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PSEUDODIFFERENTIAL OPERATORS ASSOCIATED WITH A SEMIGROUP

OF OPERATORS.

FRÉDÉRIC BERNICOT AND DOROTHEE FREY

Abstract. Related to a semigroup of operators on a metric measure space, we define and study
pseudodifferential operators (including the setting of Riemannian manifold, fractals, graphs ...).
Boundedness on Lp for pseudodifferential operators of order 0 are proved. Mainly, we focus on
symbols belonging to the class S0

1,δ for δ ∈ [0, 1). For the limit class S0
1,1, we describe some results

by restricting our attention to the case of a sub-Laplacian operator on a Riemannian manifold.
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In this paper, we define and study pseudodifferential operators on metric measure spaces en-
dowed with a non-negative, self-adjoint operator, which generates a semigroup satisfying certain
off-diagonal estimates.

Pseudodifferential operators are now well-known in the Euclidean setting and have been powerful
tools in several situations: propagation of regularity for nonlinear PDEs with the paralinearization,
microlocal analysis, ...
For operators related to the Hörmander symbolic classes Sm

ρ,δ, the theory is based on

• Boundedness of the corresponding pseudodifferential operators on Lebesgue and Sobolev
spaces;

• A functional calculus for associated operators with symbolic calculus, which can be de-
scribed by very convenient “rules” on the principal part of the symbols.

Throughout this theory, very well developed in the Euclidean setting, the Fourier transform is
a crucial tool to study and define the symbolic classes. The theory can be extended to some
geometric groups, where a kind of Fourier transform exists (see [9] for Heisenberg groups, [23] for
H-type Carnot groups, ...).
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2 FRÉDÉRIC BERNICOT AND DOROTHEE FREY

Since this theory is now well-known and many works have contributed to the development, we do
not detail this situation. We just emphasize that pseudodifferential operators of order 0 associated
with a symbol σ ∈ S0

1,δ always have a kernel representation with a kernel satisfying the standard
properties. Thus,

• If δ < 1, then σ(x,D) is a Calderón-Zygmund operator, and is Lp-bounded for every
p ∈ (1,∞);

• If δ = 1, then σ(x,D) is a Calderón-Zygmund operator, and, according to the T (1)-theorem,
Lp-bounded for every p ∈ (1,∞) if and only if [σ(x,D)]∗(1) ∈ BMO.

The classical class Sm
1,0 (and more generally Sm

1,δ for δ ∈ (0, 1)) satisfies very nice symbolic rules

for some pseudodifferential calculus. However, the limit class Sm
1,1(which can be seen more exotic)

is very important, since it naturally appears in the context of paraproducts (and therefore in the
paralinearization argument developed by Bony in [17]).

After that, people were naturally interested in extending this theory for manifolds. This was
done, on smooth manifolds since there, where one can locally use charts to reduce the problem to
the one in the Euclidean space.
More recently, several works are concerned with defining and studying pseudodifferential operators
in a context where no such reduction hold: Riemannian manifolds, graphs, fractal sets etc. See e.g.
[26].

Our aim in this paper is to describe a very weak structure, which allows us to define a suitable
pseudodifferential calculus. We consider a space of homogeneous type X, and assume that this
space is equipped with a Sobolev embedding and a Poincaré inequality. That is, we assume that
there is a non-negative, self-adjoint operator ∆, densely defined on L2(X), that satisfies a Sobolev
embedding of the form (1.3). We moreover assume that there is another operator L, that is non-
negative, self-adjoint on L2(X), and satisfies Lp off-diagonal estimates of the form (1.4) for p in
some interval (p0, p

′
0). Let us emphasize, that we neither assume kernel estimates on the semigroup

(e−t∆)t>0 nor on (e−tL)t>0, but instead work with the more general concept of Davies-Gaffney
estimates and Lp off-diagonal estimates, also called generalized Gaussian estimates. We discuss
possible examples of operators ∆ and L in Section 2.
Then, we define a version of Hörmander class S0

1,δ for δ ∈ [0, 1] associated with L. We investigate

symbols, that are functions σ : X × R → R, sufficiently smooth (where the smoothness in “x” is
measured in term of ∆), and define via functional calculus (see Subsubsection 1.2.2) a corresponding
pseudodifferential operator Tσ := σ( . , L) as

(0.1) Tσ(f) := x 7→ σ(x,L)[f ](x).

We then aim to study Lp-boundedness of these operators. Since in our setting, the operator σ(x,L)
is in general not a Calderón-Zygmund operator, we have to adapt the methods used in the study
of classical pseudodifferential operators. We first study Lp-boundedness for the classes S0

1,δ with

δ ∈ [0, 1). Here, we combine the classical method of freezing coefficients and decomposition of
symbols into elementary symbols [18], and combine these with recent results on spectral multipliers
for the operator L. We then obtain

Theorem 0.1. Assume that the ambiant space satisfies a Sobolev inequality (Assumption 1.1) and
a symbol σ ∈ S0

1,δ for δ ∈ [0, 1). The pseudodifferential operator σ(x,L) is bounded on Lp for every

p ∈ (p0, p
′
0) in the two following situations: if δ = 0, or if δ ∈ (0, 1) with an extra weak Poincaré

inequality (Assummption 1.3).

In generalization of Calderón-Zygmund kernel estimates, we can show that we have off-diagonal
estimates for Tσψt(L), where ψt is a smooth function adapted to the scale t−1. See Proposition
3.5 below. Such operators also satisfy weighted Lp-boundedness and act continuously on Sobolev
spaces (defined relatively to ∆ and L by Bessel potentials).
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We emphasize that this result holds in a very general context on a metric space. In particular,
it allows us to regain and improve some existing recent results about pseudodifferential operators
on fractal sets, cf. [26].
At the same time, we obtain a result on symbols, that are defined by a different operator than the
one related to the structure of the underlying metric space. Similar generalizations in this direc-
tion were e.g. already obtained in [31], where pseudodifferential operators acting on UMD Banach
spaces are considered. There, the symbol classes are defined via R-boundedness conditions, which
are closely related to the kind of off-diagonal estimates we assume, cf. [28], Theorem 2.2.

For the symbol class S1,1, the situation is more difficult. We restrict ourselves to the case of a
Riemannian manifold with a sub-Laplacian operator ∆ = L, where a Leibniz rule is available. In
the classical theory of pseudodifferential operators, a main tool in the consideration of the symbol
class S0

1,1 is the T (1)-Theorem by David and Journé [19]. We substitute this theorem by a T (1)-
Theorem, that is associated with the operator L. For an exact statement of this result, we refer to
[14] in the setting of Poisson kernel bounds for (e−tL)t>0, and to [21] in the more general setting of
Lp off-diagonal bounds as described above. We then prove

Theorem 0.2. Let (X, d, µ) be a Riemannian manifold with a sub-Laplacian structure with Lp0 −
Lp′0 off-diagonal decay of the semigroup (Assumption 6.1), L2−L2 estimates on the gradient of the
semigroup (Assumption 6.2) and a Poincaré inequality (Assumption 6.3). Let a symbol σ ∈ S0

1,1.

Then, the pseudodifferential operator σ(x,L) is L2-bounded if and only if [σ(x,L)]∗(1) ∈ BMOL.

Moreover, in [8], algebra properties have been studied for Sobolev spaces (defined by Bessel
potential) associated with a semigroup of operators. That corresponds to boundedness of pointwise
product in such Sovolev spaces. It is then natural to extend the study for other operations. Here,
pseudodifferential operators are shown to be bounded in these scales of Sobolev spaces.

1. The setting

1.1. Space of homogeneous type with Sobolev embedding. Let (X, d) be a metric space and
let µ be a non-negative Borel measure on X with the doubling property: there exists a constant
A1 ≥ 1 such that for all x ∈ X and all r > 0

µ(B(x, 2r)) ≤ A1µ(B(x, r)) <∞,

where we set B(x, r) := {y ∈ X : d(x, y) < r}.
In particular, (X, d, µ) is a space of homogeneous type.
It is then well-known that there exists a constant A2 > 0 and a dimension n > 0 such that for

all λ ≥ 1, for all x ∈ X and all r > 0

µ(B(x, λr)) ≤ A2λ
nµ(B(x, r)).(1.1)

As a consequence, a ball B(x, tr) can be covered by ctn balls of radius r, uniformly in x ∈ X, r > 0
and t > 1. Moreover, there also exist constants C and D, with 0 ≤ D ≤ n, such that

µ(B(y, r)) ≤ C

(

1 +
d(x, y)

r

)D

µ(B(x, r))

uniformly for all x, y ∈ X and r > 0.
For a ball B ⊆ X we denote by rB the radius of B and set

(1.2) S0(B) := B and Sj(B) := 2jB \ 2j−1B for j = 1, 2, . . . ,

where 2jB is the ball with the same center as B and radius 2jrB .
For a measurable function f and a ball B ⊆ X, we abbreviate −

∫

B f dµ = µ(B)−1
∫

B f dµ.

We will assume that X is equipped with a Sobolev embedding.
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Assumption 1.1 (Sobolev embedding). There exists a non-negative, self-adjoint operator ∆ on
X, densely defined on L2(X) (i.e. its domain D(∆) := {f ∈ L2(X), ∆(f) ∈ L2(X)} is dense in
L2(X)), an integer M0 and κ > 0 such that for all t > 0 and all balls B of radius r = t1/2, we have

(1.3) ‖f‖L∞(B) .
∑

i≥0

2−iκ

(

−
∫

2iB

∣

∣

∣
(I + t∆)M0 f

∣

∣

∣
dµ

)

,

uniformly in f ∈ ∩M0
N=0D(∆N ).

Remark 1.2. (i) Here, we implicitly assume that ∆ is an operator of order 2 (since we consider
t = r2). All our current results can easily be extended if ∆ is of another order. For better
readability, we choose this order 2, but the main idea is to show that this operator may be chosen
independently of the other operator L (appearing in the next subsection).
(ii) The L1 norm appearing in (1.3) may be relaxed to a Lp norm for some p > 1, depending on
the assumptions on the operator L (see the application of (1.3) in the proof of Lemma 3.3 below).

Example 1. Let us point out that if ∆ generates a semigroup (e−t∆)t>0, whose kernel Kt satisfies
the pointwise estimate

|Kr2(x, y)| . µ(B(x, r))

(

1 +
d(x, y)

r

)−M

for a sufficiently large exponent M , then ∆ satisfies a Sobolev embedding and Assumption 1.1 is
satisfied [14, Proposition 3.10].

We will also use a weak version of Poincaré inequality for the symbols in S1,δ with δ < 1.

Assumption 1.3 (Generalized Poincaré inequality). The previous self-adjoint operator ∆ satisfies:

for κ > 0 and a large enough integer M > 0, for all t > 0 and all balls B of radius r = t1/2, we
have

‖f −−
∫

B
f‖L∞(2B) . rB

∑

i≥0

2−iκ

(

−
∫

2iB

∣

∣

∣
∆(I + t∆)M f

∣

∣

∣

2
dµ

)
1
4
(

−
∫

2iB

∣

∣

∣
(I + t∆)M f

∣

∣

∣

2
dµ

)
1
4

,

uniformly in f ∈ ∩M
N=0D(∆N ).

This assumption is weaker than a Poincaré type inequality, since it does not require a structure
associated with a gradient operator.

1.2. Symbols associated with self-adjoint operator.

1.2.1. Self-adjoint operators. We consider a non-negative, self-adjoint operator L on L2(X). Due
to the spectral theorem, L has a bounded Borel functional calculus on L2(X). Let m > 1 be
a fixed constant, representing the order of the operator L. We assume that the analytic semi-
group (e−tL)t>0, generated by −L, satisfies Davies-Gaffney estimates, and, moreover, Lp0 − Lp′0

off-diagonal estimates for some p0 ∈ [1, 2):

Assumption 1.4 (Lp0 −Lp′0 off-diagonal estimates). There exist p0 ∈ [1, 2) and constants C, c > 0

such that for arbitrary balls B1, B2 of radius r = t1/m > 0

(1.4) ‖e−tL‖
Lp0 (B1)→Lp′

0 (B2)
≤ Cµ(B1)

1
p′
0
− 1

p0 e
−c

(

d(B1,B2)

t1/m

) m
m−1

,

where 1
p0

+ 1
p′0

= 1.

Remark 1.5. Assumption 1.4 implies that {e−tL}t>0 satisfies Lp-Lq off-diagonal estimates for all
p0 ≤ p ≤ q ≤ p′0, and therefore in particular Davies-Gaffney estimates (i.e. L2 − L2 off-diagonal
estimates). Using the Phragmén-Lindelöf theorem, one can also show extensions to complex times.
See e.g. [16], Theorem 2.1.
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1.2.2. Class of symbols. Since L is self-adjoint, we know that we have a bounded real functional
calculus. We define C∞(X × (0,∞)) as the set of measurable functions σ ∈ L∞(X × (0,∞)) such
that for every integer j1 ≥ 0 and j2 ∈ N+ {0, 12}, the map

(x, ξ) 7→ ∂
j1
ξ ∆j2 [σ( . , ξ)](x)

is continuous.
So let us define our classes of symbols:

Definition 1.6. Let ρ, δ ∈ [0, 1] and s ≥ 0, we set Ss
ρ,δ := Ss

ρ,δ(L) the set of symbols σ ∈ C∞(X ×
(0,∞)) such that

∀α, β ≥ 0,
∣

∣

∣
∂
β
ξ ∆

ασ( . , ξ)[x]
∣

∣

∣
. (1 + |ξ|) s

m
−ρβ+ 2

m
δα.

Let us first precise how can we rigorously define pseudodifferential operators. So let σ ∈ Ss
ρ,δ be

a symbol. Then as explained in Lemma 3.4, this symbol may be split into a fast decaying sum of
elementary symbols, each of them beeing tensorial product of the form

τ(x, ξ) :=

∫ 1

0
γt(x)ψt(ξ)

dt

t
.

To such a symbol, the functions ψt beeing smooth and compactly supported, we know that ψt(L)
is well-defined and maps L2 into L2. Consequently, for every ε > 0 the operator defined by

τ(x,L)ε := f →
(

x→
∫ 1

ε
γt(x)ψt(L)[f ](x)

dt

t

)

is well-defined for f ∈ L2. Obtaining uniform bounds with respect to ε > 0 in L2 (or in Lp, which
will be the aim of our main results) and using that for every test-functions f ∈ D(L) we have
‖ψtf‖L2 . t, we also may define the pseudodifferential operator as follows: for every f ∈ D(L)

τ(x,L)(f) = lim
ε→0

τ(x,L)ε(f).

Let us also refer to [30, Lemma A.1] and [27, Appendix] for a similar reasoning, by replacing the
decomposition in elementary symbols with the Dynkin-Helffer-Sjöstrand formula. Indeed, if σ(x, ξ)
is compactly supported in ξ ∈ [ε, ε−1], then we may define

σ(x,L) :=
i

2π

∫

C

∂σ̃(x, z)(z + L)−1 dz ∧ dz,

where σ̃ is an-almost analytic extension of σ. Here, the idea is the same: we decompose the symbol
as a tensorial product of x-variable function and a simple multiplier (here involving the resolvant).

2. Examples

Riemannian manifold. In the case of a doubling Riemannian manifold (X, d, µ) satisfying a
(P2) Poincaré inequality, the non-negative Laplacian ∆ satisfies the Sobolev inequality (Assump-
tion 1.1), since its heat kernel has Gaussian estimates. Moreover, the Poincaré inequality (P2)
implies Assumption 1.3. Let us sketch the proof of this claim. Indeed we have L2 − L2 off-
diagonal estimates for ∇∆−1/2(1 + t∆)−M with a large enough exponent M (see [3]) which allows
us with Poincaré inequality and Sobolev inequality, to bound quantity ‖f − −

∫

B f‖L∞(2Q) by a fast

decaying serie with local quantities of the form
∥

∥

∥
∆

1
2 (f)

∥

∥

∥

L2(2iB)
. Each of them are bounded by

‖∆(f)‖
1
2

L2(2iB)
‖∆(f)‖

1
2

L2(2iB)
which proves Assumption 1.3.
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Euclidean case with divergence form operator. In the Euclidean case: we may choose X as
R
n or a doubling open set of Rn and so Assumptions 1.1 and 1.3 are satisfied with the Euclidean

Laplacian ∆. Consider a homogeneous elliptic operator L of order m = 2k in R
n defined by

L(f) := (−1)k
∑

|α|=|β|=k

∂α(aα,β∂
βf),

with bounded complex coefficients aα,β with aβ,α = aα,β. Then L is a self-adjoint of order m and
its heat semigroup satisfies pointwise estimate (p0 = 1) if we are in one of the following situation:

• The coefficients aα,β are real-valued (see [7, Theorem 4]);
• The coefficients are complex and n ≤ 2k = m (see [2, Section 7.2]);
• The coefficients are Hölder continuous [6].

Else, we only know that there exists p0 ∈ [1, 2) such that Assumption (1.4) holds.

Fractal sets and infinite trees. Assume that X is a p.c.f. fractal set or a highly symmetric
Sierpinski carpet. Then using the self-similar structure, it is well-known that we may build a
Dirichlet energy E and then obtain a non-negative Laplace operator ∆ such that

E(f, g) =
∫

X
∆(f)gdµ.

Defining the effective resistance metric d(x, y) by

d(x, y)−1 = min{E(u, u), u(x) = 0, u(y) = 1},

the space (X, d, µ) is a space of homogeneous type. Then it is well-known that the operator
generates a heat semigroup satisfying sub-Gaussian estimates, so Assumption (1.1) is satisfied.

Let us examine (1.3). By definition of the resistance metric, it is obvious that for a function
f ∈ D(∆), we have

|f(x)− f(y)| . d(x, y)
1
2 E(f, f) 1

2

. d(x, y)
1
2

(
∫

X
∆(f)fdµ

)
1
2

. d(x, y)
1
2 ‖∆(f)‖

1
2
2 ‖f‖

1
2
2 .(2.1)

Then we may localize, so if x, y are in a ball B of radius r, then we choose a bump function φ

(which equals 1 on B and 0 in (2B)c). We refer the reader to [32] for an abstract construction and
existence of such functions. Then we apply (2.1) to f = fφ and we can prove local estimates with a

an extra term in d(x, y)
1
2 . This is not sufficient to get our Assumption (1.1), where we need d(x, y).

In [11], the authors proved that our desired Poincaré inequality is closely related to lower-estimates
of the heat kernel or to a Harnack inequality. More precisely, the proof of [11, Lemma 2.3 (1)]
shows how to improve the previous reasoning to get our weak Poincaré inequality. Indeed, it is
well-known ([10, 11]) that the Poincaré inequality is equivalent to two-sided sub-Gaussian estimates
for the heat kernel. In [10, 11], some examples of fractal graphs, trees, ... are studied in detail and
our weak Poincaré estimates hold.

In such situations, our results allow us to obtain boundedness for pseudodifferential operators
associated with symbols in the class S0

1,δ for δ ∈ [0, 1). We then regain some recent results in [26]

where the class S0
1,0 was studied.



PSEUDODIFFERENTIAL OPERATORS ASSOCIATED WITH A SEMIGROUP OF OPERATORS. 7

3. Preliminary results

We start with a result on pseudo-differential operators with constant coefficients. We show that
a pseudo-differential operator with constant coefficients (i.e. a spectral multiplier) satisfies off-
diagonal estimates at scale r, if the underlying symbol is adapted to the scale r, as described in
(3.1) below. The off-diagonal estimates are of polynomial order, where the order depends on the
behaviour of the symbol at 0.
The result is already implicitely contained in e.g. [29] or [1]. For convenience of the reader, we give
the proof here.

We use the following partition of unity : Let η ∈ C∞(0,∞) with η(ξ) = 1 for 0 < ξ ≤ 1, and
η(ξ) = 0 for ξ ≥ 2. Define δ ∈ C∞(0,∞) by δ(ξ) = η(ξ)− η(2ξ). Then supp δ(2−j · ) ⊆ [2j−1, 2j+1]
and

1 =
∞
∑

j=−∞

δ(2−jξ), ξ > 0.

Lemma 3.1. Let p ∈ (p0, p
′
0). Let ν > n

∣

∣

∣

1
p − 1

2

∣

∣

∣
and N > ν

m , let r > 0. Let F be a smooth function

on [0,∞) with

(3.1)
∣

∣

∣
∂
β
ξ F (ξ)

∣

∣

∣
. min(1, (rm|ξ|)N )|ξ|−β

for all indices 0 ≤ β ≤ ⌊ν⌋ + 1. Then there exists a constant C > 0, independent of r > 0, such
that for all balls B1, B2 of radius r and all f ∈ Lp(X) with supp f ⊆ B1

‖F (L)f‖Lp(B2)
≤ C

(

1 +
d(B1, B2)

r

)−ν

‖f‖Lp(B1)
.

Proof. Let B1, B2 be two balls of radius r > 0 in X, let f ∈ Lp(X) with supp f ⊆ B1. The estimate

‖F (L)f‖Lp(B2)
≤ C ‖f‖Lp(B1)

.

follows for p = 2 directly from the fact that L is self-adjoint, and thus has a bounded Borel
functional calculus on L2(X). For p 6= 2, the estimate follows from spectral multiplier results (see

e.g. [29], Theorem 5.4 b)), where we use that ν > n
∣

∣

∣

1
p − 1

2

∣

∣

∣
.

This yields the desired estimate for d(B1, B2) ≤ r. For d(B1, B2) > r, on the other hand, we
denote G(ξ) := F (ξm), and split G into

G(ξ) =
∞
∑

j=−∞

G(ξ)δ(2−jξ) =
∞
∑

j=−∞

Gj(ξ), ξ 6= 0.

Then suppGj ⊆ [2j−1, 2j+1] for all j ∈ Z. Denote ε := ⌊ν⌋+1− ν > 0. The application of (a slight
modification of) [29], Lemma 4.10, to Gj yields

(3.2) ‖Gj(
m
√
L)f‖Lp(B2) ≤ C

2−jν

d(B1, B2)ν
‖δ2j+1Gj‖W∞

ν+ε
‖f‖Lp(B1).

Observe now that for each j ∈ Z, we have supp δ2j+1Gj ⊆ [14 , 1] and, due to assumption (3.1),

‖δ2j+1Gj‖W∞
ν+ε

. min(1, (2jr)mN ). Plugging this into (3.2), we obtain for each 0 < N ′ ≤ N

(3.3) ‖Gj(
m
√
L)f‖Lp(B2) .

2−jν

d(B1, B2)ν
(2jr)mN ′‖f‖Lp(B1).

If 2jr < 1, we choose N ′ = N and write

2−jν

d(B1, B2)ν
(2jr)mN =

rν

d(B1, B2)ν
(2jr)mN−ν ,



8 FRÉDÉRIC BERNICOT AND DOROTHEE FREY

if, on the other hand, 2jr ≥ 1, we choose N ′ < ν
m and write

2−jν

d(B1, B2)ν
(2jr)mN ′

=
rν

d(B1, B2)ν
(2jr)−(ν−mN ′).

Finally, observe that there exists a constant C > 0, independent of r, such that
∑

j∈Z: 2jr<1

(2jr)mN−ν +
∑

j∈Z: 2jr≥1

(2jr)−(ν−mN ′) < C,

since N > ν
m and N ′ < ν

m . Summing over j in (3.3) yields the assertion. �

The next lemma gives an almost orthogonality condition for multipliers of the above form, similar
to e.g. [5], Lemma 3.7.

Lemma 3.2. Let p ∈ (p0, p
′
0). Let ε1, ε2 > 0, let ν > n

∣

∣

∣

1
p − 1

2

∣

∣

∣
and N > ν

m , and let s, t > 0. Let

ψs and ψ̃t be smooth funtions on [0,∞) with
∣

∣

∣
∂
β
ξ ψs(ξ)

∣

∣

∣
. min((s |ξ|)−ε2 , (s |ξ|)N+ε1) |ξ|−β ,(3.4)

∣

∣

∣
∂
β
ξ ψ̃t(ξ)

∣

∣

∣
. min((t |ξ|)−ε1 , (t |ξ|)N+ε2) |ξ|−β(3.5)

for all indices 0 ≤ β ≤ ⌊ν⌋ + 1. Then the operator ψs(L)ψ̃t(L) satisfies Lp off-diagonal estimates
of order ν in max(s, t)1/m, with an extra factor min

((

s
t

)ε1 ,
(

t
s

)ε2).

Proof. Since all assumptions are symmetric in s and t, it suffices to consider the case s < t. We write
ψs(ξ)ψ̃t(ξ) =

(

s
t

)ε1 (sξ)−ε1ψs(ξ)(tξ)
ε1ψ̃t(ξ). Then observe that the functions ξ 7→ (sξ)−ε1ψs(ξ)

and ξ 7→ (tξ)ε1ψ̃t(ξ) satisfy the assumptions of Lemma 3.1, and thus also the function ξ 7→
(sξ)−ε1ψs(ξ)(tξ)

ε1 ψ̃t(ξ) satisfies the assumptions of Lemma 3.1 with respect to t = max(s, t). This
gives the desired result. �

To pass from a multiplier to a pseudo-differential operator (with non-constant coefficients), we
use the standard freezing argument of Coifman and Meyer, together with the Sobolev embedding
given in Assumption 1.1.

Lemma 3.3. Let p ∈ (p0, p
′
0). Let ν > n

∣

∣

∣

1
p − 1

2

∣

∣

∣
and N > ν

m , let r ∈ (0, 1]. Let σ be a smooth

function on X × (0,∞) with

(3.6)
∣

∣

∣
∆α

x∂
β
ξ σ(x, ξ)

∣

∣

∣
. min(1, (rm|ξ|)N )|ξ|−β

for all indices α, β with 0 ≤ α ≤ M0 and 0 ≤ β ≤ ⌊ν⌋ + 1. Then there exists a constant C > 0,
independent of r, such that for all balls B1, B2 of radius r and all f ∈ Lp(X) with supp f ⊆ B1

‖σ(x,L)f‖Lp(B2)
≤ C

(

1 +
d(B1, B2)

r

)−ν

‖f‖Lp(B1)
.

Proof. Indeed, choose two balls B1, B2 of radius r ∈ (0, 1] and a function f ∈ Lp(X), supported on
B1. Then we have for almost every x ∈ B2

|σ(x,L)(f)(x)| ≤ ess sup
y∈B2

|σ(y, L)(f)(x)| .

According to Assumption 1.1, we know that

|σ(x,L)(f)(x)| .
∑

i≥0

M0
∑

j=0

2−iκµ(2iB2)
− 1

p
∥

∥(r2∆)jσ( · , L)(f)(x)
∥

∥

Lp(2iB2)
,
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where M0 is the integer given in Assumption 1.1. This yields

‖σ(x,L)(f)‖Lp(B2)
.
∑

i≥0

M0
∑

j=0

2−iκµ(2iB2)
− 1

p
∥

∥(y, x) 7→ (r2∆y)
jσ(y, L)(f)(x)

∥

∥

Lp(2iB2×B2)
.

Fix i ≥ 0, fix the point y ∈ 2iB2 and j, then (r2∆y)
jσ(y, L) is a multiplier, whose symbol

F (ξ) := (r2∆y)
jσ(y, ξ) satisfies (3.1) because of assumption (3.6) and the assumption r ∈ (0, 1].

Consequently, we may apply Lemma 3.1 and obtain (uniformly in y and j):

∥

∥(r2∆y)
jσ(y, L)(f)

∥

∥

Lp(B2)
.

(

1 +
d(B1, B2)

r

)−ν

‖f‖Lp(B1).

This estimate is uniform, so we may average it over y ∈ 2iB2 and sum over i and j in order to
finally prove

(3.7) ‖σ(x,L)f‖Lp(B2) .

(

1 +
d(B1, B2)

r

)−ν

‖f‖Lp(B1).

�

In the Euclidean situation, it is well-known that pseudodifferential symbols can be split into
elementary symbols [18]. This reduction is very abstract and we detail it in our context:

Lemma 3.4 (Decomposition into elementary symbols). Let σ ∈ S0
1,δ with δ ∈ [0, 1]. Then

σ = τ +
∑

l∈Z

σl,

where τ ∈ S0
1,0, and σl ∈ S0

1,δ is of the form

σl(x, ξ) =

∫ 1

0
γt,l(x)ψt,l(ξ)

dt

t

with smooth functions ψt,l, suppψt,l ⊆ [t−1, 2t−1] and

‖σl‖S0
1,δ

. (1 + |l|)−M

for every integer M > 0.

Proof. Let σ ∈ S0
1,δ with δ ≤ 1. Let φ,ψ ∈ S(R) with suppφ ⊆ [0, 2] and suppψ ⊆ [1, 2] such that

for every ξ ∈ (0,∞)

1 =

∫ 1

0
ψ(tξ)

dt

t
+ φ(ξ).

We then have

σ(x, ξ) =

∫ 1

0
σ(x, ξ)ψ(tξ)

dt

t
+ φ(ξ)σ(x, ξ) =: σ1(x, ξ) + τ(x, ξ).

For the second quantity, we have τ(x, ξ) = φ(ξ)σ(x, ξ) ∈ S0
1,0. Let us now fix x ∈ X. For every

t ∈ (0, 1), the function ξ → σ(x, ξ)ψ(tξ) has support in [t−1, 2t−1] and can be extended to a t−1-
periodic function. Hence, we know that we can expand it as a Fourier series, which yields for
ξ ∈ [t−1, 2t−1]

σ(x, ξ)ψ(tξ) =
∑

l∈Z

γl,t(x)e
2iπltξ ,

where

γl,t(x) := t

∫ 2t−1

t−1

σ(x, η)ψ(tη)e−2iπltηdη.
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Using the regularity assumption on the symbols, we obtain via integration by parts for every
l ∈ Z \ {0} and every M ∈ N

∣

∣∆j
xγl,t(x)

∣

∣ .

(

1

|l| t

)M

t

∫ 2t−1

t−1

∣

∣∂Mη ∆j
xσ(x, η)ψ(tη)

∣

∣ dη

.

(

1

|l| t

)M

tM− 2
m
δj . |l|−M t−

2
m
δj .

So by choosing another function ψ̃ ∈ S(R) (with ψ̃ = 1 on the support of ψ and ψ̃ still supported
on [1, 2]), we have

σ1(x, ξ) =
∑

l∈Z

σl(x, ξ)

where the elementary symbols

σl(x, ξ) :=

∫ 1

0
γl,t(x)ψ̃(tξ)e

2iπltξ dt

t

have the expected properties. �

The following proposition yields Lp off-diagonal estimates for approximations Tσψ̃t(L) of pseu-
dodifferential operators Tσ, when σ is an elementary symbol. Here, Tσ is defined via (0.1).

Proposition 3.5. Let p ∈ (p0, p
′
0). Consider an elementary symbol, as appeared in the previous

lemma, of the form

σ(x, ξ) =

∫ 1

0
γs(x)ψs(ξ)

ds

s
,

with ‖γs‖L∞ . 1 uniformly in s, and ψs a smooth function with compact support, adapted to the

scale s−1. Let t > 0, and let ψ̃t be a smooth function on [0,∞), satisfying (3.5) with ν > n
∣

∣

∣

1
p − 1

2

∣

∣

∣
,

N > ν
m , ε1 > 0 and ε2 >

ν
m . Then the operator Tσψ̃t(L) satisfies L

p off-diagonal estimates of order

ν at the scale t
1
m .

Proof. Fix t ∈ (0, 1), and choose two balls B1, B2 in X. Let f ∈ Lp(X) with support in B1. Using
the uniform boundedness of (γs), we have

∥

∥

∥
Tσψ̃t(L)f

∥

∥

∥

Lp(B2)
=

∥

∥

∥

∥

∫ 1

0
γs(·)ψs(L)ψ̃t(L)f

ds

s

∥

∥

∥

∥

Lp(B2)

.

∫ t

0

∥

∥

∥
ψs(L)ψ̃t(L)f

∥

∥

∥

Lp(B2)

ds

s
+

∫ 1

t

∥

∥

∥
ψs(L)ψ̃t(L)f

∥

∥

∥

Lp(B2)

ds

s
.

Due to its support condition, ψs satisfies (3.4). Thus, the application of Lemma 3.2 yields that the
above is bounded by a constant times

∫ t

0

(

1 +
d(B1, B2)

t1/m

)−ν
(s

t

)ε1 ds

s
‖f‖Lp(B1)

+

∫ 1

t

(

1 +
d(B1, B2)

s1/m

)−ν (
t

s

)ε2 ds

s
‖f‖Lp(B1)

.

This gives the estimate for d(B1, B2) < t. For d(B1, B2) > t, one can estimate the integral over
(t, 1) against

∫ 1

t

(

d(B1, B2)

t1/m

)−ν (
t

s

)ε2−
ν
m ds

s
‖f‖Lp(B1)

.

Since we assumed ε2 >
ν
m , we finally obtain

∥

∥

∥
Tσψ̃t(L)f

∥

∥

∥

Lp(B2)
.

(

1 +
d(B1, B2)

t1/m

)−ν

‖f‖Lp(B1)
.
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�

Lemma 3.6 (Extrapolation lemma). Let T be a linear operator, bounded on L2. If for every t > 0
and some function ψt satisfying (3.1), Tψt(L) satisfies L

2 − L2 off-diagonal estimates at the scale

t
1
m ; then T is bounded on Lp for every p ∈ (p0, 2].

Proof. We just sketch the proof. Using the assumed off-diagonal estimates, we still have off-diagonal
estimates with the ψt function replaced by any φt function, satisfying only decay at 0 (see [21,
Lemma 4.12] or [14, Corollary 3.6] in a specific case). Then applying with the particular function
φt(·) := 1 − e−t·, we can apply the extrapolation result of [12],[13, Theorem 5.11] and obtain
Lp-boundedness of the operator T . �

Remark 3.7. Using [21, Corollary 4.13], we also have that such an operator (as in the previous
lemma) satisfies boundedness on Hardy space Hp

L into Lp for p ∈ [1, 2). We regain the previous
lemma, since for p ∈ (p0, 2), the Hardy space Hp

L is shown to be equal to Lp.
Moreover from [13, Theorem 6.4], we also know that such operators satisfy weighted boundedness:

an operator T has in lemma 3.6 is bounded on Lp(ω) for every p ∈ (p0, 2) and ω ∈ A p
p0

∩RH(

2
p

)′ .

4. Symbols in S0
1,0

Theorem 4.1. Assume that the ambiant space satisfies the Sobolev inequality: Assumption 1.1.
Let p ∈ (p0, p

′
0). Then, every symbol σ ∈ S0

1,0 gives rise to a bounded operator on Lp(X). More
precisely, such an operator satisfies Lp off-diagonal estimates of arbitrary order at the scale 1.

Proof. Consider a smooth symbol σ, belonging to the class S0
1,0. We want to check that the operator

σ(x,L) satisfies off-diagonal estimates at the scale 1. Let us fix two balls B1, B2 of radius 1.
If d(B1, B2) ≤ 10, then we only use Lp boundedness. Indeed, we know from spectral multiplier
theory (see e.g. [29], Theorem 5.4 b)) that every bounded function F gives rise to a Lp-bounded
linear operator, which is in particular bounded from Lp(B1) to Lp(B2). Then applying similar
arguments as in Lemma 3.3 (freezing Coifman-Meyer argument), we can extend this boundedness
to every operator coming from a smooth symbol τ ∈W

s,∞
x (L∞) for a large enough s > 0. Obviously,

S0
1,0 ⊂ W

s,∞
x (L∞), so we conclude that our operator σ(x,L) is bounded from Lp(B1) to Lp(B2)

with a norm

‖σ(x,L)‖Lp(B1)→Lp(B2) . 1 ≃ (1 + d(B1, B2))
−M

since d(B1, B2) ≤ 10.
So let us now focus on the main interesting case: d(B1, B2) ≥ 10. Choose a smooth function ψ

(supported on [1, 2]) and another one φ supported on [0, 2] such that for every ξ ∈ (0,∞)

1 =

∫ 1

0
ψ(tξ)

dt

t
+ φ(ξ).

We also split the symbol σ with

σ(x, ξ) =

∫ 1

0
σ(x, ξ)ψ(tξ)

dt

t
+ σ(x, ξ)φ(ξ) = σ1(x, ξ) + σ(x, ξ)φ(ξ).

The symbol σ(x, ξ)φ(ξ) satisfies (3.6) with r = 1. Thus, Lemma 3.3 yields that the second operator
already satisfies off-diagonal estimates (of arbitrary order) at the scale 1. Moreover, for t ∈ (0, 1),

the operator σ(x,L)ψ(tL) satisfies off-diagonal estimates of arbitrary order ν > 0 at the scale t1/m

(since the symbol verifies (3.6) and Lemma 3.3). This also implies that (see e.g. [21], Remark 3.8)

‖σ(x,L)ψt(L)f‖Lp(B2)
.

(

1

t

)n/m(

1 +
d(B1, B2)

t1/m

)−ν

‖f‖Lp(B1)
.
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Hence, for d(B1, B2) ≥ 10 and ν > n,

‖σ(x,L)(f)‖Lp(B2)
. ‖f‖Lp(B1)

(

∫ 1

0

(

1 +
d(B1, B2)

t1/m

)−ν (1

t

)n/m
dt

t

)

. (1 + d(B1, B2))
−ν ‖f‖Lp(B1).

As a consequence, it follows that σ(x,L) admits off-diagonal decay at the scale 1, and it is well-
known that such operators are globally bounded on Lp(X), if the order of the off-diagonal estimates
is large enough (by splitting the whole space with an almost-disjoint covering by balls of radius
1). �

For s > 0 and p ∈ (p0, p
′
0), we may define the Sobolev space W s,p

L by the Bessel potential: W s,p
L

is the closure of

{f ∈ D(Ls), ‖f‖Wm,p
L

:= ‖(1 + L)
s
m f‖Lp <∞}

for the corresponding norm. Similarly for operator ∆. This is the classical way to define Sobolev
spaces adpated to a semigroup of operators, see [25, Section 8.4], [8] for some properties ....).

Corollary 4.2. Assume that the ambiant space satisfies the Sobolev inequality: Assumption 1.1.
Let p ∈ (p0, p

′
0) and a symbol σ ∈ S0

1,0. Then for s > 0, σ(x,L) is bounded from W
s,p
L to W s,p

∆ .

Proof. The boundedness of σ(x,L) from W
s,p
L to W

s,p
∆ is equivalent to the Lp-boundedness of

T := (1 + ∆)
s
2σ(x,L)(1 + L)−

s
m . We may rewrite T = Tτ as the pseudodifferential operator

associated to the symbol

τ(x, ξ) := (1 + ∆)
s
2σ(x, ξ)(1 + ξ)−

s
m .

Since σ ∈ S0
1,0, we let it to the reader to check that τ ∈ S0

1,0. So the previous theorem implies the
Lp-boundedness of T . �

Similarly, we have

Corollary 4.3. Assume that the ambiant space satisfies the Sobolev inequality: Assumption 1.1.
Let p ∈ (p0, p

′
0) and a symbol σ ∈ Sm

1,0 for some m > 0. Then for s > 0, σ(x,L) is bounded from

W
s+m,p
L to W s,p

∆ .

5. Symbols in S0
1,δ with δ < 1

Theorem 5.1. Assume that the ambiant space satisfies the Sobolev inequality Assumption 1.1 with
the weak Poincaré inequality Assumption 1.3. Every symbol σ ∈ S0

1,δ with δ < 1 gives rise to a

L2-bounded operator, still satisfying off-diagonal estimates at the scale 1.

Proof. According to Lemma 3.4, it suffices to prove Theorem 5.1 for elementary symbols only. So
let us just consider a symbol of the following form:

σ(x, ξ) =

∫ 1

0
γt(x)ψt(ξ)

dt

t

with smooth functions ψt supported around t−1 and γt satisfying
∣

∣

∣

(

∆jγt
)

(

∂kξψt

)∣

∣

∣
. n−M tk−

2
m
δj ,

for sufficiently large indices j, k. We will check that the adjoint operator σ(x,L)∗ is L2-bounded,
which is equivalent. The adjoint operator is given by

T (f) := σ(x,L)∗(f) =

∫ 1

0
ψt(L)[γt(.)f ]

dt

t
.(5.1)
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By orthogonality, we have
‖T (f)‖L2 . ‖ψt(L)[γtf ]‖L2(dµdt

t
)
.

To each t ∈ (0, 1), let us fix an almost-disjoint covering (Qt
l)l of X by balls of radius t

1
m and write

for x ∈ Qt
l

ψt(L)[γtf ](x) = ψt(L)

[(

γt −−
∫

Qt
l

γt

)

f

]

(x) +

(

−
∫

Qt
l

γt

)

ψt(L)(f)(x).(5.2)

The second quantity in (5.2) is estimated as follows (using the boundedness of γt):
∥

∥

∥

∥

∥

‖
(

−
∫

Qt
l

γt

)

ψt(L)(f)(x)‖L2(Qt
l)

∥

∥

∥

∥

∥

ℓ2(l)

. ‖ψt(L)(f)‖L2

which gives
∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

(

−
∫

Qt
l

γt

)

ψt(L)(f)

∥

∥

∥

∥

∥

L2(Qt
l)

∥

∥

∥

∥

∥

∥

ℓ2(l)

∥

∥

∥

∥

∥

∥

∥

L2(dt
t
)

. ‖f‖L2 ,

by functional calculus. Using L2−L2 off-diagonal estimates at the scale r := t
1
m , the first quantity

in (5.2) is estimated by
∥

∥

∥

∥

∥

ψt(L)

[(

γt −−
∫

Qt
l

γt

)

f

]
∥

∥

∥

∥

∥

L2(Qt
l)

.
∑

k

(

1 +
d(Qt

l , Q
t
k)

r

)−M
∥

∥

∥

∥

∥

(

γt −−
∫

Qt
l

γt

)

f

∥

∥

∥

∥

∥

L2(Qt
k)

.
∑

k

(

1 +
d(Qt

l , Q
t
k)

r

)−M+1

t
1−δ
m ‖f‖L2(Qt

k)
,

where we used that

(5.3)

∥

∥

∥

∥

∥

γt −−
∫

Qt
l

γt

∥

∥

∥

∥

∥

L∞(Qt
k)

. d(Qt
l , Q

t
k)t

− δ
m .

Indeed, to check this last estimate, we cover the geodesic joining the center of Qt
l and the one of

Qt
k by a collection of balls (Oi)i=1...,A (with A ≃ d(Qt

l ,Q
t
k)

r ). Using Assumption 1.3, we then obtain
∥

∥

∥

∥

∥

γt −−
∫

Qt
l

γt

∥

∥

∥

∥

∥

L∞(Qt
k)

=

∥

∥

∥

∥

γt −−
∫

O1

γt

∥

∥

∥

∥

L∞(OA)

≤
A
∑

i=1

∥

∥

∥

∥

γt −−
∫

Oi

γt

∥

∥

∥

∥

L∞(Oi+1)

.

A
∑

i=1

r(1 + r2M(1−δ))Mr−δ . d(Qt
l , Q

t
k)t

− 1
m
(δ).

Then using the homogeneous type, we can sum over l and we get
∥

∥

∥

∥

∥

‖ψt(L)[(γt −−
∫

Qt
l

γt)f ]‖L2(Qt
l)

∥

∥

∥

∥

∥

ℓ2(l)

. t
1−δ
m ‖f‖L2 ,

which is then integrable for t ∈ (0, 1), since δ < 1. We also conclude that T is bounded on L2,
which by duality gives the L2-boundedness of T ∗ = σ(x,L).
Having obtained this global boundedness, it remains to check the local off-diagonal estimates.
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Indeed, the proof of such inequalities (for two balls Q1, Q2 with d(Q1, Q2) ≥ 10) in Theorem 4.1
still holds in our current situation. We let it to the reader to check that the proof remains true:
we loose some power of t (when we use Sobolev estimate), but this is not a problem since this can
be compensated by the fast off-diagonal decays. �

Proposition 5.2. Let σ be a symbol σ ∈ S0
1,δ with δ < 1. Then T := [σ(x,L)]∗ − σ(x,L) is an

operator bounded on Lp for every p ∈ (p0, p
′
0).

Proof. First, using Lemma 3.4 and Theorem 4.1, it suffices to prove this current proposition for
elementary symbols. So let us just consider a symbol of the following form:

σ(x, ξ) =

∫ 1

0
γt(x)ψt(ξ)

dt

t
.

So

σ(x, ξ) =

∫ 1

0
γt(x)ψt(ξ)

dt

t
,

and let

T := [σ(x,L)]∗ − σ(x,L) =

∫ 1

0
ψt(L)[γt·]− γt(x)ψt(L)

dt

t
.

For every t ∈ (0, 1), let
Tt(f) := ψt(L)[γtf ]− γt(x)ψt(L)f.

We are looking for Lp−Lp off-diagonal estimates at the scale r := t
1
m , so consider an almost-disjoint

covering (Qt
l)l of X by balls of radius r. Then

‖Tt(f)‖Lp(Qt
l)
≤
∑

k

∥

∥

∥

∥

∥

ψt(L)[(γt −−
∫

Qt
k

γt)f1Qt
k
]

∥

∥

∥

∥

∥

Lp(Qt
l)

+

∥

∥

∥

∥

∥

(

γt(x)−−
∫

Qt
k

γt

)

ψt(L)[f1Qt
k
]

∥

∥

∥

∥

∥

Lp(Qt
l)

.
∑

k

(

1 +
d(Qt

l , Q
t
k)

r

)−M

d(Qt
l , Q

t
k)t

− δ
m ‖f‖Lp(Qt

k)
,

where we used (5.3). As a consequence, we deduce that

‖Tt(f)‖Lp(Qt
l)
.
∑

k

(

1 +
d(Qt

l , Q
t
k)

r

)−M+1

t
1−δ
m ‖f‖Lp(Qt

k)
,

which yields, by using the homogeneous type of the ambiant space,

‖Tt(f)‖Lp→Lp . t
1−δ
m .

This can be integrated for t ∈ (0, 1), which finishes the proof of the Lp-boundedness of T . �

As a byproduct of Theorem 5.1 and Proposition 5.2, we obtain

Theorem 5.3. Let p ∈ (p0, p
′
0). Every symbol σ ∈ S0

1,δ with δ < 1 gives rise to a Lp-bounded
operator, still satisfying off-diagonal estimates at the scale 1.

Proof. For such a symbol σ, Theorem 5.1 implies that Tσ is L2-bounded. Then, removing the
S0
1,0-part in the decomposition due to Lemma 3.4 and Theorem 4.1, we may assume that σ is an

elementary symbol. Since Tσ is bounded on L2, because of Proposition 3.5 we may apply Lemma
3.6 which gives that Tσ is bounded on Lp for every p ∈ (p0, 2]. For p ∈ (2, p′0), we conclude by
duality with Proposition 5.2. �

As for Corollaries 4.2 and 4.3, we have the following consequence:

Corollary 5.4. Let p ∈ (p0, p
′
0) and a symbol σ ∈ Sm

1,δ for δ ∈ (0, 1) and m ≥ 0. Then for s > 0

and under Assumptions 1.1 and 1.3, σ(x,L) is bounded from W
s+m,p
L to W s,p

∆ .
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6. The limit case S0
1,1

For the study of operators coming from a symbol, that belongs to the limit class S0
1,1, we will

restrict our attention to a more specific framework. We assume that X is a Riemannian manifold,
equipped with a metric d and a doubling measure µ. For a symbol σ(x, ξ) = a(x)b(ξ) belonging to
a class of type S0

1,1, by definition the smoothness of a and the smoothness of b(L) (described by
the decay at infinity of b) are of the same importance. This is specific to this case, and this brings
the difficulty for the study of such symbols.

Consequently, it is quite natural to assume that the regularity in x will be measured by the
same operator L 1. So we deal with the same operator L = H = ∆ given by the Laplace-Beltrami
operator, coming from the Riemannian structure.
Moreover, we will assume that this operator is a sub-Laplacian operator H = L = ∆ = −∑κ

i=1X
2
i

(of order 2), given by a finite collection of vector fields (Xi)i. For I := (i1, ..., ip) ∈ {1, .., κ}p a
sequence of indices, we set XI := Xi1 · · ·Xip the composition of p vector fields, which is also an
operator of order p. Then, we still require Assumption 1.4:

Assumption 6.1. We assume that the analytic semigroup (e−tL)t>0, generated by −L, satisfies
Lp0 − Lp′0 off-diagonal estimates (1.4) for some p0 ∈ [1, 2).

Assumption 6.1 implies full L2 − L2 off-diagonal estimates for the semigroup (e−tL)t>0 (see e.g.
the proof of [4], Proposition 3.2 b)): there exists constants C, c > 0 such that for all open subsets
E,F of X

(6.1) ‖e−tL‖L2(E)→L2(F ) ≤ C e
−c

(

d(E,F )2

t

)

.

We assume some L2 − L2 estimates for the “gradients” of the heat semigroup:

Assumption 6.2 (L2 − L2 off-diagonal estimates). For an arbitrary collection I of indices, there

exist constants C, c > 0 such that for arbitrary balls B1, B2 of radius r = t1/2 > 0

(6.2) ‖r|I|XIe
−r2L‖L2(B1)→L2(B2) ≤ C e

−c

(

d(B1,B2)
2

t

)

.

Finally, our last assumption is a Poincaré type inequality:

Assumption 6.3. The manifold (X, d, µ) satisfies a L2 Poincaré inequality: for every f ∈ D(L)
and every ball B of radius r > 0,

(

−
∫

B

∣

∣

∣

∣

f −−
∫

B
f

∣

∣

∣

∣

2

dµ

)
1
2

. r

(

−
∫

B
|X(f)|2dµ

)
1
2

.

We can then define the symbols:

Definition 6.4. We set S0
1,1 := S0

1,1(L) the set of symbols σ ∈ C∞(X × (0,∞)) such that

∀I, ∀β ≥ 0,
∣

∣

∣
∂
β
ξXIσ( . , ξ)[x]

∣

∣

∣
. (1 + |ξ|)−β+|I|.

Then, following Lemma 3.1, we have this new version taking into account the setting of the
sub-Laplacian structure:

Lemma 6.5. Let ν > 0 and N > ν, let r > 0. Take F a smooth function on (0,∞) with

(6.3)
∣

∣

∣
∂
β
ξ F (ξ)

∣

∣

∣
. min(1, (r2|ξ|)N )|ξ|−β

1It is probably possible to extend the next results in a more general framework with different operators H , L with
some commutativity assumptions. Here, we prefer to focus on this simpler situation for convenience.
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for all indices 0 ≤ 2β ≤ ⌊ν⌋ + 1. Then for all set of indices I, there exists a constant C > 0,

independent of r = t1/2 > 0, such that for all balls B1, B2 and all f ∈ L2(X) with supp f ⊆ B1

∥

∥

∥
r|I|XIF (L)f

∥

∥

∥

L2(B2)
≤ C

(

1 +
d(B1, B2)

r

)−ν

‖f‖L2(B1)
.

Proof. The proof is very similar to the one used for Lemma 3.1, with using the following off-diagonal
estimates: (z = r2 + it)

(6.4) ‖r|I|XIe
−(r2+it)L‖L2(B2) . exp

(

−cd(B1, B2)
2

r2

)(

1 +
t

r

)
ν
2

‖f‖L2(B1)
.

The considered operator can be split as follows:

r|I|XIe
−(r2+it)L =

(

r|I|XIe
− r2

2
L

)(

e−( r
2

2
+it)L

)

.

The first operator

(

r|I|XIe
− r2

2
L

)

satisfies L2−L2 off-diagonal estimates due to Assumption 6.2 and

the second operator

(

e−( r
2

2
+it)L

)

(already used in Lemma 3.1) satisfies the following off-diagonal

estimates (see [29, Lemma 4.9])
∥

∥

∥

∥

e−( r
2

2
+it)L

∥

∥

∥

∥

L2(B2)

.

(

1 +
d(B1, B2)

r

)−ν (

1 +
t

r

)
ν
2

‖f‖L2(B1)
.

Computing the composition of these two off-diagonal estimates, we obtain (6.4). Then as explained
in [29], we expand F with its Fourier transform. The smoothness of F allows us to compensate for

the weight
(

1 + t
r

)
ν
2 and we may obtain the stated result from (6.4). �

Then, it remains us to define the space BMOL associated with the sub-Laplacian operator (see
[20, 24] and the references given therein for more details):

Definition 6.6. For ε > 0, M ∈ N and φ ∈ R(LM ) ⊆ L2(X) (i.e. there exists b ∈ L2 ∩ D(LM )
with φ = LM (b) ∈ L2), we introduce the norm

‖φ‖∗,M := sup
j≥0

[

2jεµ(2jB0)
1/2

M
∑

k=0

‖Lkb‖L2(Sj(B0))

]

,

where B0 is a fixed ball with radius 1. Then

MM := {φ ∈ R(LM ) : ‖φ‖∗,M <∞}.(6.5)

Then for every f ∈ (MM )′ and every t > 0, one can define (I− e−tL)Mf and (I− (I+ tL)−1)Mf
via duality as elements of L2

loc(X).

Definition 6.7 (BMOL space). LetM ∈ N. An element f ∈ MM is said to belong to BMOL,M (X)
if

(6.6) ‖f‖BMOL,M (X) := sup
B⊆X

(

−
∫

B

∣

∣

∣
(I − e−r2BL)Mf

∣

∣

∣

2
dµ

)1/2

<∞,

where the supremum is taken over all balls B in X. Then it is known that such spaces do not
depend on M , as soon as M > n

4 (see [24]), and we set BMOL := BMOL,M .

From the L2−L2 off-diagonal estimates on the semigroup, it is easy to check that L∞ ⊂ BMOL.

Theorem 6.8. Let us suppose Assumptions 6.1, 6.2 and 6.3. Let a symbol σ ∈ S0
1,1. Then

Tσ := σ(x,L) is L2-bounded if and only if T ∗
σ (1) ∈ BMOL.
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As we explained in Lemma 3.6, one can show via extrapolation that such operators are also
bounded on Lp for p ∈ (p0, 2) and in Sobolev spaces (as in Corollary 4.2).

Proof. The main idea is to apply the T (1)-theorem, adapted to the semigroup (e−tL)t>0, proved
in [21, Theorem 4.16]. Let Ψ(tL) := (tL)Me−tL (for a large enough integer M) and Φ(tL) = e−tL.
Since L is a sub-Laplacian operator, we have L(1) = 0. Hence for σ ∈ S0

1,1, we have Tσ(1) =

σ(·, 0) ∈ L∞ ⊂ BMOL.
So our result will be a consequence of [21, Theorem 4.16], as soon as we have checked the following

estimates: for every t > 0 every balls B1, B2 of radius r := t
1
2

(6.7) ‖Ψ(tL)TσΦ(tL)‖L2(B1)→L2(B2) + ‖Ψ(tL)[Tσ ]
∗Φ(tL)‖L2(B1)→L2(B2) .

(

1 +
d(B1, B2)

r

)−N

,

with N sufficiently large.

Step 1 : Estimates for Ψ(tL)TσΦ(tL).
Since we may expand LM in a finite sum of vector fields XI = Xi1 ...Xi2M of order 2M , let us

just consider one of them and so we have to estimate Φ(tL)(tMXI)TσΦ(tL).
Due to Lemma 3.4, we may reduce the problem to elementary operators. So assume that

σ(x, ξ) =

∫ 1

0
γs(x)ψs(ξ)

ds

s

with ψs supported around s−1 and regular at this scale and γs satisfying

‖XJγs‖L∞ . s−|J |.

First we have

Φ(tL)(tMXI)TσΦ(tL)(f) =

∫ 1

0
Φ(tL)(tMXI) [γs(·)ψs(L)Φ(tL)(f)]

ds

s

=
∑

I1⊔I2=I

∫ 1

0
Φ(tL)

[

(t|I1|/2XI1γs)(t
|I2|/2XI2ψs(L)Φ(tL)(f))

] ds

s

where we used the Leibniz rule

XI(fg) =
∑

I1⊔I2=I

XI1(f)XI2(g).

So choose now a bounded covering (Qi)i of balls with radius
√
t, fix s ∈ (0, 1) and a covering

I1 ⊔ I2 = I. We have
∥

∥

∥
Φ(tL)

[

(t|I1|/2XI1γs)(t
|I2|/2XI2ψs(L)Φ(tL)(f))

]
∥

∥

∥

L2(B2)

.
∑

i

(

1 +
d(B2, Qi)√

t

)−M ∥
∥

∥

[

(t|I1|/2XI1γs)(t
|I2|/2XI2ψs(L)Φ(tL)(f))

]
∥

∥

∥

L2(Qi)

.
∑

i

(

1 +
d(B2, Qi)√

t

)−M ∥
∥

∥
(t|I1|/2XI1γs)

∥

∥

∥

L∞

∥

∥

∥
t|I2|/2XI2ψs(L)Φ(tL)(f)

∥

∥

∥

L2(Qi)

.
∑

i

(

1 +
d(B2, Qi)√

t

)−M (
t

s

)

|I1|
2
∥

∥

∥
t|I2|/2XI2ψs(L)Φ(tL)(f)

∥

∥

∥

L2(Qi)
,

where we used the regularity of γs. Then f is supposed to be supported on the other ball B1. Since
ψsΦ(t·) satisfies

∣

∣∂αξ ψs(ξ)Φ(tξ)
∣

∣ . 1sξ≃1s
αmin{s

t
, 1}N
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for every integer N > 1, we obtain from Lemma 6.5

∥

∥

∥
t|I2|/2XI2ψs(L)Φ(tL)(f)

∥

∥

∥

L2(Qi)
.

(

t

s

)

|I2|
2

min{s
t
, 1}N

(

1 +
d(B1, Qi)√

s

)−N

‖f‖L2(B1),

for every sufficiently large exponent N ≥ 1. Finally, we deduce that for some large integers
M,M ′, N ≥ 1, we have

∥

∥

∥
Φ(tL)

[

(t|I1|/2XI1γs)(t
|I2|/2XI2ψs(L)Φ(tL)(f))

]∥

∥

∥

L2(B2)

.
∑

i

(

1 +
d(B2, Qi)√

t

)−M (
t

s

)M ′

min{s
t
, 1}N

(

1 +
d(B1, Qi)√

s

)−N

‖f‖L2(B1)

.

(

1 +
d(B2, B1)

max{
√
t,
√
s}

)−M (
t

s

)M

min{s
t
, 1}N‖f‖L2(B1).

Integrating this inequality along s ∈ (0, t) and s ∈ (t, 1), for a good choice of M,M ′, N according
to the two situations, we obtain

∥

∥

∥
Φ(tL)

[

(t|I1|/2XI1γs)(t
|I2|/2XI2ψs(L)Φ(tL)(f))

]
∥

∥

∥

L2(B2)

.

(

1 +
d(B2, B1)√

t

)−M

‖f‖L2(B1),

which corresponds to the first part of (6.7).

Step 2 : Estimates for Ψ(tL)[Tσ]
∗Φ(tL).

By duality, L2 − L2 off-diagonal estimates for Ψ(tL)[Tσ]
∗Φ(tL) are equivalent to L2 − L2 off-

diagonal estimates for Φ(tL)TσΨ(tL). In Proposition 3.5, we have already seen that TσΨ(tL)
satisfies such estimates, and so in particular does Φ(tL)TσΨ(tL).

We can then apply the T (1)-theorem and conclude the proof. �

As an application, it is known that S0
1,1 pseudodifferential operators appear when we use the para-

product to “linearize” a nonlinear PDE (this was Bony’s motivation to introduce his paraproduct
in [17]). We may adapt this approach in our current context: we denote Ψ(tL) := (tL)Me−tL (for
a large enough integer M) and Φ(tL) = e−tL. We can then define paraproducts of the form

(f, g) → Πg(f) :=

∫ 1

0
φ(tL)(g)ψ(tL)(f)

dt

t
.

Such paraproducts are very similar to those introduced in [14, 15, 22], but not identical. One can
then check that Πg(f) = Tσ(f) is a pseudodifferential operator associated to the symbol

σ(x, ξ) =

∫ 1

0
Φ(tL)(g)(x)(tξ)M e−tξ dt

t
.

If p0 = 1, that means that the semigroup satisfies pointwise estimates then for g ∈ L∞, Φ(tL)(g)
is uniformly bounded and then σ ∈ S0

1,1. We also deduce that the paraproduct Πg is bounded on

Lp as soon as g ∈ L∞, as obtained in [14, 22] for the other paraproducts.
The study of such paraproducts, given by a semigroup of operators, is just beginning. So it is

not clear today which definition (this one or the one in [14, 22]) is the best.
Here the novelty is that such operators fit into the class of pseudodifferential operators. So as in

the Euclidean situation: we hope to define a suitable functional calculus in order to “invert” the
paraproduct Πg locally around points where g(x) 6= 0.
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