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V. Bonnaillie-Noël∗, and C. Léna†
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Abstract

In this article, we are interested in determining the spectral minimal k-partition
for angular sectors. We first deal with the nodal cases for which we can determine
explicitly the minimal partitions. Then, in the case where the minimal partitions
are not given by eigenfunctions of the Dirichlet Laplacian, we analyze the possible
topologies of the minimal partitions. We first exhibit symmetric minimal partitions
by using mixed Dirichlet-Neumann Laplacian and then use a double covering approach
to catch non symmetric candidates.

Keywords. Spectral theory, minimal partitions, nodal domains, Aharonov-Bohm Hamil-
tonian, numerical simulations, finite element method

MSC classification. 35B05, 35J05, 35P15, 49M25, 65F15, 65N25, 65N30.

1 Introduction

Let us first state the definition of a minimal partition and review briefly known results
about this object. In the following, Ω is an open, bounded, and connected set in R2. We
assume that ∂Ω satisfies some regularity properties. Following [15], we can for example
assume that ∂Ω is compact, piecewise C1,+ and that Ω satisfies the uniform cone property.

Definition 1.1 For any integer k ≥ 1, a k-partition is a finite set

D = {Di : 1 ≤ i ≤ k}

of open, connected and mutually disjoint subsets of Ω. The Di’s are called the domains of
the k-partition. The k-partition D is called strong if

Int

 k⋃
i=1

Di

 \ ∂Ω = Ω.

The set of all k-partitions is denoted by Pk.
If we do not want to specify the number of domains, we simply speak of a partition.

For any bounded open set ω ∈ R2, the sequence (λk(ω))k≥1 denotes the eigenvalues of the
Dirichlet Laplacian on ω, in increasing order and counted with multiplicity.
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Definition 1.2 With any k-partition D = {Di : 1 ≤ i ≤ k}, is associated the energy

Λk(D) = max
1≤i≤k

λ1(Di).

We are concerned in this paper with minimizing this energy for angular sectors.

Definition 1.3 For any integer k ≥ 1, we set

Lk(Ω) = inf
D∈Pk

Λk(D).

A partition D ∈ Pk such that Λk(D) = Lk(Ω) is called a minimal k-partition.

The following existence result was proved in [7, 9, 8].

Theorem 1.4 For any integer k ≥ 1, there exists a minimal k-partition of Ω. Further-
more, minimal partitions are strong.

Similar existence results were previously proved in a more general setting in [6].

Let us now define a regular partition.

Definition 1.5 If D = {Di : 1 ≤ i ≤ k} is a strong partition, its boundary set is defined
by

N(D) =

k⋃
i=1

Ω ∩ ∂Di.

The partition D is called regular if the following properties are satisfied:

(i) The set N(D) ∩ Ω is locally a C1,1− curve, except in the neighborhood of a finite set
{Xi : 1 ≤ i ≤ n}. The elements of this set are called interior singular points.

(ii) For each 1 ≤ i ≤ n, there is an integer νi ≥ 2 such that in a neighborhood of Xi, the
set N(D) is the union of νi half curves of class C1,+ meeting at Xi.

(iii) The set N(D) ∩ ∂Ω is finite. Its elements are called boundary singular points. If
Z ∈ N(D)∩∂Ω, there is an integer ρ ≥ 1 such that in the neighborhood of Z, the set
N(D) is the union of ρ half curves of class C1,+ in Ω meeting ∂Ω at Z.

(iv) At each interior singular point, the half curves meet with equal angles.

(v) At each boundary singular point, the half curves and ∂Ω meet with equal angles.

As proved in [15], we have the following regularity result:

Theorem 1.6 For any k ≥ 1, minimal k-partitions are regular (up to zero capacity sets).

We give additional definitions that help us to describe the topology of a partition.

Definition 1.7 Let D = {Di : 1 ≤ i ≤ k} be a strong partition. Two domains Di and Dj

are said to be neighbors if Int
(
Di ∪Dj

)
\ ∂Ω is connected.

Definition 1.8 A strong partition is called bipartite if one can color its domains, using
only two colors, in such a way that two neighbors have a different color.
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Let us recall some definitions and results from the spectral theory of the Laplacian.
They are used throughout the paper. Let u be an eigenfunction for the Dirichlet Laplacian.

Definition 1.9 We call nodal set of u the set

N(u) = {x ∈ Ω : u(x) = 0}.

The connected components of Ω \N(u) are called the nodal domains of u. The number of
nodal domains is denoted by µ(u). The set

{Di : 1 ≤ i ≤ µ(u)},

where the Di’s are the nodal domains of u, is a regular partition of Ω, called the nodal
partition associated with u.

The following result was proved by Courant (cf. [10]).

Theorem 1.10 If k ≥ 1 and u is an eigenfunction associated with λk(Ω),

µ(u) ≤ k.

Following [15], we introduce a new definition.

Definition 1.11 Let k ≥ 1. An eigenfunction u for the Dirichlet Laplacian associated
with λk(Ω) is said to be Courant-sharp if µ(u) = k.

To give some upper-bound for Lk(Ω), it could be interesting to use k-partitions obtained
from eigenfunctions. Thus, we introduce a new spectral element.

Definition 1.12 For k ≥ 1, Lk(Ω) is the smallest eigenvalue of the Dirichlet Laplacian
that has an eigenfunction with k nodal domains. If there is no such eigenvalue, we set
Lk(Ω) = +∞.

With this notation, Theorem 1.10 reads as the inequality

λk(Ω) ≤ Lk(Ω).

We can now give two results of [15] that link minimal and nodal partitions.

Theorem 1.13 A minimal partition D is nodal if, and only if, it is bipartite.

Theorem 1.14 For any integer k ≥ 1,

λk(Ω) ≤ Lk(Ω) ≤ Lk(Ω).

Furthermore, if Lk(Ω) = Lk(Ω) or λk(Ω) = Lk(Ω), then

λk(Ω) = Lk(Ω) = Lk(Ω),

and in this case, any minimal k-partition is nodal.

Let us point out a few consequences of Theorem 1.14.

Remark 1.15 A nodal partition associated with a Courant-sharp eigenfunction is mini-
mal.
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Remark 1.16 Minimal 2-partitions are nodal. Indeed, let u be an eigenfunction asso-
ciated with λ2(Ω). The function u is orthogonal to the eigenspace for λ1(Ω) and thus
has at least two nodal domains. It has at most two nodal domains by Courant’s theorem.
It is therefore Courant-sharp, which implies that L2(Ω) = λ2(Ω) and that any minimal
2-partition of Ω is nodal.

In this article, we are concerned with the minimal k-partitions of angular sectors. For
0 < α ≤ 2π, we set

Σα =
{

(ρ cos θ, ρ sin θ) : 0 < ρ < 1 and − α
2 < θ < α

2

}
.

This set is the circular sector of opening α. We denote by (λk(α))k≥1 the eigenvalues of
the Dirichlet Laplacian on Σα, in increasing order and counted with multiplicity. Due to
the inclusion of the form domains and the min-max principle, the function α 7→ λk(α) is
decreasing for any k ≥ 1.
In Section 2, we make explicit the spectrum of the Dirichlet Laplacian on Σα and determine
the minimal 2-partitions. In Section 3, we prove that for any k, the minimal k-partition
is nodal as soon as α is small enough. In Sections 4-6, we focus on the 3-partitions. First,
we determine when the minimal 3-partition is nodal (Section 4). Then, Section 5 deals
with non nodal symmetric minimal 3-partitions, with some remarks about the particular
case α = π/3. Then we use a double covering approach to exhibit some non symmetric
candidates in Section 6. In this way, we find some non symmetric candidates which are
better than any symmetric candidate. Finally we give in Section 7 some negative results
for minimal k-partitions when k = 4, 5, 6 and give configurations of partitions that are
never minimal.

2 Nodal partitions

2.1 Explicit eigenmodes

Proposition 2.1 The eigenmodes (λm,n(α), uαm,n) of the Dirichlet Laplacian on the an-
gular sector Σα are given by

λm,n(α) = j2m π
α
,n,

uαm,n(ρ, θ) = Jm π
α

(jm π
α
,nρ) sin(mπ( θα + 1

2)),

where jm π
α
,n is the n-th positive zero of the Bessel function of the first kind Jm π

α
.

Proof: These rather classical results are presented for example in [10]. One can
compute the eigenvalues of the Dirichlet Laplacian on Σα by separation of variables. In
polar coordinates, the Laplacian reads

−∂2ρ −
1

ρ
∂ρ −

1

ρ2
∂2θ .

We look for a solution (λ, u) of{
−∆u = λu in Σα,
u = 0 on ∂Σα,

where λ > 0 and u is not identically zero. If we set u(ρ, θ) = ϕ(ρ)ψ(θ), this yields

−ψ
′′(θ)

ψ(θ)
=

ρ2

ϕ(ρ)

(
ϕ′′(ρ) +

1

ρ
ϕ′(ρ) + λϕ(ρ)

)
.
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According to the Dirichlet conditions, ψ(−α
2 ) = ψ(α2 ) = 0. Therefore there exists an

integer m ≥ 1 such that, up to a constant multiplicative factor,

ψ(θ) = sin
(mπ
α

(
θ +

α

2

))
.

Then, we get

ϕ′′(ρ) +
1

ρ
ϕ′(ρ) +

(
λ− m2π2

α2ρ2

)
ϕ(ρ) = 0.

If we set
ν =

π

α
, λ = ω2, t = ωρ, f(t) = ϕ(ρ),

we recognize the Bessel differential equation

f ′′(t) +
1

t
f ′(t) +

(
1− m2ν2

t2

)
f(t) = 0.

The function u is assumed to be in H1(Σα) and to satisfy the Dirichlet boundary condition.
This implies that f is proportional to the Bessel function of the first kind Jmν and that ω
is a zero of Jmν .
We have obtained a family of eigenmodes (λm,n(α), uαm,n) indexed by m ≥ 1 and n ≥ 1.
More precisely, we have the expressions

λm,n(α) = j2mν,n, (2.1)

where jmν,n is the n-th positive zero of the function Jmν and

uαm,n(ρ, θ) = Jmν(jmν,nρ) sin(mν(θ + α
2 )). (2.2)

We can check that the set {uαm,n}m,n is orthogonal and spans L2(Σα). Therefore there is
no other eigenvalue.

Corollary 2.2 For any k ≥ 2 and α ∈ (0, 2π], we have the first estimate

λk(α) ≤ Lk(α) ≤ Lk(Σα) ≤ inf{λm,n(α) : mn = k}.

Proof: It is enough to use Theorem 1.14, Proposition 2.1 and to notice that for any
m ≥ 1, n ≥ 1, and α ∈ (0, 2π], the eigenfunction uαm,n has mn nodal domains.

In Figure 1 are plotted some eigenvalues λm,n(α) for 1 ≤ m ≤ 7, 1 ≤ n ≤ 4, and α ∈ (0, 2π].

2.2 Minimal nodal partition

Proposition 2.3 For 2 ≤ k ≤ 5, we define

α2
k = inf{α ∈ (0, 2π] : λk,1(α) < λ1,2(α)}.

Then for any α ∈ [α2
k, 2π], the nodal partition associated with uαk,1 is a minimal k-partition

and we have
Lk(Σα) = λk,1(α).

For 2 ≤ k ≤ 5 and α ∈ (α2
k, 2π], the minimal k-partition consists then of k angular sectors

with the same aperture.
For k ≥ 6, any k-partition constituted of k angular sectors is never minimal.
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Figure 1: λm,n(α) vs. α/π for 1 ≤ m ≤ 7, 1 ≤ n ≤ 4.
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Figure 2: λm,1(α) vs. α/π for 1 ≤ m ≤ 7, compared with λ1,2(α).

Proof: Let us use (2.1) and look at Figure 2 where λm,1(α) is compared with λ1,2(α).
We have

λk,1(2π) < λ1,2(2π) for k = 2, . . . , 5.

6



By continuity of α 7→ λk,1(α), the real number α2
k is well defined for 2 ≤ k ≤ 5, and for

any α ∈ (α2
k, 2π], we have

λk,1(α) < λ1,2(α) for k = 2, . . . , 5.

Using the definition of α2
k, we have

λk(α) = λk,1(α), ∀α ∈ (α2
k, 2π].

Since uαk,1 has k nodal domains, it is Courant-sharp and its nodal partition, composed of
k equal angular sectors, is minimal according to Remark 1.15.
For k ≥ 6, we observe that λk,1(α) > λ1,2(α) for any α ∈ (0, 2π]. Then λk,1(α) > λk(α),
the eigenfunction uαk,1 is not Courant-sharp, and its nodal partition is not minimal.
Still assuming k ≥ 6, let us prove by contradiction that a k-partition Dk = (D1, . . . , Dk)
with Di angular sector cannot be minimal. Let us assume that it is minimal. Then
the aperture for each sector must be the same, otherwise we could decrease the energy
by increasing some angles and decreasing others. The partition Dk is therefore nodal,
associated with uk,1, and thus not minimal.

2.3 Minimal 2-partition

According to Remark 1.16, we know that

L2(Σα) = λ2(α), ∀0 < α ≤ 2π.

Furthermore a minimal 2-partition is given by the nodal partition associated with λ2(α).
To be more precise, for α < α2

2, λ2(α) is simple and equal to λ1,2(α) and for α > α2
2,

λ2(α) is simple and equal to λ2,1(α). For α < α2
2 and α > α2

2, there is a unique minimal
2-partition, given by the nodal domains of uα1,2 and uα2,1 respectively. Thus we have

Proposition 2.4

L2(Σα) =

{
λ1,2(α) for 0 < α ≤ α2

2,

λ2,1(α) for α2
2 ≤ α ≤ 2π.

Figure 3 gives the unique minimal 2-partition when α 6= α2
2.

0 < α < α2
2 α2

2 < α ≤ 2π

L2(Σα) = λ1,2(α) L2(Σα) = λ2,1(α)

Figure 3: Minimal 2-partition on Σα.

We notice that the eigenfunction uα1,2 is symmetric according to the axis {y = 0} while
uα2,1 is antisymmetric.
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Let us determine α2
2 and the associated eigenvalue. We set ν = π/α2

2 and j = jν,2 = j2ν,1.
The pair (ν, j) is a solution of the (nonlinear) system{

Jν(j) = 0,
J2ν(j) = 0.

We can solve this system numerically by any iterative method. The initial values must be
chosen so that j is indeed the second zero of Jν and the first of J2ν . In practice we find
approximations of j and ν thanks to Figure 2 and use them as initial values. We get

α2
2 ' 0.3541 π ' 1.1125,
λ2(α

2
2) ' 90.7745.

For α = α2
2, λ2(α) = λ1,2(α) = λ2,1(α) has a two-dimensional eigenspace and the nodal

domains of any nonzero linear combination of uα1,2 and uα2,1 give a minimal 2-partition (see
Figure 4).

t = 0 t = 0.2 t = 0.3516 t = 0.4 t = 0.6 t = 0.8 t = 1

Figure 4: Minimal 2-partitions obtained as nodal partitions of (1− t)uα1,2 + tuα2,1, α = α2
2.

3 Minimal partition for small angles

For sufficiently small angles, the minimal k-partition is nodal as explained in the following
proposition.

Proposition 3.1 Let k ≥ 2, we define

α1
k := inf{α ∈ (0, 2π] : λ1,k(α) ≥ λ2,1(α)}. (3.1)

Then α1
k > 0 and for any 0 < α < α1

k, there is a unique minimal k-partition of Σα, which
is nodal, and more precisely consists of the nodal sets of uα1,k.

Proof: Using [11], we determine the asymptotic expansion of the n-th zero jν̃,n of the
Bessel function Jν̃ for large ν̃ :

jν̃,n = ν̃ − 2−1/3anν̃
1/3 +O

(
ν̃−1/3

)
.

Here an is the n-th negative zero of the Airy function Ai. Together with equation (2.1)
and the relation ν̃ = mπ/α, this yields an asymptotic expansion for the eigenvalues :

λm,n(α) =
m2π2

α2
+ 22/3|an|

(mπ
α

)4/3
+O

(
α−2/3

)
. (3.2)

Let k ≥ 2 be an integer. The asymptotic expansion (3.2) implies that for α small
enough, λ1,k(α) < λ2,1(α). Then the real number α1

k defined by relation (3.1) is strictly
positive. For α ∈ (0, α1

k), we have λ1,k(α) < λ2,1(α) and therefore the first k eigenvalues of
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the Dirichlet Laplacian on Σα are λ1,1(α), . . . , λ1,k(α). These eigenvalues are simple. Let
uα1,1, . . . , u

α
1,k be the associated eigenfunctions defined by (2.2). The eigenfunction uα1,k has

k nodal domains and therefore is Courant-sharp. According to Theorem 1.15, the nodal
partition associated with uα1,k is minimal. Furthermore, the eigenspace associated with
λα1,k has dimension 1 and thus this partition is unique.
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Figure 5: λ1,k(α) vs. α/π for 1 ≤ k ≤ 10, compared with λ2,1(α).

Figure 5 gives the first ten eigenvalues λ1,k(α) compared with λ2,1(α) and shows the critical
angles α1

k. We have

α1
2 = α2

2,

α1
k < α2

k, for k = 3, . . . , 5.

We deduce

Proposition 3.2 For any 2 ≤ k ≤ 5,

Lk(Σα) = λk(α), ∀α ∈ (0, α1
k] ∪ [α2

k, 2π],

λk(α) < Lk(Σα) < Lk(α), ∀α ∈ (α1
k, α

2
k).

Remark 3.3 Using the asymptotic expansion, we deduce that λ1,k(α) ≤ λk,1(α) as soon
as α is small enough. Let k be a prime number, we define

βk = inf{α ∈ (0, 2π] : λ1,k(α) ≥ λk,1(α)}. (3.3)

Then , we have β2 = α1
2 = α2

2 and

Lk(Σα) ≤

{
λ1,k(α) if 0 < α ≤ βk,
λk,1(α) if βk ≤ α ≤ 2π.
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4 Minimal nodal 3-partition

As in the case of the 2-partition, we estimate numerically the transition angles α1
3, α

2
3, β3:

α1
3 ' 0.1579 π ' 0.4961, λ3(α

1
3) ' 303.9139,

α2
3 ' 0.7761 π ' 2.4382, λ3(α

2
3) ' 55.1671,

β3 ' 0.3533 π ' 1.1098, L3(β3) ' 163.3786.

Proposition 3.2 and Remark 3.3 give estimates for L3(Σα) illustrated in Figure 6:

• for 0 < α ≤ α1
3, L3(Σα) = λ3(α) = λ1,3(α),

• for α1
3 < α ≤ β3, λ2,1(α) = λ3(α) < L3(Σα) < L3(Σα) = λ1,3(α),

• for β3 ≤ α ≤ β2, λ2,1(α) = λ3(α) < L3(Σα) < L3(Σα) = λ3,1(α),

• for β2 ≤ α < α2
3, λ1,2(α) = λ3(α) < L3(Σα) < L3(Σα) = λ3,1(α),

• for α2
3 ≤ α ≤ 2π, L3(Σα) = λ3(α) = λ3,1(α).
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Figure 6: Lower and upper bounds for L3(Σα).

If α ≤ α1
3 or α ≥ α2

3, the eigenvalue λ3(α) has a Courant-sharp eigenfunction. According
to Remark 1.15, L3(Σα) = λ3(α) and the minimal 3-partition is nodal, given by the nodal
sets of an eigenfunction associated with λ3(α). On the other hand, if α1

3 < α < α2
3, no

minimal 3-partition is nodal. Table 1 gives the nodal partition associated with the third
eigenfunction. We notice that the eigenfunctions uα1,3 and uα3,1 are symmetric according to
the axis {y = 0}.

Let us now look at the transition angles α1
3 and α2

3. For such angles, the minimal
3-partition is no more unique.
Figure 7 represents the nodal partitions of some linear combination (1− t)uα1,3 + tuα2,1 for

α = α1
3. We observe a transition between a 2-partition and a 3-partition. When we have
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0 < α ≤ α1
3 α1

3 < α < α1
2 α1

2 < α < α2
3 α1

3 ≤ α ≤ 2π

L3(Σα) = λ1,3(α) λ2,1(α) < L3(Σα) λ1,2(α) < L3(Σα) L3(Σα) = λ3,1(α)
minimal 3-partition minimal 3-partition

Table 1: Nodal partition associated with λ3(α) on Σα.

a 3-partition, it is a minimal one since the eigenfunction is associated with λ3(α) and
then Courant-sharp (see Remark 1.15). Notice that the function uα1,3 is symmetric with
respect to the y-axis whereas the function uα2,1 is antisymmetric. Thus, by considering
linear combinations, we break the symmetry of the 3-partition and exhibit some minimal
3-partitions which are non symmetric.

Minimal
3-partition

t = 0 t = 0.2 t = 0.4 t = 0.49

t = 0.6 t = 0.8 t = 1

Figure 7: Nodal partitions of (1− t)uα1,3 + tuα2,1, α = α1
3.

The following proposition gives information about the transition in the linear combinations
between 2-partition and 3-partition.

Proposition 4.1 There are eigenfunctions associated with λ3(α
1
3) whose nodal set has a

boundary singular point with two nodal lines which hit at this point. The polar coordinates
of this boundary singular point is either (ρc, α

1
3/2) or (ρc,−α1

3/2) with ρc ' 0.6558.

Proof: We recall that

λ3(α
1
3) = λ1,3(α

1
3) = λ2,1(α

1
3).

We set
ν =

π

α1
3

, j = jν,3 = j2ν,1.

Any associated eigenfunction is of the form

u(ρ, θ) = aJν(jρ) cos(νθ) + bJ2ν(jρ) sin(2νθ),
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where a and b are coefficients to be determined. It can be factorized as

u(ρ, θ) = J2ν(jρ) cos(νθ)

(
a
Jν(jρ)

J2ν(jρ)
+ 2b sin(νθ)

)
.

Let us define

v(ρ, θ) = a
Jν(jρ)

J2ν(jρ)
+ 2b sin(νθ).

We are looking for values of a and b for which v has a zero that is also a singular point.
The equation ∇v(ρ, θ) = 0 can be solved and yields{

θc = ±α1
3/2,

ρc ' 0.6558.

Thanks to the equation v(θc, ρc) = 0, we then find a and b up to a common multiplicative
factor.

Similarly, Figure 8 gives the nodal partition associated with the linear combination
(1− t)uα1,2 + tuα3,1 for α = α2

3. In this case, the functions u1,2 and u3,1 are both symmetric
with respect to the y-axis. Then any linear combination satisfies this symmetry too. As
previously, we observe a transition between a 2-partition and a 3-partition. When we
have a 3-partition, it is still a minimal one. We can characterize the transition between
2-partition and 3-partition:

Proposition 4.2 There are eigenfunctions associated with λ3(α
2
3) for which the point of

coordinates (1, 0) is a boundary singular point. Two nodal lines meet at this point.

Proof: This proposition is proved in the same way than proposition 4.1.

Minimal 3-partition

t = 0 t = 0.2 t = 0.4 t = 0.5169 t = 0.6 t = 0.8 t = 1

Figure 8: Nodal partition of (1− t)uα1,2 + tuα3,1, α = α2
3.

5 Minimal symmetric 3-partitions

In this section, we propose candidates to be minimal symmetric 3-partitions. This ap-
proach was used in [5] to catch symmetric candidates for the square and the disk.
Looking at nodal minimal 3-partitions obtained in Section 4, we observe that for any
α ∈ (0, α1

3]∪ [α2
3, 2π], there exists a symmetric minimal 3-partition. Now, we exhibit sym-

metric candidates to be minimal symmetric 3-partitions for α ∈ (α1
3, α

2
3). We refer to [5]

to explain the possible symmetric configurations. Using the Euler formula (cf. [14]), there
are only three configurations, represented in Figure 9, for the minimal 3-partition when
α1
3 < α < α2

3:
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(a) The 3-partition has one interior singular point X0, which is necessarily on the sym-
metry axis.

(b) The 3-partition has two interior singular points X0, X1 and no boundary singular
point.

(c) The 3-partition has two interior singular points and two boundary singular points.
Moreover ∂D1 ∩ ∂D2 consists of two curves, each one joining one boundary singular
point to one interior singular point.

In configurations (b) and (c), the interior singular points X0, X1 (and boundary singular
points for case (c)) are either on the symmetry axis, or symmetric to each other.

(a1) (b1) (c1)

O M

X0• ••
O M

X0 X1• •• •
O M

X0 X1• •• •

(a2) (b2) (c2)

O M

X0• ••
O M

X0

X1

• •

•

•
O M

X0

X1

• •

•

•

Figure 9: Configuration of the non bipartite symmetric minimal 3-partition.

5.1 Partition with one interior singular point

Let us first consider configurations of type (a). To catch such configuration, it is enough to
deal with the half-domain Σ+

α = Σα∩{y > 0} and look at 2-partitions on this half-domain.
The main advantage is that the minimal 2-partitions are nodal; to determine them, it is
enough to compute the second eigenfunction. The unknown parameter is the position
of the singular point Xα

0 . Thus we compute the second eigenvector of the Neumann-
Dirichlet and Dirichlet-Neumann Laplacian on Σ+

α and move the singular point all along
the axis {y = 0}; we denote by xα the abscissa of the singular point Xα

0 and by λND2 (xα)
and λDN2 (xα) the second eigenvalue of the Neumann-Dirichlet and Dirichlet-Neumann
Laplacian respectively (see Figures 9(a1) and 9(a2)):

Neumann-Dirichlet Dirichlet-Neumann

(a1)


−∆ϕ = λϕ in Σ+

α ,

∂nϕ = 0 on [O,Xα
0 ],

ϕ = 0 elsewhere.

(a2)


−∆ϕ = λϕ in Σ+

α ,

∂nϕ = 0 on [Xα
0 ,M ],

ϕ = 0 elsewhere,
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For each mixed problem, the nodal line of the second eigenvector meets the axis {y = 0}
at a point of abscissa denoted by yND(xα) and yDN (xα) respectively. The choice of the
interior singular point Xα

0 gives a 3-partition after symmetrization if and only if

• yND(xα) ≥ xα in the Neumann-Dirichlet case,

• yDN (xα) ≤ xα in the Dirichlet-Neumann case.

Figure 10 gives examples of nodal partitions for several values of xα. The Dirichlet con-
dition on the boundary are represented in blue line and the Neumann condition in red
dotted line. The nodal line is plotted in black. For the Neumann-Dirichlet configuration
(see Figure 10(a)), we obtain a 2-partition after symmetrization if xα is too large. If
xα is such that xα < yND(xα), we obtain a 3-partition whose energy can be reduced by
removing the Dirichlet line (Y ND(xα), Xα

0 ) (where Y ND(xα) is the point of coordinates
(yND(xα), 0)) in this sub-domain of the partition. We can make a similar analysis in the
Dirichlet-Neumann case (see Figure 10(b)).

yND(xα) > xα yND(xα) < xα
3-partition 2-partition
(a) Neumann-Dirichlet condition.

yDN (xα) > xα yDN (xα) < xα
2-partition 3-partition

(b) Dirichlet-Neumann condition.

Figure 10: Examples of nodal partition for the mixed problems.

Since the function x 7→ λND2 (x) is decreasing with x and x 7→ λDN2 (x) is increasing
with x, the optimal singular points are:

xNDα = max{xα : yND(xα) ≥ xα}, xDNα = min{xα : yDN (xα) ≤ xα}. (5.1)

For numerical simulations, we use the discretization

α ∈ { k
100π, 16 ≤ k ≤ 77} and xα ∈ { j

100 , 0 ≤ j ≤ 100}.

We denote by x̃NDα and x̃DNα the singular points defined by (5.1) for a discretization
xα ∈ { j

100 , 0 ≤ j ≤ 100}. Figure 11 represents these singular points according to α.
The 3-partitions obtained after symmetrization give upper-bounds for L3(α) as illustrated

in Figure 12. We observe that the energy for the Neumann-Dirichlet Laplacian is smaller
than the one obtained with the Dirichlet-Neumann Laplacian and smaller than L3(α).
Thus using Theorem 1.14, we deduce

Proposition 5.1 For any α ∈ (α1
3, α

2
3),

λ3(α) < L3(Σα) ≤ Lsym3 (α) < L3(α),

with Lsym3 (α) := min(λDN2 (xDNα ), λND2 (xNDα )) = λND2 (xNDα ).

Figure 13 gives examples of minimal symmetric 3-partitions of type (a) for several angles.
We denote by Dsymα the best candidate obtained like this.
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Figure 11: x̃NDα and x̃DNα vs. α ∈ {kπ/100, 16 ≤ k ≤ 77}.
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Figure 12: Upper-bound of L3(Σα) using symmetric partitions.

Figure 13: Best candidates for symmetric 3-partition.

5.2 Partition with two interior singular points

We have now to deal with the other configurations (b) and (c). Then, as illustrated in
Figure 9, the two interior singular points X0 and X1 are either on the axis {y = 0}, or
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symmetric to each other. Their coordinates are therefore:

1. X0 = (x0, 0) and X1 = (x1, 0) in case (b1) or (c1),

2. X0 = (x0, y0) and X1 = (x0,−y0) in case (b2) or (c2).

Let us first rule out configurations (b2) and (c2):

Lemma 5.2 Let α ∈ (α1
3, α

2
3) and Dα be a minimal 3-partition. We assume that this parti-

tion is symmetric according to the y-axis. Then the interior singular points are necessarily
on the axis {y = 0}.

Proof: This is clear for configuration of type (a) and we have used this property
previously. Let us now assume that the partition Dα is of type (b2) or (c2). Then, since
D+
α = Dα∩{y > 0} is a 3-partition with Neumann condition on the symmetry axis {y = 0},

we infer, by the min-max principle,

Λ3(Dα) ≥ λN3 (α),

where λN3 (α) is the third eigenvalue on Σ+
α with Neumann condition on {y = 0} and

Dirichlet condition elsewhere. But λN3 (α) = λ1,3(α) if α1
3 < α ≤ β3 and λN3 (α) = λ3,1(α)

if β3 ≤ α < α2
3, that is to say

λN3 (α) = L3(α), ∀α ∈ (α1
3, α

2
3).

Using Proposition 5.1 and Figure 12, we observe that for any α ∈ (α1
3, α

2
3), we find a

symmetric 3-partition Dsymα of type (a1) such that

Λ3(Dsymα ) < L3(α) ≤ Λ3(Dα).

Thus Dα cannot be a minimal 3-partition.

We have then reduced the study to configurations (b1) and (c1). The associated mixed
problems read

Neumann-Dirichlet-Neumann Dirichlet-Neumann-Dirichlet

(b1)


−∆ϕ = λϕ in Σ+

α ,

∂nϕ = 0 on [O,Xα
0 ] ∪ [Xα

1 ,M ],

ϕ = 0 elsewhere,

(c1)


−∆ϕ = λϕ in Σ+

α ,

∂nϕ = 0 on [Xα
0 , X

α
1 ],

ϕ = 0 elsewhere.

Using the results of Subsection 5.1 for the configuration (a), we can restrict the possible
critical points for configuration (c1):

Proposition 5.3 Let D = (D1, D2, D3) be a symmetric 3-partition of type (c1) with the
interior singular points Xα

0 and Xα
1 of coordinates (x0, 0) and (x1, 0). We assume either

x0 < x1 ≤ xNDα , or xDNα ≤ x0 < x1. Then this partition cannot be minimal.

Proof: We assume that x0 < x1 < xNDα and that D1 ⊂ {y > 0} and D+
3 = D3 ∩ {y >

0} 6= ∅. Then the partition D+ = (D1, D
+
3 ) satisfies the Dirichlet-Neumann-Dirichlet

problem (c1) and we have then, by the min-max principle,

Λ3(D) ≥ λDND2 (x0, x1),

with λDND2 (x0, x1) the second eigenvalue of the Dirichlet-Neumann-Dirichlet Laplacian (c1)
on Σ+

α . By monotonicity due to the Dirichlet condition and since x0 < x1 ≤ xNDα , we have

λDND2 (x0, x1) > λND2 (x1) ≥ λND2 (xNDα ) = Lsym3 (α) ≥ L3(α).

Thus the partition D can not be minimal.
The proof is similar if we assume xDNα ≤ x0 < x1.
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Figure 11 gives an approximation at 1/100 for xNDα and xDNα and thus the location for
possible interior singular points for configuration (c1).
When we search for candidates of type (b1) or (c1) numerically, we use the discretization

α ∈ { k
100π, 16 ≤ k ≤ 77} and Xα

k = (xαk , 0), xαk ∈ {
j

100 , 0 ≤ j ≤ 100}, k = 0, 1.

As in [5] for the square and the disk, the second eigenfunction associated with these mixed
problems never produces a configuration of type (b) or (c). Then the mixed Neumann-
Dirichlet problem provides the best symmetric candidates for any α ∈ (α1

3, α
2
3).

5.3 Angular sector of opening α = π/3

Let us analyze more specifically the case α = π/3. Using the approach developed in
Subsection 5.1, the best candidate obtained is represented in Figure 14 with x̃NDπ/3 = 0.64

(we recall that for the numerics, xα ∈ {k/100, 0 ≤ k ≤ 100}). It seems that the nodal
lines are straight lines. This is compatible with the equal angle properties: At the interior
singular point, the nodal lines have to meet with angle 2π/3 whereas the nodal lines meet
the boundary at right angles.

Figure 14: Symmetric candidate for Σπ/3.

Let us try to understand some properties of such a partition. We reproduce this 3-partition
of Σπ/3 by rotation of ±π/3 and ±2π/3 to tile the disk. Figure 15 represents this tiling
of the disk. Let us compare the areas of the sub-domains (Ω1,Ω2,Ω3) of the partition

Hex

Ω
1

Ω
2

Ω
3

D

O
A

B

C

Figure 15: Tiling of the disk with the 3-partition of Figure 14.
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of Σπ/3, assuming that the nodal lines are straight lines. We denote by A the interior
singular point of coordinates (L, 0). Let B be the boundary singular point of coordinates
L/4(3,

√
3) and C its symmetric point according to the axis {y = 0}. The area of the

total disk Disk equals A(Disk) = π. The area of the regular hexagon plotted in red in
Figure 15 is

A(Hex) =
3
√

3

2
L2.

We deduce

A(Ω1) =

√
3L2

4
.

Let us now compute the area of Ω2. We have

A(Ω2) =
1

12
(A(Disk)−A(Hex)) =

2π − 3
√

3L2

24
.

With L = 0.64, we obtain

A(Ω1) ' 0.177 and A(Ω2) ' 0.173.

Since the accuracy on L is 10−2, this gap is not significant. Let us determine now for
which value of L we have the equality:

A(Ω1) = A(Ω2)⇐⇒
√

3L2

4
=

2π − 3
√

3L2

24
⇐⇒ L =

√
2π

9
√

3
' 0.634 875.

In this case, we have A(Hex) = π/3.
This result is coherent with the discretization step for xα which equals 1/100. Therefore
it seems that the areas of every domains of the partition are equal.

6 Laplacian on the double covering

The method proposed in Section 5 can only catch symmetric candidates. However, we have
seen in Figure 7 that for the angle α = α1

3, there exists non symmetric minimal 3-partitions.
So we would like to find a method to catch non symmetric candidates. The method we
use now was introduced in [4] to explain why we find two symmetric configurations with
the same energy in the square. Let us explain this method. Let us go back to a general
bounded open and simply connected set Ω with piecewise C1,+ boundary. In the non nodal
case, there are three topological types possible for a minimal 3-partition of such a domain.
They are given by configuration (a), (b), and (c) in Section 5, removing the symmetry
assumption. As suggested by the numerical study of the symmetric case, we only look
for minimal partitions of type (a). Then, there is an interior singular point where three
half-curves meet. Following [4], we consider a double Riemannian covering of the domain
Ω punctured by this point. We then look for a minimal partition of Ω as the projection of
a nodal partition of the double covering.

6.1 Double covering of the domain

We will give a rather informal description of the double covering. Let us consider a point
X0 ∈ Ω. We denote Ω \ {X0} by ΩX0 . We now choose a simple regular curve γ contained
in Ω that links X0 to a point in ∂Ω. We consider two copies of Ω \ γ that we glue in such
a way that a side of γ on one sheet is connected to the opposite side on the other sheet

18



(cf. Figure 16). The resulting object is a two dimensional manifold with boundary, that
we denote by Ω̃X0 , with a natural projection map Π : Ω̃X0 → ΩX0 . It is a double covering
of ΩX0 , that we equip with the Riemannian metric lifted from ΩX0 through Π. A rigorous
and general construction is explained in [12]. In particular, it can be shown that the result
does not depend on the choice of γ.

�
�
�
�

�
�
�
�

��

Ω̃X0

G

X0

Π

1 2
γ

2 1
γ

X0

X0

ΩX0

Figure 16: Double covering of ΩX0 .

6.2 Symmetric and antisymmetric eigenvalues

Let us now define a mapping G from Ω̃X0 onto itself, called the deck map. For any
X1 ∈ Ω̃X0 , G(X1) is the only element X2 ∈ Ω̃X0 such that X2 6= X1 and Π(X2) = Π(X1).
Intuitively, the mapping G moves points from one sheet of the double covering to the
other one. We have of course G2 = Id. A function f : Ω̃X0 → C is said to be symmetric
if f ◦ G = f and antisymmetric if f ◦ G = −f . If we call S (resp. A) the space of
functions in L2(Ω̃X0) that are symmetric (resp. antisymmetric), we have the orthogonal
decomposition:

L2(Ω̃X0) = S ⊕A.

We call lifted Laplacian the Laplace-Beltrami operator on Ω̃X0 with Dirichlet boundary
condition. The lifted Laplacian preserves symmetric and antisymmetric functions. We can
therefore choose a basis of eigenfunctions for each subspace S and A. Their reunion is a
basis of eigenfunctions for L2(Ω̃X0). The eigenvalues associated with a symmetric (resp.
antisymmetric) eigenfunction will be called symmetric (resp. antisymmetric). The sym-
metric eigenvalues are actually the eigenvalues of the Dirichlet Laplacian on Ω, since any
symmetric eigenfunction is lifted from an eigenfunction on ΩX0 . We call the antisymmetric
eigenvalues Aharonov-Bohm eigenvalues, denoted by λABk , since they can be considered
as the eigenvalues of a so-called Aharonov-Bohm operator with pole at X = X0 and flux
Φ = 1/2 (cf. [1, 12, 2, 18]).

Let us now consider a nodal partition D = {Di : 1 ≤ i ≤ `} associated with an antisym-
metric eigenfuction u. The image of a domain of D by the deck map G is another domain
where u has the opposite sign. We can therefore group together the domains of D in pairs
{Di, Dj} such that Di ∩Dj = ∅ and Π(Di) = Π(Dj). The set Π(D) = {Π(Di) : 1 ≤ i ≤ `}
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is then a strong k-partition of Ω, with 2k = ` (we deduce in particular that ` is even).
Furthermore, contrary to D, the partition Π(D) is not necessarily bipartite. We will use
this to build non nodal candidates to be a minimal k-partition.
Consequently, if we find for some α a singular point X such that there exists an antisym-

metric eigenfunction with 6 nodal domains and associated with λ6((̃Σα)X) such that

λ6((̃Σα)X) < Λ3(Dsymα ),

then the symmetric 3-partition Dsymα is not minimal. Indeed, the projection of this sixth
eigenfunction on the first sheet is a 3-partition whose energy is less than Λ3(Dsymα ).
We have another way of checking that a 3-partition is not minimal. According to [13, Re-
mark 5.2], a minimal 3-partition must be Courant-sharp for the Aharonov-Bohm operator,
that is to say, its energy must be λAB3 .
Let us now combine the double covering approach and the results of Section 5 to obtain
more information. The first result consists in invalidating possibly some candidates of
type (a1) obtained in Subsection 5.1. Let us use the best candidates obtained in Sub-
section 5.1. For any α ∈ {kπ/100, 16 ≤ k ≤ 76}, we compute the first eigenvalues of the

Dirichlet Laplacian on the double covering (̃Σα)X with X = (x̃NDα , 0) and we split the spec-
trum between the symmetric eigenvalues λk(Σα) and the antisymmetric ones λABk ((Σα)X).

Figure 17 gives the first seven eigenvalues on (̃Σα)X and the nodal partition of the eigen-
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Figure 17: λj((Σ̃α)X), with X = (x̃NDα , 0), α ∈ { kπ100 , 16 ≤ k ≤ 76, 1 ≤ j ≤ 7}.

functions are represented on Figure 18 for several α. We notice that

Λ3(Dsymα ) = λ7((̃Σα)X) = λAB4 ((Σα)X) > λ5((̃Σα)X) = λAB3 ((Σα)X), for α = 16π/100,

Λ3(Dsymα ) = λ7((̃Σα)X) = λAB4 ((Σα)X) > λ6((̃Σα)X) = λAB3 ((Σα)X), for α = 17π/100,

Λ3(Dsymα ) = λ6((̃Σα)X) = λAB3 ((Σα)X), for α ∈ { kπ100 , k = 18, . . . , 76}.

Consequently, the minimal symmetric 3-partition Dsymα is not minimal for α = 16π/100
and α = 17π/100.
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To make simulations, we use the techniques we have previously explained in [3]: this
consists in meshing the double covering for the domain and using the Finite Element
Library Mélina (see [16]).

α = kπ
100 λ2((Σ̃α)X) λ3((Σ̃α)X) λ4((Σ̃α)X) λ5((Σ̃α)X) λ6((Σ̃α)X) λ7((Σ̃α)X)

k = 16

k = 17

k = 18

k = 20

k = 31

k = 35

k = 40

k = 50

Figure 18: Nodal partition associated with λj((Σ̃α)X), X = (x̃NDα , 0), α = kπ
100 , 2 ≤ j ≤ 7.

6.3 Numerical simulations for non symmetric candidates

Let us consider an angle α = α1
3 + ε with ε very small and positive. We have seen that

the 3-partition Dsymα is not minimal when ε is small enough.
We would like to use the double covering approach to catch some non symmetric can-
didates. For any point X ∈ Ω, we compute the first six eigenvalues of the Dirichlet

Laplacian on the double covering (̃Σα)X . The symmetric eigenvectors are those of the
Dirichlet Laplacian on Σα and we are interested in the antisymmetric ones. We move the
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puncturing point on Σα and hope to find a 3-partition given by the 6-th eigenfunction of

the Dirichlet Laplacian on (̃Σα)X .
Proposition 4.1 gives us an idea to localize the puncturing point X. Starting with Σα

for α = α1
3, we can pick an eigenfunction whose nodal set has a boundary singular point

with polar coordinates (ρc, α
1
3/2). Its nodal partition has three domains and a boundary

singular point at (ρc, α
1
3/2) where two lines meet. We recall that at a singular point, nodal

lines satisfy the equal angle property. We can use this property to localize a possible
singular point for Σα with α = α1

3 + ε. If the minimal 3-partition for Σα has a singular
point on the boundary {y = x tan α

2 } with only one nodal line reaching this point, then
this nodal line is normal to the boundary at the singular point. If ε is very small, the
distance between this singular point and the origin should be close to ρc.
When the angle is increasing, this approximation is not efficient. For α = π/3, the
boundary singular point seems to have polar coordinates (ρ3, π/6) with ρ3 = L

√
3/2 '

0.5498.
For numerical computations, we choose X on some perpendicular axes to the boundary
(see Figure 19):

X ∈ {Xk = (1− k
100)Cρ + k

100Aρ, 0 ≤ k ≤ 100},

where Cρ and Aρ are the points of coordinates

Cρ = ρ(cos α2 , sin
α
2 ) and Aρ = ρ(1/ cos α2 , 0), with ρ ∈ {0.54 + k/50, k = 0, . . . , 6}.

Then we catch a 3-partition among the 6-th eigenfunction of the Dirichlet Laplacian on

(̃Σα)X . With this method, we obtain, for several values of α, new partitions DABα better
than the minimal symmetric 3-partition Dsymα obtained by the mixed Neumann-Dirichlet
approach (see Figure 20).

Figure 19: Localization of the puncturing point for numerical simulations, α = 0.5.

For different sectors, we proceed in the same way and obtain new candidates whose
energy is represented in orange color in Figure 12 (see also Figure 20). We obtain a better
candidate than the symmetric one for angles close to α1

3 and especially for α = 16π/100
and α = π/6. For larger angles, the double covering approach gives candidates whose
energy is so close to those of the symmetric candidates that we cannot be affirmative.
This is probably due to the fact that the best candidate obtained by the double covering
approach has an interior singular point close to (or on) the symmetry axis for larger α
and then, by continuity, the eigenvalues are close to those of the mixed Neumann-Dirichlet
Laplacian.

Notice that for α = α2
3, all candidates in Figure 8 are symmetric. This encourages us

to make the conjecture:
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α = 0.5 α = 16π
100 α = π

6 α = 17π
100

Λ3(DABα ) = 300.895 Λ3(DABα ) = 298.787 Λ3(DABα ) = 281.93 Λ3(DABα ) = 273.691

Λ3(Dsymα ) = 302.663 Λ3(Dsymα ) = 300.190 Λ3(Dsymα ) = 282.012 Λ3(Dsymα ) = 273.685

Figure 20: Candidates for the minimal 3-partition of Σα.

Conjecture 6.1 There exists α3
3 such that

• for α ∈ (α1
3, α

3
3), the minimal 3-partitions are non symmetric,

• for α ∈ (α3
3, α

2
3), any minimal 3-partition is symmetric.

7 Negative results for minimal k-partitions, k = 4, 5, 6

7.1 4-partition

Figure 21 illustrates the lower and upper bounds for L4(Σα):

λ4(α) ≤ L4(Σα) ≤ min(λ1,4(α), λ2,2(α), λ4,1(α)).

We observe that λ2,2(α) > λ4(α). Consequently, partitions having the topology illustrated
in Figure 22 cannot be minimal for any α.
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Figure 21: Bounds for L4(Σα).

23



Figure 22: Non minimal 4-partition.

7.2 5-partition

Since k = 5 is a prime number, we only have the bounds given by Proposition 3.2 and
Remark 3.3:

L5(α) = λ5(α) for α ∈ (0, α1
5] ∪ [α2

5, 2π],

λ5(α) < L5(α) < L5(Σα) ≤ min(λ1,5(α), λ5,1(α)) for α ∈ (α1
5, α

2
5).
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Figure 23: Bounds for L5(Σα).

7.3 6-partition

Using Figure 24, we notice that

min(λ2,3(α), λ3,2(α), λ6,1(α)) > λ6(α), ∀α ∈ (0, 2π].

Thus candidates of the types illustrated in Figure 25 are never minimal.

24



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

100

200

300

400

500

600

700

800

900

1000

α
6
1

α/π

λ m
,n

(α
)

 

 
λ

1,6

λ
2,3

λ
3,2

λ
6,1

λ
6

Figure 24: Bounds for L6(Σα).

Figure 25: Non minimal 6-partitions.
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