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This work reports on Differential Scanning Calorimetry 

(DSC) measurements performed on Ti-Al metallic layers 

stacks deposited on n+-GaN. The aim is to get better un-

derstanding of the mechanisms leading to ohmic contact 

formation during the annealing stage. Two exothermic 

peaks were found, one below 500°C and the other one 

around 660°C. They can be respectively attributed to 

Al3Ti and Al2Ti compounds formation. The locations of 

these peaks provide clear evidence of solid-solid reac-

tions. Lowest contact resistance is well correlated with 

the presence of Al3Ti compound, corresponding to 

Al(200nm)/Ti(50nm) stoichiometric ratio. Subsequently, 

Al(200 nm)Ti(50 nm) stacks on n+-GaN were annealed 

from 400°C to 650°C. Specific Contact Resistivity (SCR) 

values stay in the mid 10-5 Ω.cm² range for annealing 

temperatures between 450°C and 650°C. Such low-

temperature annealed contacts on n+-GaN may open new 

device processing routes, simpler and cheaper, in which 

Ohmic and Schottky contacts are annealed together.  

 

Copyright line will be provided by the publisher  

1 Introduction By using wide band gap semiconduc-

tors, such as SiC, GaN and AlGaN, real performance 
breakthrough has been demonstrated for high power, high 

temperature and high frequency devices, over the previ-

ously existing devices based on group-IV and III-V lower 
band-gap semiconductor materials.  

Fast rectifier is one of the key devices in any switching 
converter. 4H-SiC based Schottky diodes are now com-

mercially available from at least 3 sources in the world.  

However, bulk SiC substrates are very expensive and 
the hetero-epitaxial SiC layers on low cost substrates still 

have too many crystal defects. 
These are the main reasons for the on-going research 

programs towards GaN-based Schottky rectifiers on both 
Silicon and Sapphire substrates [1]. 

The successful III-N LED industrial development has 

provided the epitaxy process for high-quality thick GaN 
layers grown on sapphire substrate. First characterization 

results on GaN-based Schottky rectifiers reported in the 

literature [1] seem to be comparable to those on 4H-SiC 
diodes, despite the high dislocation density ( > 10

-9
 cm

-2 
) 

within the GaN layers. 
Ohmic contacts represent a major technological brick 

for device processing. On n-type AlGaN and GaN materi-

als, many variants of Ti-Al based contact metallization 
have been proposed, such as: Ti/Al [2-5], Ti/Al/Ni/Au [6], 

Ti/Al/W/Au [7], and Ti/Al/Mo/Au [8]. Some of them are 
already used for industrial manufacturing of opto-

electronics and microwave devices. Generally, these con-
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tacts are annealed up to 900 °C and their “Specific Contact 

Resistivity” (SCR) ranges in the low 1.10
-6

 Ω.cm².  
On these high-temperature annealed ohmic contacts, 

the usual model to explain low SCR values involves: (1) 

the migration of N elements from GaN towards Ti to form 
TiN semi-metallic compound, (2) resulting nitrogen vacan-

cies, acting as donors. However, it very likely that this 
model cannot apply to contacts obtained at much lower 

temperature, for which there is no evidence of any TiN 

phase formed [2,3]. 
For Schottky rectifiers, a good compromise has been 

found [5] using Al(200 nm) Ti(50 nm) on n
+
-GaN, an-

nealed 3 minutes at 650 °C under Ar at atmospheric pres-

sure by Rapid Thermal Annealing (RTA). This process re-
producibly yields SCR values in the mid 10

-5
 Ω.cm² range.  

 

 
 

 
 

 

 
 

 
 

 
 

 

 

Figure 1 Al-rich extract of the Ti-Al binary phase diagram [9]. 

 

For Ti-Al-only ohmic contact on n+-GaN, Ti/Al ratio 
seems clearly the most important parameter driving the 

SCR value. X-ray diffraction (XRD) measurements [4] 
have shown that the AlxTi phases formed during the an-

nealing process are those predicted by the Ti-Al binary 
phase diagram. Best SCR results are obtained for atomic 

ratio Al/Ti  3, strongly suggesting that Al3Ti (metal) / 

GaN (semiconductor) is indeed the Schottky configuration 
providing the low SCR at low annealing temperature [3, 5].   

     X-ray photoelectron spectroscopy (XPS) profiling [2, 3], 
performed on Al(200 nm)/Ti(70 nm)/n-GaN, after 600 °C 

annealing, has evidenced that the Al/Ti atomic ratio keeps 

constant around 3 within the whole metallic phase, con-
firming Al3Ti as the only detected phase in direct contact 

with GaN. No evidence for TiN layer has been found. It 
has also been identified that Al diffuses throughout the me-

tallic layer and comes in direct contact with the GaN mate-
rial. 

In this work, to understand the kinetic of AlxTi com-

pounds formation, we have performed Differential Scan-
ning Calorimetry characterisations.  

2 Experiments 
2.1 Samples Differential Scanning Calorimetry sam-

ples are described in Tab. 1. Metallic stacks were deposited 

by sputtering, on both GaN epilayer and bare sapphire sub-

strate, to discriminateTi-Al reactions, from possible Metal-
GaN reactions. Ti/Al ratios within the different metallic 

stacks were chosen to explore the main different configura-

tion within the binary phase diagram and form the different 
AlxTi intermetallic compounds during the DSC characteri-

zation annealing (Fig. 1).  
Samples for electrical measurements were made on 

GaN epitaxial layer on a c-plane sapphire substrate, 3.2 µm 

thick and 5.8x10
18

 cm
-3

 Si-doped, by the following process 
[5]: (1) SC1+HF surface cleaning, (2) Al(200 nm) Ti depo-

sition by sputtering, (3) photolithography,  (4) Wet etch 
(ANPE for Al, HF 1% for Ti), and (5) annealing by RTA 

under Ar ambient during 3 min at atmospheric pressure. 
Annealing temperature range was 400 ≤ T ≤ 650 °C with 

50 °C temperature increment. 

 
Table 1 DSC samples description. 

Metallic stacks on both GaN and 

Sapphire substrates 
Atomic Al % 

Al(200 nm)/substrate 100 

Al(200 nm)Ti(20 nm)/substrate 95 

Al(200 nm)Ti(50 nm)/substrate 82 

Al(200 nm)Ti(100 nm)/substrate 71 

 

2.2 Characterization conditions DSC measure-
ments were performed using “Metler-Toledo DSC1” sys-

tem in 150 µL (4.5 mm diameter) Pt crucibles. For each 
run, the temperature was increased from 25 up to 700 °C 

under Ar at atmospheric pressure with a slew rate of 
10 °C/min.  

Ohmic contacts have been electrically characterized 

using a four probes equipment and SCR values have been 
extracted from current-voltage (I-V) measurements made 

at room temperature with a “keitley 2400” on circular 
Transfer Length Method (c-TLM) patterns. 

 

 
 

 
 

 
 

 

 
 

 
 

Figure 2 DSC characterization of bare sapphire, Al(200 nm) and 

Al(200 nm)Ti(20 nm) on GaN epilayer and Sapphire bare sub-

strate. 

 
3 Results and discussion 

3.1 DSC measurements  DSC characterization re-

sults are shown on Fig. 2 and 3. Results on bare sapphire 

exo 
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are the same as for empty crucibles. As expected, no reac-

tion happens in sapphire within this temperature range. 
100 % Al samples, both on bare Sapphire and on GaN epi-

layer, exhibit one endothermic peak at 660 °C which obvi-

ously can be attributed to Al melting.  This gives an illus-
tration of the sensitivity of the experiments, since the sam-

ple contains only  <10 µg Al on  40 mg Sapphire .  
    Adding a 20 nm thick Ti layer in the system, the Al 

melting peak is still observable but weaker, on both GaN 

epi and bare sapphire substrates. It means that Al has al-
ready started to react at temperatures below Al melting, but 

the system is not sensitive enough to detect the reaction 
heat. 

For samples with Al(200 nm) and Ti(50 or 100 nm), a 
smooth exothermic peak appears in the range 420-500°C. 

For Ti(100 nm), another exothermic peak appears near 

660 °C. 
 

 
 

 

 
 

 
 

 
 

 

Figure 3 DSC characterization of Al(200 nm)ti(50 nm) and 

Al(200 nm)Ti(100 nm) on GaN epilayer and Sapphire bare sub-

strate. 

Since these peaks are observed with and without GaN 

layer, they have to be related to reactions between Al and 

Ti. In agreement with the Ti-Al binary phase diagram (Fig. 
1) and XRD measurements, we attribute these peaks to the 

formation of Al3Ti and Al2Ti compounds. 
The Al3Ti related peak happens at temperature lower 

than Al melting. It means that Al3Ti results from solid-

solid reaction, with no precise temperature threshold. The 
peak position is therefore influenced by the reaction kinet-

ics, hence by the experimental temperature ramp slope. 
   For Ti(50 nm), the Al-Ti stack is Al-rich and the whole 

Ti is consumed first with some Al remaining unreacted.  
    In contrast, for Ti(100 nm), the stack is Ti-rich and the 

whole Al(200 nm) reacts to form Al3Ti. There is more 

reactive material and, for the same temperature slope, it 
takes more time to achieve complete reaction. This is why 

the exothermic Al3Ti peak shifts towards higher tempera-
tures. Then, the excess Ti reacts with Al3Ti to form Al2Ti.  

 

3.2 SCR measurement Since it seems clear that 
Al3Ti/GaN interface is responsible for the low SCR, and 

since Al3Ti formation starts below 500°C, we have investi-
gated the evolution of the SCR for lower temperature an-

nealing. Ohmic contacts have been fabricated on optimized 
Al(200 nm)Ti(50 nm) structures on n

+
-GaN. Room tem-

perature SCR values have been extracted from (I-V) mea-

surements on circular Transfer Length Method (c-TLM) 
patterns. The contact starts to be ohmic around 450°C and 

the SCR stays in the mid 10
-5

 Ω.cm² up to 650°C (Fig. 4). 

 
4 Conclusion DSC characterizations of Ti-Al sys-

tems on GaN epilayer  and bare sapphire substrates tend to 
show that the Al3Ti and Al2Ti compounds are formed 

through solid-solid reactions, with Al3Ti formation starting 

below 500°C. Al(200 nm)Ti(50 nm) contacts on n
+
-GaN 

yield SCR values in the mid 10
-5

 Ω.cm² in the whole an-

nealing temperature range 450- 650 °C. 
The possibility to get reliable ohmic contacts on n-type 

GaN with such low annealing temperature may pave the 

way towards simpler and cheaper device processing, in 

which ohmic and Schottky contacts could be annealed to-

gether. 

 

 

 
 

 
 

 
 

 

 
 

 
Figure 4 Evolution of the SCR with the annealing temperature 

of a Al(200 nm)Ti(50 nm) on n+-GaN contact. 
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