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Abstract—An accurate channel estimation is crucial for the
novel time domain synchronous orthogonal frequency-division
multiplexing (TDS-OFDM) scheme in which pseudo noise (PN)
sequences serve as both guard intervals (GI) for OFDM data
symbols and training sequences for synchronization/channel
estimation. This paper studies the channel estimation method
based on the cross-correlation of PN sequences. A theoretical
analysis of this estimator is conducted and several improved
estimators are then proposed to reduce the estimation error floor
encountered by the PN-correlation-based estimator. It is shown
through mathematical derivations and simulations that the new
estimators approach or even achieve the Cramér-Rao bound.

I. INTRODUCTION

In the recently proposed time domain synchronous orthogo-

nal frequency-division multiplexing (TDS-OFDM) scheme [1],

the classical cyclic prefix (CP) conventionally used in OFDM

is replaced by a known pseudo noise sequence (simply termed

as PN hereafter) which is reused as training sequence for

channel estimation and synchronization. Consequently, TDS-

OFDM combines the guard interval (GI) and the training

symbols and does not need any additional pilots in the fre-

quency domain, thereby achieving a higher spectral efficiency

than CP-OFDM. TDS-OFDM has been adopted by the novel

Chinese digital television broadcasting standard–DTMB [2].

In TDS-OFDM, a channel estimate is needed to separate the

PN from the OFDM data part at the receiver. Its accuracy is

crucial for the demodulation process to avoid any residual PN

components in the received signal. Hence, channel estimation

plays a prominent part in TDS-OFDM performance and needs

to be carefully studied. [3] investigates several channel estima-

tion techniques based on known sequences but did not exploit

the property of the PN. [1] uses the cross-correlation results

of the transmitted and received PNs as the channel estimates

ignoring the fact that the correlation of the PN is not a

perfect impulse function, which introduces mutual interference

between different channel paths in the estimation result. To

overcome this problem, [4] suggests to remove interference

components of several strongest paths and [5] proposes to

iteratively detect the significant paths in the correlation results.

Both of them did not thoroughly eliminate the interference

lying in the PN correlation. Finally, [6] proposes a least square

(LS) channel estimator based on the property of maximum

length sequence (m-sequence). This solution however gives a

suboptimal performance as explained in the sequel.
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Fig. 1. Structure of the GI specified in the DTMB standard.

In this paper, we investigate the performance of the PN-

correlation-based channel estimator, and, more importantly,

propose several improved estimators that reduce or even elim-

inate the estimation error floor resulting from the interference

term issued from the PN correlation function. In the following,

section II introduces the PN based channel estimation and

gives a theoretical analysis of its performance. In section III,

three different improved estimators are proposed and their

respective mean square errors (MSE) are derived. Finally, their

performance is compared in section IV through simulations

over different channel conditions.

II. PN-CORRELATION-BASED CHANNEL ESTIMATOR

A. System Model

In the DTMB system, the ν-length GI consists of an N -

length m-sequence as well as its pre- and post- circular

extensions [2]. Since any circular shift of an m-sequence is

itself an m-sequence [7], the GI can also be treated as another

N -length m-sequence, denoted by p = [p1, p2, . . . , pN ]T with

(·)T standing for the matrix transpose, and an N
CP

-length CP.

That is, if this CP is longer than the channel delay spread,

the CP absorbs the channel time dispersions and the N -length

m-sequence is ISI-free. The received PN can be written as:

d = Hp + w = Ph + w, (1)

where d = [d1, d2, . . . , dN ]T , w = [w1, w2, . . . , wN ]T and

h = [h1, h2, . . . , hL, 0, . . . , 0]
T are the received PN, additive

white Gaussian noise (AWGN), and channel impulse response

(CIR), respectively. The channel is modeled as an Lth-order

finite impulse response (FIR) filter with α2
l
= E

[
|hl|

2
]

the



average power of the lth channel tap. The power of the

channel paths is normalized such that
∑

L

l=1 α
2
l

= 1. H

and P are the N × N circulant matrices with first rows

[h1, 0, . . . , 0, hL, . . . , h2] and [p1, pN , pN−1, . . . , p2], respec-

tively. The second equality in (1) uses the commutativity of

the convolution.

B. PN Correlation-based Estimator

Channel estimation can be simply obtained by performing

time domain correlation of transmitted and received PN se-

quences. Recall the circular autocorrelation property of the

m-sequence [7]:

R(n) =
1

N

N∑

m=1

pmp∗[m+n]N
=

{
1 n = 0

− 1
N

0 < n < N
, (2)

where (·)∗ is the conjugate of complex number and [·]N
denotes modulo-N operation. When the PN is sufficiently

long, i.e., − 1
N

≈ 0, the autocorrelation function approaches

the Kronecker delta function. The CIR can be extracted from

the received PN using this delta function. The estimator is:

h̄ =
1

N
Cd =

1

N
CPh +

1

N
Cw, (3)

where C = PH is an N × N circulant matrix with first row
[
p1, p2, . . . , pN

]
and represents the circular correlation of the

PN. (·)H is the Hermitian transpose. Using the correlation

property (2), it yields:

Q ,
1

N
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. (4)

The estimation error is ξh̄ = h̄ − h = (Q − IN )h + 1
N

Cw,

where IN is an N × N identity matrix. Assuming that the

channel taps are uncorrelated, the MSE of the estimate is:

εh̄ =
1

N
Tr

(

E
[
ξh̄ξ

H

h̄

])

=
1

N
Tr

(
E
[
(Q−IN)hhH(Q−IN)

H
])
+

1

N3
Tr

(

E
[
CwwHCH

])

=
1

N
Tr

(
(Q − IN )Λ(Q − IN )H

)

︸ ︷︷ ︸

interference

+
σ2
w

N3
Tr

(

CCH

)

︸ ︷︷ ︸

noise

, (5)

where Tr(·) is the trace of a matrix, Λ is a diagonal matrix

of size N whose first L elements of the main diagonal is
[
α2
1, α

2
2, . . . , α

2
L

]
, and the rest elements are all 0’s. The estima-

tion error is composed of two parts: the interference resulting

from the correlation of PN sequences and the noise. It can

be found that the interference comes from the contributions

of the off-diagonal elements in Q and vanishes if Q = IN .

The estimator is asymptotically unbiased as N → ∞. More

concretely, the interference is computed as:

(Q − IN )Λ(Q − IN )H =
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.(6)

Therefore, the MSE of the estimator is finally:

εh̄ =
σ2
w

N
+

N − 1

N3
. (7)

Eventually, the first term of the MSE expression is proportional

to the noise variance, while the second term is only determined

by the length of the PN. In other words, it produces an

estimation error floor with an MSE level of (N − 1)/N3.

This error floor appears when (N − 1)/N3 > σ2
w/N , i.e.,

SNR(dB) > 10 log10 (N
2/(N − 1)). For example, the error

floor appears when the SNR is greater than 24.1 dB and

27.1 dB, given the 255-length and 511-length PNs specified

in [2], respectively.

The Cramér-Rao bound of training sequence based channel

estimation with a length equal to the training sequence is [8]:

MSE ≥
σ2
w

N
Tr

(
(PHP)−1

)
=

σ2
w

N + 1
. (8)

Comparing (7) and (8), it can be found that the correlation

based estimator approaches the Cramér-Rao bound at low

SNR (i.e. σ2
w

is large), but suffers an estimation error floor at

high SNR. Therefore, we go in for some improved estimators

aiming at reducing this error floor.

III. IMPROVED ESTIMATORS WITH REDUCED ERROR

FLOOR

A. Method 1: Multiplying by Inverse of Matrix Q

From the analysis in the last section, the estimation error

floor comes from the fact that Q is not a perfect identity

matrix. Therefore, a straightforward solution is to perform a

linear transformation Ω such that ΩQ = IN . Since Q is known

and always full rank for a given m-sequence, Ω = Q−1. A

new estimator is obtained by left multiplying the correlation-

based estimator (3) by Q−1:

ĥ1 = Q−1h̄ = h +
1

N
Q−1Cw, (9)

which leads to an LS estimator that is in some extend similar to

that proposed in [6]. The estimation error is ξ
ĥ1

= 1
N

Q−1Cw.

The MSE of the estimator is:

ε
ĥ1

=
1

N
Tr

(

E
[
ξ
ĥ1
ξH
ĥ1

])

=
σ2
w

N3
Tr

(

Q−1CCH(Q−1)H
)

=
σ2
w

N2
Tr

(
Q−1

)
. (10)



As Q is a circulant matrix and all its elements are known for a

given m-sequence, its inverse is easily obtained and does not

need complex computations [9]:

Q−1 =








a b · · · b
b a · · · b
...

...
. . .

...

b b · · · a








(11)

where

a =
2N

N + 1
, and b =

N

N + 1
.

Replacing (11) into (10), the MSE becomes:

ε
ĥ1

=
2σ2

w

N + 1
. (12)

Comparing (12) and (7), it can be found that the estimation

error floor is removed by left multiplying by Q−1. In the

meantime, the MSE is however approximately twice as much

as the Cramér-Rao bound due to a noise power increase.

B. Method 2: Multiplying by Inverse of Truncated Matrix Q̄

Suppose the length of the CIR L is perfectly known, the

estimate (3) is truncated to L-length. The estimator becomes:

h̃ = Th̄ = Q̄h +
1

N
TCw, (13)

where h is the L-length vector of the real CIR. T is an L×N
matrix whose left L × L submatrix is an identity matrix and

rest parts are all 0’s, which represents deleting the last N −L
elements of an N -length vector. Q̄ , TQTT is an L × L
circulant matrix that contains the first L rows and L columns

of matrix Q and is still full rank. Similarly to (9), we can left

multiply estimator (13) by the inverse matrix Q̄
−1

to obtain:

ĥ2 = Q̄
−1

h̃ = h +
1

N
Q̄

−1
TCw. (14)

This new estimator is still unbiased. The related estimation

error is ξ
ĥ2

= 1
N

Q̄
−1

TCw which leads to an MSE given by:

ε
ĥ2

=
1

L
Tr

(

E
[
ξ
ĥ2
ξH
ĥ2

])

=
σ2
w

LN
Tr

(

Q̄
−1

Q̄(Q̄
−1

)H
)

=
σ2
w

LN
Tr

(

Q̄
−1

)

. (15)

The inverse matrix Q̄
−1

is the L× L circulant matrix with a

similar form as (11). The elements a and b are replaced by

ā = 1 +
L− 1

N2 + 2N −NL− L+ 1
, and

b̄ =
N

N2 + 2N −NL− L+ 1
.

The MSE of the estimation is finally:

ε
ĥ2

=
N − L+ 2

N2 + 2N −NL− L+ 1
σ2
w
. (16)

Comparing (12) and (16), it can be found that the estimation

MSE is reduced thanks to the truncation process. In the

extreme case when N = L, the estimator (14) turns to (9).

When the channel length L is known, the Cramér-Rao

bound of a training sequence based channel estimation is

computed by replacing matrix P by P̄ = PTT in (8):

MSE≥
σ2
w

L
Tr

(

(P̄
H

P̄)−1
)

=
(N − L+ 2)σ2

w

N2 + 2N −NL− L+ 1
. (17)

This demonstrates that the proposed estimator (15) achieves

the Cramér-Rao bound.

C. Method 3: Subtracting Interference

Another improved estimator can be obtained by subtracting

the contribution of the interference from the correlation-based

estimator.

More precisely, suppose the CIR length L is known, we can

rewrite the truncated CIR estimate (13) as:

h̃ = h + ∆̄h +
1

N
TCw, (18)

where ∆̄ is the L×L matrix that contains all the off-diagonal

elements of Q̄ and the main diagonal elements of ∆̄ are 0’s,

h is the L-length vector of the real CIR. Considering that

∆̄ is known for a given m-sequence, we propose to use the

estimated h̃ to reduce the interference. An estimator is thus:

ĥ3 = h̃ − ∆̄h̃ = h − ¯̄
∆h +

1

N
TCw −

1

N
∆̄TCw, (19)

where

¯̄
∆ , ∆̄∆̄ =








L−1
N2

L−2
N2 · · · L−2

N2

L−2
N2

L−1
N2 · · · L−2

N2

...
...

. . .
...

L−2
N2

L−2
N2 · · · L−1

N2







. (20)

The estimation error is: ξ
ĥ3

= − ¯̄
∆h + 1

N
TCw − 1

N
∆̄TCw.

Recalling that Q̄ = 1
N

TCCHTH, the MSE of the estimate is:

ε
ĥ3

=
1

L
Tr

(

E
[
ξ
ĥ3
ξ
H

ĥ3

])

=
1

L
Tr

(

¯̄
∆Λ̄( ¯̄∆)H+

σ2
w

N

(

Q̄+∆̄Q̄∆̄
H
−2ℜ

{
Q̄∆̄

H}
))

,(21)

where Λ̄ is an L×L diagonal matrix with diagonal elements

[α2
1, α

2
2, . . . , α

2
L
], ℜ{·} standing for the real part of a complex

number. The first term of the MSE expression is:

¯̄
∆Λ̄( ¯̄∆)H =








α
2
1

(L−1)2

N4 +α
2
2

(L−2)2

N4 + ···+ α
2
L

(L−2)2

N4

α
2
1

(L−2)2

N4 + α
2
2

(L−1)2

N4 + ···+α
2
L

(L−2)2

N4

. . .
α

2
1

(L−2)2

N4 + α
2
2

(L−2)2

N4 +··· +α
2
L

(L−1)2

N4








(22)

The third term of the MSE expression is:

σ2
w

N
∆̄Q̄∆̄

H
=

(L − 1)(N − L+ 2)σ2
w

N4
IL. (23)

The fourth term of the MSE expression is:

σ2
w

N
Q̄∆̄

H
=

(L− 1)σ2
w

N3
IL. (24)
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Fig. 2. MSE performance of different estimators with ν = 420, N = 255,
N

CP
= 165 in the TU-6 channel.

TABLE I
COMPLEXITIES OF THE PN-BASED CHANNEL ESTIMATION METHODS.

Estimator Complexity

Circular correlation-based estimator (3)
O(N2) or
O(N ·logN )

Multiplying matrix inverse N -length (9) O(N2)

Multiplying matrix inverse L-length (14) O(L2)

Subtracting interference (19) O(L2)

Eventually, putting (22), (23) and (24) into (21) yields:

ε
ĥ3

=
N3 + (L− 1)(2− L−N)

N4
σ2
w
+
(L− 1)(L2 − 3L+ 3)

N4L
.

(25)

Comparing (25) with (7), in low SNR region, the MSE

approaches the Cramér-Rao bound, while, in high SNR region,

the estimation error floor is reduced by a ratio of approxi-

mately
(
L

N

)2
.

IV. COMPLEXITY ANALYSIS

In order to compare the computational complexity of each

estimation method, we investigate the required basic oper-

ations, i.e. multiplication, additions and FFT’s etc. Table I

shows the complexity of the basic correlation-based estimator

(3) and the additional complexities required by the improved

methods (9), (14) and (19).

The N -length circular convolution takes N multiplications

and N−1 additions for each delay. That is N2 multiplications

and N × (N − 1) additions for an N -length CIR estimate.

Therefore, the complexity of the circular correlation-based es-

timator (3) is O(N2). Considering that the circular convolution

can also be computed by using the FFT, the computational

complexity can be reduced to O(N · logN ).

As far as the improved estimators are concerned, additional

complexities are needed by the estimation refinement process.

For instance, in the estimator (9), the matrix Q−1 depends only

on the given PN sequence and can thus be pre-computed and
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Fig. 3. MSE performance of different estimators with ν = 945, N = 511,
N

CP
= 434 in the TU-6 channel.

TABLE II
PROFILE OF THE TU-6 AND HT CHANNELS

Channel Tap1 Tap2 Tap3 Tap4 Tap5 Tap6

TU
Delay (µs) 0 0.2 0.5 1.6 2.3 5.0

Power (dB) -3 0 -5 -6 -8 -10

HT
Delay (µs) 0 0.2 0.4 0.6 15.0 17.2

Power (dB) 0 -2 -4 -7 -6 -12

stored 1. The matrix multiplication needs N2 multiplications

and N × (N − 1) additions. Therefore, the additional com-

plexity is O(N2). In the meantime, the matrix multiplication

can be carried out in a reduced length L as done in estimator

(14). For the same reason as in the pervious situation, the

computation of Q̄
−1

does not need any additional effort. The

corresponding additional complexity is therefore reduced to

O(L2). For the estimator (19), the refinement of each channel

tap needs (L− 1) additions. That is, L× (L− 1) additions are

required for the whole CIR estimate, which corresponds to a

computational complexity of O(L2).

V. SIMULATION RESULTS

The simulation parameters are selected according to the

specifications of the DTMB standard [2] where the sampling

period is 1/7.56 µs. The PN sequences are generated using

the maximal linear feedback shift registers specified by the

standard as well. The Typical Urban with six paths (TU-6) and

Hilly Terrain (HT) channels specified in [10] are used in the

evaluation. The power delay profiles of the two channels are

given in Table II. The maximum delays of the TU-6 channel

and HT channel are 5 µs and 17.2 µs which correspond to L =
38 and L = 130 samples of the DTMB system, respectively.

The performance of the different estimators is investigated

1In fact, the matrix Q−1 is quite structured. There are only two values –
diagonal and off-diagonal elements. Hence, it is not necessary to store all the
elements of the matrix. Instead, it is smarter to record the two values only.
The cost of the storage is therefore negligible.
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Fig. 4. MSE performance of different estimators with ν = 420, N = 255,
N

CP
= 165 in the HT channel.

with different PN lengths and channels as shown from Figure 2

to Figure 5. Results are obtained from 1000 realizations of

each channel. The correlation-based estimator corresponds to

the classical approach found in the literature [1] while others

are the improved versions introduced in section III.A, B and

C. From the figures, we can have the following observations:

1. Methods ‘improved method 1’ and ‘improved method 2’ com-

pletely eliminate the estimation error floor, while method

‘improved method 3’ reduces the error floor when the channel

delay spread is shorter than the PN length. Multiplying the

basic PN-correlation-based estimator by the inverse of the

correlation matrix can create a perfect identity matrix which

leads to estimators free of estimation error floor. This can be

seen from the performance of ‘improved method 1’ and ‘improved

method 2’. On the other hand, ‘improved method 3’ subtracts

the interference components using the CIR estimates. It ap-

proaches the Cramér-Rao bound in low SNR region, while the

estimation error floor is reduced by a ratio of approximately

( L

N
)2 in high SNR region. It indicates that the reduction is

more notable when the channel delay is significantly small

compared to the PN length. For instance, comparing Fig. 2

and Fig. 4, ‘improved method 3’ obtains more improvement in

the TU-6 channel than in the HT channel given the same PN.

In addition, ‘improved method 3’ can achieve a lower estimation

error floor when a longer PN is used (comparing Fig. 2 and

Fig. 3, or Fig. 4 and Fig. 5).

2. Method ‘improved method 1’ boosts the noise variance,

while methods ‘improved method 2’ and ‘improved method 3’ do

not. From this point, the latter two methods are the preferred

ones because they outperform the classical correlation based

approach whatever the SNR. In contrast, ‘improved method 1’

presents a performance back-off due to the noise component

power boost, which leads to worse MSE results than the

correlation based approach at low SNR. Last but not least,

the estimator ‘improved method 2’ does not have estimation error

floor and achieves the Cramér-Rao bound.
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Fig. 5. MSE performance of different estimators with ν = 945, N = 511,
N

CP
= 434 in the HT channel.

VI. CONCLUSION

In this paper, we have investigated the PN-correlation-

based channel estimator for TDS-OFDM. Aiming at reducing

the estimation error floor encountered by the classical PN-

correlation-based estimator, we have proposed three improved

estimators which exploit the correlation property of the m-

sequence and the knowledge of the channel length. It has been

shown through mathematical derivations and simulations that

the new proposed estimators approaches or even achieve the

Cramér-Rao bound.
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