T3 b have the 3 lowest accuracies 797 by mean A* across all 3 image sets. The poor performance 798 of method WS a could be explained by its origins (colour 799 photography and remote-sensing) and user having no roots 800 or specialism in medical imaging. Threshold methods T1 c 801 and T3 b give iso-contours at 50% of the local peak intensity 802 without and with adjustment for background intensity respec-803 tively. Their poor performance in all image types highlights 804 the limitations of thresholding.

805

Table VI presents the composite metrics explained in section 806 III-C along with intra-operator variability where available (last 807 two columns), measured by the Hausdorff distance in mm 808 between two segmentations of the same VOI, averaged over 809 the 3 patient or 4 phantom VOIs. This definition of intra-810 operator variability gives an anomalously high value if the two 811 segmentations resulting from repeated contouring of the same 812 VOI do not have the same topology, as caused by an internal 813 hole in the first contouring by method RG b 1 . Notably, we find 814 no correlation between intra-operator variability and the level 815 of interactivity of the corresponding methods. The same is 816 true for inter-operator variability (not shown) calculated by 817 the Hausdorff distance between segmentations by different 818 users of the same method (applicable to methods MD b , RG b 819 and RG c ). This finding contradicts the general belief that 820 user input should be minimised to reduce variability. Table 821 VI reaffirms the finding that manual delineation is the most 822 accurate method type, with examples MD c and MD b 1,2 scoring 823 highly in all metrics. The most consistently accurate non-824 manual methods are the semi-and fully-automatic methods 825 PL b and PL c . More detailed method-wise comparisons are 826 made in the next section.

827

V. DISCUSSION

828

We have evaluated and compared 30 implementations of 829 PET segmentation methods ranging from fully manual to fully 830 automatic and representing the range from well established 831 to never-before tested on PET data. Region growing and 832 watershed algorithms are well established in other areas of 833 medical image processing, while their use for PET target 834 volume delineation is relatively new. Even more novel ap-835 proaches are found in the 'pipeline' group and the two distinct 836 algorithms of gradient-based and hybrid segmentation. The 837 gradient-based method [START_REF] Geets | A gradientbased method for segmenting FDG-PET images: Methodology and validation[END_REF] has already had an impact in the 838 radiation oncology community and the HB method [START_REF] Han | Globally optimal tumor segmentation in PET-CT images: A graph-based co-segmentation method[END_REF] is one 839 of few in the literature to make numerical use of the structural 840 information in fused PET/CT. The multispectral approach is in 841 common with classification experiments in [START_REF] Yu | Coregistered FDG PET/CT-based textural characterization of head and neck cancer for radiation treatment planning[END_REF] that showed 842 favourable results over PET alone. comes from the incorporation of prior knowledge regarding the likely form and extent of pathology. In the case of the patient images alone, bias toward MD may be suspected as the ground-truth set is also built up from manual delineations.

A* method PL a WS a PL b PL c PL d T2 a MD a T4 a T4 b T4 c MD b 1 MD b 2 RG a WS b T1 a T1 b T2 b T2 c RG b 1 RG b 2 RG c 1 RG c 2 PL e PL f GR MD c T1 c T3 a T3 b T2 d T2 e PL g 0 0.2 0.4 0.6 0.8 1 Patient VOIs A* method PL a WS a PL b PL c PL d T2 a MD a T4 a T4 b T4 c MD b 1 MD b 2 RG a HB WS b T1 a T1 b T2 b T2 c RG b 1 RG b 2 RG c 1 RG c 2 PL e PL f GR MD c T1 c T3 a T3 b T2 d T2 e PL g 0 0.2 0.4 0.6 0.8 1 All VOIs A* method PL a WS a PL b PL c PL d T2 a MD a T4 a T4 b T4 c MD b 1 MD b 2 RG a WS b T1 a T1 b T2 b T2 c RG b 1 RG b 2 RG c 1 RG c 2 PL e PL f GR MD c T1 c T3 a T3 b T2 d T2 e PL g
However, this does not explain the success of manual methods as they performed better still for phantom VOIs where the ground truth comes from CT thresholds. The use of multiple ground truth estimates by I-ROC may falsely favour manual delineation due to its inherent variability. However, this too does not explain the success of manual methods as they also perform well in terms of DSC and HD' that use a unique, 'best-guess' of ground truth (at least one MD is among the 5 highest DSC and HD for each of the patient phantom VOI sets). These observations challenge the intuition, that manual delineation is less accurate. Although many (semi-)automatic methods out-perform free-hand delineation in the literature, the inherent bias toward positive results among published work makes this an unfair basis for intuition.

Of the 4 manual delineations (MD a , MD b 1 , MD b 2 and MD c ), method MD c out-performed the rest in all of n(n.s.d), n(> µ+σ), median rank and intra-operator variability where known, with significant improvement over MD b 1,2 in terms of AUC' for patient VOIs (although the multiple comparison effect can mean that one or more of these differences are falsely detected as significant). The obvious difference between these 4 is the user. It is interesting, and indicative of no bias in terms of user group, that the delineator of MD c was a nuclear 873 medicine physicist while the other users, in common with the 874 experts providing ground truth estimates, were experienced 875 physicians. However, while users of MD a and MD b 1,2 only 876 viewed the PET images during delineation, the physicist using 877 MD c also viewed an overlay of the PET gradient magnitude 878 and, in the case of patient images, simultaneous CT. These 879 modes of visual guidance could in part compensate for the 880 relative lack of clinical experience, although no concrete 881 conclusion can be made as clinical sites may disagree on the 882 correct segmentation.

B. Automation vs. user guidance 884

Two method comparisons provide evidence that too much 885 automation in a semi-automatic algorithm is detrimental to 886 contouring accuracy. First, we compare the accuracy of meth-887 ods PL c and PL d . Method PL d starts with the same seg-888 mentation achieved by PL c , then performs extra steps in 889 the automatic pipeline intended to improve on the results. 890 However, these extra steps reduce the final accuracy. Second, 891 we compare the accuracy of methods RG b 1,2 and RG c 1,2 . 892 These differ in that RG b 1,2 also employs post-editing by the 893 adaptive brush tool. While the adaptive brush may improve 894 accuracy for phantom VOIs, accuracy is reduced for patient 895 VOIs indicated by n(n.s.d) and median rank. This suggests 896 interactive post-editing by user-defined watershed markers and sub-regional merging. Method PL f is consistently more accurate than PL e over all 12 combinations of accuracy metric and image type. A second example comes from comparing 5 thresholding schemes used at the same institution (team 13). Methods T1 c , T3 a and T3 b use intensity thresholds of 50% maximum and 41% & 50% of maximum-plus-background, while T2 d and T2 e use thresholds chosen to match an estimate of the VOI's absolute volume and the user's visual judgement of VOI extent respectively. Of these five, T2 e is most highly influenced by the user and ranks consistently higher than the other 4 in all 12 combinations of accuracy metric and image set, significantly out-performing T1 c once, T3 b twice and T3 a three times (notwithstanding the possibility of false significance by the multiple comparison effect).

Fully automated contouring has the potential to reduce the user-time involved, whereas contouring speed is not included in the present evaluation strategy. This study focuses on accuracy, given that even fully automatic results can in principle be edited by medical professionals, who ultimately decide how much time is justified for a given treatment plan as well as just where the final contours should lie. The CPU-time of the more computationally expensive algorithms could be quantified as the subject of further work, but its relevance is debatable given that CPUs have different speeds and large data sets can be processed off-line, allowing the medical professional to work on other parts of a treatment in parallel.

C. Building prior knowledge into contouring

As already seen from figure 9 method WS a consistently gave the lowest accuracy. This method was adapted from an algorithm designed for segmenting remote sensing imagery and its user declared no expertise in medical image analysis. Conversely, two methods were adapted for the application of PET oncology, from other areas of medical image segmentation. Method PL a has origins in white matter lesion segmentation in brain MRI and method PL b is adapted from segmentation of lung nodules in CT images. These two examples far out-perform method WS a , with method PL b having the joint second highest median ranking for patient images and no significant difference from the most accurate methods in terms of any metric for any image set. Some methods were designed for PET oncology, incorporating numerical methods to overcome known challenges. Examples are method GR that overcomes poorly defined gradients around small volumes due in part to partial volume effects, and method PL g allows for regional heterogeneity that is known to confound PET tumour segmentation. These methods rank reasonably highly, in patient images, ranking similarly to all manual delineations and the semi-automatic 'smart opening' algorithm (PL b ), despite neither GR nor PL g having any user intervention or making any use of simultaneous CT. Method PL g performs relatively poorly in phantom images, where the problem of tissue heterogeneity is not reproduced.

The benefits of prior knowledge are also revealed by comparing 3 thresholding schemes T4 a , T4 b and T4 c used by the same institution (team 04). Of these, method T4 a was considerably less accurate in terms of both n(n.s.d) and expert (e.g. [START_REF] Chupin | Anatomically constrained region deformation for the automated seg-1478 mentation of the hippocampus and the amygdala: Method and validation 1479 on controls and patients with alzheimers disease[END_REF], [19], [START_REF] Shattuck | Online resource for validation of brain segmentation methods[END_REF]). However, even among experts, 990 inter-and intra-operator variability are inevitable and well 991 documented in PET oncology [START_REF] Riegel | Variability of gross tumor volume delineation in head-1357 and-neck cancer using CT and PET/CT fusion[END_REF], [START_REF] Breen | Intraobserver and interobserver variability 1362 in GTV delineation on FDG-PET-CT images of head and neck cancers[END_REF]. The new metric 992 AUC' exploits this variability in a probabilistic framework, [10], [START_REF] Li | A novel PET tumor delineation method based on adaptive region-growing and dual-front active contours[END_REF], lung nodules [START_REF] Black | Defining a radiotherapy target with pet[END_REF] and gliomas [20] and cylindrical 1015 VOIs, attempting to mimick tumours [START_REF] Daisne | Evaluation of a multimodality image (CT, MRI AND PET) coregistration procedure on phantom and head-and-neck cancer patients: accuracy, reproducibility and consistency[END_REF]. The ground truth 1016 surface of such VOIs is precisely known due to their geometric form, but many segmentatiuon algorithms are confounded by irregular surfaces and more complex topology such as branching seen in clinical cases and in the new phantom presented here. Another limitation of phantom images including those used here is the difficulty of mimicking heterogeneous or multi-focal tumours as seen in some clinical data.

Digital images of histological resection can in some cases provide unique ground truth, removing the need to combine multiple estimates. A recent example demonstrates this for PET imaging of prostate cancer [START_REF] Chang | Histopathological 1493 correlation of 11 C-choline PET scans for target volume definition in 1494 radical prostate radiotherapy[END_REF]. While this approach could provide the standard for accuracy evaluation where available, histology-based accuracy measurement is currently limited as described in [START_REF] Hicks | 18F-FDG PET in candidates for 1497 radiation therapy: Is it important and how do we validate its impact?[END_REF], with errors introduced by deformation of the organ and co-registration of digital images (co-registration in [START_REF] Chang | Histopathological 1493 correlation of 11 C-choline PET scans for target volume definition in 1494 radical prostate radiotherapy[END_REF] required first registering manually to an intermediate CT image). Furthermore, tumour excision is only appropriate for some applications. For head-and-neck cancer, the location of the disease often calls for non-invasive, in vitro treatment by radiotherapy and in such cases the proposed use of multiple ground truth estimates may provide a new standard.

Neither deterministic metrics with flawed, unique ground truth (DSC and HD) nor probabilistic methods like I-ROC or STAPLE, measure absolute accuracy. However, the relative accuracy of methods or method groups is of interest to our aim of guiding algorithm development. For this purpose, a large and varied cohort of segmentation methods is desirable, and the composite metrics based on method ranking, distributions of accuracy scores n(>µ+σ) and the frequency of having no significant reduction in accuracy with respect to the most accurate n(n.s.d) become more reliable as the number of contouring tools increases. However, without a simultaneous increase in the number of VOIs, significance tests of the difference in accuracy of any one pair of methods becomes less reliable due to multiple comparison effects.

VI. CONCLUSIONS

The multi-centre, double-blind comparison of segmentation methods presented here is the largest of its kind completed for VOI contouring in PET oncology. This application has an urgent need for improved software given the demands of modern treatment planning. The number and variety of contouring methods used in this paper alone confirms the need for constraint, if the research is to converge on a small number of contouring solutions for clinical use.

We found that structural images in hybrid PET/CT, now commonly available for treatment planning, should be used for visual reference during semi-automatic contouring while the benefits of high-level CT use by multispectral calculations are revealed only by the new accuracy metric. We also concluded that higher levels of user interaction improves contouring accuracy without increasing intra-or inter-operator variability. Indeed, manual delineation overall out-performed all semior fully-automatic methods. However, two methods (T2 b and PL f ) with a low-level of interactivity and two automatic methods (PL a and PL g ) are characterized by accuracy scores that are frequently not significantly different from those of the best manual method. Contouring research should pursue a semiautomatic method that achieves the same level of accuracy as expert manual delineation, but must strike a balance between (i) guiding manual practices to reduce levels of variability and (ii) not over-influencing the expert or overriding his or her knowledge. To strike this balance, techniques that show promise are (i) visual guidance by both CT and PET-gradient images, (ii) model-based handling of heterogeneity and blurred edges that characterise oncological VOIs in PET and (iii) departure from the reliance on the SUV transformation and iso-contours of this parameter or another scalar multiple of PET intensity, given its dependence on the imaging time window and countless other confounding factors.

These results go a long way towards constraining subsequent development of PET contouring methods, by identifying and comparing the distinct components and individual methods used or proposed in research and the clinic. In addition, we provide detailed results and statistical analyses in supplementary material for use by others in retrospective comparisons according to criteria or method groups not attempted here, as well as access to the test images and ground truth sets [START_REF] Shepherd | Contour Evaluation[END_REF] that can be used to evaluate other contouring methods in the future.

While our tests focused on head-and-neck oncology, only the fixed threshold method T1 a made any assumptions about the tracer or tumour site so results for the remaining methods tested here provide a benchmark for future comparisons.

Recently proposed methods in [START_REF] El-Naqa | Concurrent multimodality image segmentation by active contours for radiotherapy treatment planning[END_REF], [START_REF] Li | A novel PET tumor delineation method based on adaptive region-growing and dual-front active contours[END_REF] and [START_REF] Hatt | A 1500 fuzzy locally adaptive Bayesian segmentation approach for volume 1501 determination in pet[END_REF] would be of particular interest to test. However, if the number of tested methods increases without increasing the number of VOIs, the chance of falsely finding significant differences between a pair of methods increases due to the multiple comparison effect so the composite metrics are favoured over pair-wise comparisons for such a benchmark. Receiver operating characteristic (ROC) analysis is well 1132 established in medical imaging as a means of evaluating 1133 region-and voxel-wise data classification [START_REF] Swets | ROC analysis applied to the analysis of medical imaging 1504 techniques[END_REF]. Data comes 1134 in the form of N = N + + N -measurements, comprising 1135 N + 'positive' data with truth labels +1 and N -'negative' 1136 data with labels -1. A binary classifier divides all N data 1137 into positive and negative sets, and has at least one internal 1138 parameter that affects this division. ROC analysis is performed 1139 by varying an internal parameter in p increments. In threshold 1140 classification, the threshold is the internal parameter and data 1141 above the threshold are counted as either true positive (TP) or 1142 false positive (FP) according to agreement or otherwise, with 1143 the ground truth labels. Similarly, true negative (TN) or false 1144 negative (FN) classifications are counted below the threshold. 1145 The counts N TP , N FP , N TN and N FN , of true/false positives and 1146 negatives yield the true positive ratio TPR i and false positive 1147 ratio FPR i for the i th threshold and the pair {TPR i , FPR i } 1148 becomes a single point on a ROC curve. The whole curve is 1149 generated by varying the internal parameter between natural 1150 limits. For the threshold classifier in figure 10, the limits are 1151 the minimum and maximum value in all N data. The fixed 1152 ground truth in figure 10 are drawn from Gaussian distributions 1153 with µ + = 3.0, µ -= -3.0 and σ + = σ -= 2.5.

1154

The ROC curve occupies the range {0 . . . 1} in both TPR 1155 and FPR and has two limiting cases. The first limit is the 1156 diagonal line (--in figure 10) which has an area under 1157 the curve (AUC) of 0.5 and indicates failure to classify data 1158 better than random assignment of labels ±1. The second 1159 limiting case (⋅ ⋅ ⋅ in figure 10) has AUC = 1 and indicates 1160 perfect classification. As a result, AUC is commonly used as 1161 a measure of classifier accuracy. ROC analysis simultaneously 1162 yields the operating point of the classifier, defined as the 1163 internal parameter setting (e.g. threshold) that minimises the 1164 combined cost of false positives and false negatives.

1165

If positive and negative ground truth are normally distributed, the ROC curve has exponential form and AUC can be calculated by fitting an analytic function and integrating between the limits 0 to 1. In this case, AUC is a monotonic function z -1 of the distance between the means µ + , µ -of the true distributions, scaled by their standard deviations σ + , σ -, where

z(AUC) = µ + -µ - σ 2 + + σ 2 - ( 5 
)
and AUC is equal to the Gaussian probability that a measure-1166 ment drawn at random from the positive set will be correctly 1167 classified. If the assumption of normally distributed data is 1168 relaxed the probabilistic interpretation still holds, where the 1169 probability is that sought by a Wilcoxon signed ranks test and 1170 AUC is evaluated using the trapezium rule [START_REF] Bradley | The use of the area under the ROC curve in the evaluation 1506 of machine learning algorithms[END_REF].

1171

In summary, AUC is a probabilistic measure regardless of 1172 the underlying distributions and ROC analysis can be used as 1173 a metric combining sensitivity and specificity. 
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A.2 I-ROC: multiple ground truth representations

Formally, the I-ROC method will generalise for any shape of ground truth set or contour under evaluation if N(∈ GT j ) = 

where N(∈ GT j ) and N(∉ GT j ) denote the number of voxels 1267 inside and outside the j th ground truth definition. Equation 6(a) holds if requirement A.3(i) is met and 6(b) is satisfied by the fixed bounding box enclosing the set {GT i }. 
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  optimum relative threshold level (RTL) based an estimate of 198 the true absolute volume of the VOI in the image. The RTL 199 is relative to background intensity, where background voxels 200 are first labelled automatically by clustering. An initial VOI 201 is estimated by a threshold of 40% RTL, and its maximum 202 diameter is determined. The RTL is then adjusted iteratively 203 until the absolute volume of the VOI matches that of a sphere 204 of the same diameter, convolved with the point-spread function 205 (PSF) of the imaging device, estimated automatically from the 206 image. Methods T2 b & T2 c automatically define thresholds according to different criteria. They both use the results of method T1 a as an initial VOI, and define local background voxels by dilation. Method T2 b uses two successive dilations and labels the voxels in the second dilation as background.

Fig. 1 :

 1 Fig. 1: (a) tumour and (b) nodal chain VOIs of the phantom. Top: Digital photographs of glass compartments. Middle: PET images from scan 1 (sagittal view). Bottom: 3D surface view from an arbitrary threshold of simultaneous CT, lying within the glass wall.

  (a) has branches to recreate the more complex topology of some tumours. This and the nodal chain compartment (b) are based on cancer of the oral cavity and lymph node metastasis respectively, manually segmented from PET images of two head and neck cancer patients and formed by glass blowing. The phantom compartments and surrounding container were filled with low concentrations of FDG and scanned by a hybrid device (1, middle and bottom rows). Four phantom VOIs result from scans 1 and 2, with increasing signal to background ratio achieved by increasing FDG concentration in the VOIs. Details of the 4 phantom VOIs are given in the first 4 rows of table III. Figure 2 shows the phantom VOIs from scan 1, confirming qualitatively the spatial and radiometric agreement between phantom and patient VOIs.

Fig. 2 :

 2 Fig. 2: Axial PET images of phantom and real tumour (top) and lymph node (bottom) VOIs with profile lines traversing each VOI. Plots on the right show the image intensity profiles sampled from each image pair.

Fig. 3 :

 3 Fig. 3: Axial neck slices of 18 F-FDG PET images overlain on simultaneous CT. (a) & (b) Oral cavity tumour & lymph node metastasis in patient 1 (c) Laryngeal tumour in patient 2.

Fig. 4 :

 4 Fig. 4: (a) 3D visualisation of phantom VOI from CT thresholded at a density near the internal glass surface. (b) Arbitrary ground truth masks of the axial cross section in (a), from 50 thresholds of HU.

3 (

 3 experts = 3 and N occasions = 2) with at least a week in between. The resulting set of p = N experts × N occasions ground truth estimates were acquired to satisfy the requirements in Appendix A.3 as follows: (i) define a bounding box in the CT image that completely encloses all N experts × N occasions manual segmentations {GT i } and the contour C being evaluated (ii) order the segmentations {GT i } by absolute volume in cm iii) use the smallest segmentation as GT 2 (iv) form a new VOI from the union of the smallest and the next largest VOI in the set and use this as GT 3 (v) repeat until the largest VOI in the set has been used in the union of all N experts × N occasions VOIs (vi) create homogeneous masks for GT 1 and GT p , having all negative and all positive contents respectively.

Intra-operator variabilityFig. 5 :

 5 Fig. 5: Contouring accuracy in phantom and patient images, where '⌜ * ⌝' indicates significant difference.

650Fig. 6 :

 6 Fig. 6: Effect of CT use on contouring accuracy in patient images, measured by (a) AUC ′ , (b) DSC, (c) HD ′ and (d) A*, where '⌜ * ⌝' denotes ignificant difference between two levels of CT use.

Fig. 8 :

 8 Fig. 8: Contouring accuracy of all algorithm types measured by top row: AUC ′ for (a) phantom, (b) patient and (c) both VOI types, second row: DSC for (d) phantom (e) patient and (f) both image types, third row: HD ′ for (g) phantom, (h) patient and (i) both image types and bottom row: A* for (j) phantom, (k) patient and (l) both VOI types. Significant differences between any two algorithm types are indicated by '⌜ * ⌝'.

  and other metrics in the supplementary material highlight the problem facing accurate PET contouring. These results also reiterate the general finding that manual practices can be more accurate than semi-or fully-automatic contouring. For patient images, and the combined set, the most accurate contours are manually delineated by method MD c . Also for these image sets the second and third most accurate are another manual method (MD b 2 ) and the 'smart opening' algorithm (PL b ) with midlevel interactivity. For phantom VOIs only, methods RG b and T1 b , with highand low-level interactivity, out-perform manual method MD c with no significant difference. Method RG b is based on SRG with post-editing by the adaptive brush and showed low accuracy for patient VOIs with RG b 2 being significantly less accurate than the manual method MD c (see supplementary material). Method T1 b is based on thresholding and showed low accuracy for patient VOIs, being significantly less accurate 792 than the manual methods MD c and MD b 2 (see supplementary 793 material). Their high accuracy in phantom images alone could 794 be explained by methods T1 b and RG b being particularly 795 suited to the relative homogeneity of the phantom VOIs.

  843A. Manual delineation 844Free-hand segmentation produced among the most accu-845 rate results, which may be counter-intuitive. One explanation 846

Fig. 9 :

 9 Fig. 9: Mean accuracy measured by A*, of each method used to contour VOIs in phantom (top), patient (middle) and the combined image set (bottom).
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  median rank. Methods T4 b and T4 c were calibrated using 962 phantom data to build in prior knowledge of the imaging 963 device. Even though the two devices used to calibrate T4 b 964 and T4 c are from different vendors (Siemens and Biograph 965 devices) than the one that acquired the test images (GE 966 Discovery), they are consistently more accurate than method 967 T4 a implemented at the same site, which does not learn from 968 scanner characteristics but instead has an arbitrary parameter 969 (39%). Methods T4 b and T4 c also out-perform the majority 970 of the other low-interactivity thresholding schemes, suggesting 971 that the calibration is beneficial and generalises across imaging 972 devices. This apparent generalisation is further evidenced by 973 no significant differences between methods T4 b and T4 c in 974 any individual metric for patient or phantom VOIs. 975 Finally, the low accuracy of methods T4 a and T4 a may be 976 due to erroneous prior knowledge. These two implementations 977 of the same algorithm [6] inherently approximate the volume 978 of interest as a sphere. Both perform poorly, with median rank-979 ing from 4 -7 over all 4 metrics in contouring both phantom 980 and patient VOIs. These low accuracies are likely to arise 981 from the spherical assumption rather than the initialisation of 982 the method, as the low accuracies are similar despite different 983 methods of initialisation described in section II.

985

  Accuracy measurement is fundamentally flawed in many986 medical image segmentation tasks due to the ill-definition of 987 the true surface of the VOI. It is most common to estimate 988 the ground truth by manual delineation performed by a single 989

  scheme incorporates knowledge and experience of multiple 997

Future

  work using the data from the present study should categorise the 30 methods in terms of user-group and compare segmentation methods in more head and neck VOIs. Future work with a larger set of test data (images and VOIs) is expected to provide more statistically significant findings and should repeat for VOIs outside the realm of FDG in headand-neck cancer and for images of different signal/background quality. For this purpose the experimental design including phantom, accuracy metrics and the grouping of contemporary segmentation methods, will generalise for other tumour types and PET tracers. VII. ACKNOWLEDGEMENTS For retrospective patient data and manual ground truth delineation, the authors wish to thank S. Suilamo, K. Lehtiö, M. Mokka and H. Minn at the Department of Oncology and Radiotherapy, Turku University Hospital, Finland. This study was funded by the Finnish Cancer Organisations. APPENDIX In order to derive the new accuracy metric and explain its probabilistic nature, we recall the necessary components of conventional receiver operating characteristic (ROC) analysis, then demonstrate the principles of inverse-ROC (I-ROC) for a simple data classification problem and explain the extension 1128 to topological ground truth for contour evaluation.

Fig. 10 :

 10 Fig. 10: Conventional ROC analysis of a threshold classifier performed by fixing the ground truth labelling and varying the threshold in p = 19 increments (top) to form a ROC curve (bottom). The operating point is marked green.

  i ∨ GT j ) and (a) N(∈ GT j ) + N(∉ GT j ) = constant ∀j (b)

Fig. 12 :

 12 Fig. 12: Inverse-ROC analysis of a fixed contour (red circle) performed by varying ground truth contours as squares (a) or circles (c) of increasing size. ROC curves in (b) and (d) are built from the corresponding true and false counts that lie inside or outside the i th ground truth contour. Operating points are shown in green.

TABLE I :

 I The 30 contouring methods and their attributes.

	method team type	interactivity			CT use
				max	high	mid	low	none	high	low	none
	PL a	01	PL					▲	∎
	WS a	02	WS				▲		∎
	PL b							
		03	PL					

  algorithms such as thresholding were 133 used by more than one team, with different definitions of the 134 quantity and its threshold. Methods are grouped according to 135 algorithm type and distinguished by their level of dependence 136 upon the user (section II-B) and CT data (section II-C) in 137 the case of patient images. Contouring by methods MD b , 138 RG b and RG c was repeated by two users in the respective 139 teams, denoted by subscripts 1 and 2, and the corresponding 140 segmentations are treated separately in our experiments.

	PL g	13	PL	▲	∎

132 some well-established

TABLE III :

 III Properties of VOI and background (BG) data (volumes in cm 3 are estimated as in section III-C

		image	initial	volume	source	of
	VOI		activity	(cm 3 )	ground truth
			(kBq ml -1 )		
	tumour	phantom	8.7 (VOI)	6.71	thresholds
	node	scan 1	4.9 (BG)	7.45	of
	tumour	phantom	10.7 (VOI)	6.71	simultaneous
	node	scan 2	2.7 (BG)	7.45	CT image
	tumour node	patient 1	2.4 ×10 5	35.00 2.54	multiple expert
	tumour	patient 2	3.6 ×10 5	2.35	delineations

TABLE II :

 II Details of phantom and patient PET/CT images.

	Image		PET (18F FDG)						CT		
	type	frame length	width/height	depth	pixel	size	slice depth	width/height	depth	pixel	size	slice depth
		(min)	(pixels)	(slices)	(mm)		(mm)	(pixels)	(slices)	(mm)		(mm)
	phantom	10.0	256	47	1.17×1.17	3.27	512	47	0.59×0.59	3.75
	patient	3.0	256	33,37	2.73×2.73	3.27	512	42,47	0.98×0.98	1.37

TABLE IV :

 IV Composite accuracy metrics that condense ranking and significance information.

	DSC,
	HD and A*, for which a method scores more than one standard deviation
	(σ) above the mean (µ) of that score achieved by all 32 methods (33 in
	the case of patient VOIs only)
	median rank: the median, calculated over the 4 accuracy metrics, of
	the ranking of that method in the list of all 32 methods (33 for patient
	VOIs only) ordered by increasing accuracy
	557
	as good as the most accurate in a statistical sense and, in the 558
	presence of false significances due to the multiple comparison 559
	effect, gives more conservative rather than falsely high scores.

n(n.s.d): the number between 0 and 4, of accuracy metrics AUC', DSC, HD and A*, for which a method scores an accuracy of no significant difference (n.s.d) from the best method according to that accuracy n(>µ+σ): the number between 0 and 4, of accuracy metrics AUC', 560 Metric n(>µ+σ) favours the methods in the positive tails of 561 the population, which is irrespective of multiple comparison 562 effects. The rank-based metric is also immune to the multiple 563 compatrison effect and we use the median rather than mean 564 rank to avoid misleading results for a method that ranks highly 565 in only one of the metrics AUC', DSC, HD and A*, considered 566 an outlier.

TABLE V :

 V Variance of AUC ′ and standard accuracy metrics calculated for all 7 VOIs (second column), and for the 4 and 3 VOIs in phantom and patient images respectively.For contouring in patient images only, we test the benefit of 631 exploiting CT information in contouring (phantom VOIs are 632 omitted from this experiments as the CT was used for ground 633 truth definitions and not made available during contouring). 634

	metric	all VOIs	phantom	patient
	AUC ′	0.028	0.035	0.021
	DSC	0.011	0.010	0.012
	HD ′	0.011	0.010	0.011

629

B. Role of CT in PET/CT contouring

630

TABLE VI :

 VI Summarised accuracy and variability of phantom (ph.) and patient (pt.) contouring by all methods ordered as in table I and using ranked and other composite accuracy metrics in section III-C. Data are not available (n/a) for method HB in phantom results and most methods in variability results.

		method	n(n.s.d)	n(>µ+σ)	median rank		intra-operator HD (mm)
					ph. pt.	ph. pt.	ph.	pt.	ph.	pt.
		PL a			4	3	0	0	17	19	n/a	n/a
		WS a		0	0	0	0	1.5	1.5	n/a	n/a
		PL b			4	4	0	3	24	31.5	n/a	n/a
		PL c			4	3	1	1	23.5	27	n/a	n/a
		PL d			3	2	0	0	10.5	12.5	n/a	n/a
		T2 a			0	1	0	0	4	7	n/a	n/a
		MD a	4	4	2	0	28.5	23	n/a	n/a
		T4 a			0	0	0	0	6	9	n/a	n/a
		T4 b			4	1	0	0	18.5	15.5	n/a	n/a
		T4 c			4	2	0	1	17.5	20.5	n/a	n/a
		MD b	1	3	3	0	1	13.5	25.5	3.9	4.4
											±0.9	±1.2
		MD b 2 3	3	0	3	20.5	31.5	4.1	5.6
											±1.7	±1.8
		RG a		3	3	1	0	14.5	17	3.7	2.4
											±0.6	±0.1
		HB			n/a 3	n/a 1	n/a	12	n/a	5.6
											±0.6
		WS b		2	2	0	1	8.5	26	3.3	7.4
											±3.0	±6.7
		T1 a			2	3	0	1	3	23	n/a	n/a
		T1 b			4	1	1	0	28.5	11	n/a	n/a
		T2 b			4	3	0	0	13.5	14	n/a	n/a
		T2 c			3	1	0	0	11.5	16.5	n/a	n/a
		RG b	1	4	3	4	0	31	7	24.0	18.2
											±38.9	±20.8
		RG b	2	4	2	4	0	31.5	8	4.5	3.3
											±2.4	±2.0
		RG c	1	3	4	0	0	20	20.5	1.5	1.0
											±1.7	±1.5
		RG c	2	4	4	0	0	25	22.5	2.6	2.7
											±2.0	±0.4
		PL e			4	2	0	0	20	12	n/a	n/a
		PL f			4	3	0	0	27.5	14	n/a	n/a
		GR			4	0	0	0	25	23	1.2	2.3
											±0.0	±0.7
		MD c		4	4	1	4	28.5	32.5	2.9	3.8
											±0.7	±1.2
		T1 c			4	0	0	0	3	3.5	n/a	n/a
		T3 a			3	1	0	0	10.5	2	n/a	n/a
		T3 b			4	0	0	0	4.5	3.5	n/a	n/a
		T2 d			0	2	0	0	7	7.5	n/a	n/a
		T2 e			4	3	0	1	18.5	26	n/a	n/a
		PL g			3	4	0	3	8.5	29.5	n/a	n/a
	897	that, where post-editing by unconstrained manual delineation
	898	generally improves accuracy in other methods, the automated
	899	component of the adaptive brush may influence the editing
	900	procedure, and this influence may be detrimental in cases
		where underlying image information is less reliable.

901

Conversely, two comparisons give a clear example of the 902 benefits of user-intervention. First, methods PL e and PL f 903 are almost the same with the difference that PL f employs 904

The new ROC technique is referred to as inverse as, Requirement A.2(iii) is realised by fixing the difference of means µ +µ -and having ρ increase with µ + . Requirement A.2(iv) means that there exist labellings {GT i } and {GT i+1 } with µ + and N + (similarly µ -and N -) either side of the operating point.

The shape of the ROC curve in figure 11, the operating point and, within the accuracy of the trapezium integration, the AUC are the same for the I-ROC as for the equivalent analysis in figure 10 by virtue of the choice of parameters, which merely serves to illustrate the ability to perform equivalent ROC analyses by shifting decision maker (ROC) or ground truth labelling (I-ROC).

A.3 I-ROC with topographic ground truth

In the context of VOI contouring, the notion of 'positives' refers to voxels inside a contour, which is a spatial distinction