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Abstract

In this paper, we consider the equations of linear elasticity in an exterior domain.
We exhibit artificial boundary conditions on a circle, which lead to a non-coercive
second order boundary value problem. In the particular case of an axisymmetric
geometry, explicit computations can be performed in Fourier series proving the well-
posedness except for a countable set of parameters. A perturbation argument allows
to consider near-circular domains. We complete the analysis by some numerical sim-
ulations.
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1 Introduction

To determine the influence of geometrical perturbations, we can perform a multiscale
asymptotic analysis of the equations of elasticity for a linear isotropic material with Hooke’s
law H. Recall that for any symmetric matrix e, H is defined by

He = λ tr(e) Id + 2µ e,

where µ and λ are the Lamé constants of the material. In this work, we are more par-
ticularly interested in the numerical computation of corrective terms appearing in the
evaluation of stress concentration due to the presence of geometrical defects.

Let Ω0 be a domain of R2 such that the origin 0 belongs to the domain. We consider
a domain Ωε pierced with some perturbations of size ε near well separated points xj (see
Figure 1): for N defects it can be defined as

Ωε = Ω0 \ ∪Nj=1ω
j
ε, with ωjε = xj + εωj .

The case of a single perturbation was presented in [12]. The case of two relatively close
inclusions is studied in [9, 8].
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Figure 1: The perturbed domain when N = 2.

We assume that the domains ωj contain the origin 0. We denote by Hj
∞ the unbounded

domains obtained by a blow-up around each perturbation:

Hj
∞ = R2 \ ωj .

The problem we focus on is written on the perturbed domain as:
−div σ(uε) = −µ∆uε − (λ+ µ)∇ div uε = 0 in Ωε,

uε = ud on Γd,
σ(uε) · n = g on Γn,

(1.1)
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where uε denotes the displacement and σ(uε) = He(uε) and e(uε) stand respectively for
the stress tensor and the linearized strain tensor defined by

σ(u) = λ tr(e(u)) Id + 2µ e(u), e(u) =
1

2

[
Du +DuT

]
with (Du)i,j = ∂iuj .

Γd and Γn are the Dirichlet and Neumann boundaries of the domain respectively. Γn
includes the boundary of the perturbation and g is supposed to be zero in a neighborhood
of the perturbation. This problem enters the general framework of local perturbations
for elliptic problems, which has been deeply studied. Among others, let us mention the
following works using potential theory [33, 5, 3, 4], and the reference monographs [27, 28]
for multiscale expansions. Following [11, 9], the solution of (1.1) is given at first order by

uε(x) = u0(x)− ε
N∑
j=1

[
αj1v

j
1

(
x− xj

ε

)
+ αj2v

j
2

(
x− xj

ε

)]
+O

(
ε2
)
, (1.2)

with u0 the solution on the unperturbed domain, α1 = σ11(u0)(0) and α2 = σ12(u0)(0).
The profiles vj1 and vj2 are obtained as solutions of an homogeneous Navier equation

stated on the unbounded domain Hj
∞ with Neumann conditions on the boundary of the

normalized perturbation:
−µ∆v` − (λ+ µ)∇ div v` = 0 in H∞,

σ(v`) · n = G` on ∂ω,
v` → 0 at infinity,

(1.3)

with G1 = (n1, 0), G2 = (0,n1) and n1 the first component of the outer normal to ∂H∞
with ω = ωj .

When the distance between the xj can not be assumed large with respect to ε, e.g.
when ‖xi − xj‖ ≈ εα for α ∈ (0, 1), the order of the error term in (1.2) is reduced (see
[11]).

Since Problem (1.3) is posed in an infinite domain (an exterior domain in the presented
case), its numerical approximation is not straightforward. Among the techniques known
to overcome this difficulty, let us mention infinite elements, introduced in the seventies
(see [34, 7]), which directly handle the problem with a standard Galerkin formulation.
The other (numerous) methods come back to a bounded domain for a classical finite
element resolution. This is the case of absorbing conditions (mainly for wave propagation),
[14, 16, 21, 32, 23] or integral representation, [25]. In both case, the domain is bounded with
a ball, on the boundary of which a new condition – which is non-local most of the time – is
imposed to get an equivalent formulation. The present work is in line with such techniques,
but we restrict ourselves to differential conditions and seek therefore approximate boundary
conditions on the artificial boundary. We choose here the boundary to be the circle ∂BR,
where R is assumed to be large. We show in the next section that the problem is reduced
to seek solutions of the following boundary value problem:

−µ∆u− (λ+ µ)∇ div u = 0 in BR \ ω,
σ(u) · n = G on ∂ω,

R(1+ν)
E σ(u) · n + 1

2

[
− ν

2(1−ν) 0

0 1−ν
1−2ν

]
∆τu + u = 0 on ∂BR,

(1.4)

with G ∈ H1/2(∂ω), ω is a C∞ perturbation of the unit ball and E, ν the Young’s modulus
and Poisson’s ratio linked to the Lamé coefficient by relation (2.9). The main result of
this paper is the following theorem:
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Theorem 1.1 There is a countable set of parameters S such that for any ν 6∈ S we have
the following results :

1. Suppose ω = B1. Then there is a bounded and at most countable set Rν such that
for all R 6∈ Rν and for all G ∈ H1/2(∂ω), problem (1.4) admits a unique solution
u ∈ H2(BR \ ω).

2. Suppose ω is a small perturbation of B1 in the following sense: ω = (Id +h)B1 with
h ∈ C∞ and a W1,∞-norm strictly less than 1. Then there exist εν and Rν such that
for all R > Rν , for all G ∈ H1/2(∂ω), for all ‖h‖W1,∞ ≤ εν , problem (1.4) admits a
unique solution u ∈ H2(BR \ ω).

The non-standard condition on the outer ball in (1.4) is known as a Ventcel boundary
condition (i.e. involving second order tangential derivatives of the displacement field).
Existence and uniqueness of the solution of this boundary value problem are non trivial.
We show in Section 3 that Theorem 1.1 is a consequence of a careful analysis of another
reduced problem on the boundary ∂BR of the following type :

1

2

[
− ν

2(1−ν) 0

0 1−ν
1−2ν

]
∂2θϕ+ ϕ+ ΛR(ϕ) = −R(1 + ν)

E
σ(u0) · n. (1.5)

We point out that this Dirichlet-to-Neumann map has been studied as a pseudodifferential
operator by Nakamura and Uhlmann in [30, 31] where the symbol in the pseudodifferential
framework is explicited. Anyway the expression given there was not adapted to our study
with parameter R, for which we need to be far more explicit.
Note that the determination of conditions of type (1.5) has connections with impedance
conditions for thin layer problems, [15, 6, 20], or wall laws for rough boundaries, [1, 22, 2].

In Section 2, we derive the artificial boundary condition (1.4). In Section 3 we show
existence of the solution of the boundary value problem in the sense of Theorem 1.1. The
strategy of the proof consists in reducing the problem to equation (1.5), which can be
analyzed after projection onto a family of finite subspaces of functions. An explicit study
of the uniform solvability is then performed for the projected linear systems. We give an
explicit form for the Dirichlet-to-Neumann map for the elasticity system in the particular
geometric configuration where ω is a disk. Finally, we extend the result when ω is close to a
disk by a perturbation method. In Section 4 we present the proof of the main Proposition
3.2 stated in Section 3. Last, we present in Section 5 numerical illustrations of our results.

2 Derivation of the artificial boundary condition

2.1 Singularities at infinity for the elasticity problem

We consider the profile problem (1.3) set in the perturbed plane H∞ = R2 \ ω. Let R
denote a positive real number and BR be the ball of radius R centered at the origin. To
derive artificial boundary conditions for the linear elasticity on ∂BR for large R, we need to
know the precise behavior of the solution v` of Problem (1.3) at infinity. In the following,
L denotes the operator L = µ∆ + (λ+ µ)∇div .
It is natural to introduce polar coordinates:

u(r, θ) = ur(r, θ)er + uθ(r, θ)eθ,

with er = cos θe1 + sin θe2 and eθ = − sin θe1 + cos θe2.
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We recall the expression of the involved differential operators in the polar system

∆u =

(
∂2rur +

1

r
∂rur −

1

r2
ur +

1

r2
∂2θur −

2

r2
∂θuθ

)
er

+

(
∂2ruθ +

1

r
∂ruθ −

1

r2
uθ +

1

r2
∂2θuθ +

2

r2
∂θur

)
eθ,

div u = ∂rur +
1

r
ur +

1

r
∂θuθ,

∇(div u) =

(
∂2rur +

1

r
∂rur −

1

r2
ur −

1

r2
∂θuθ +

1

r
∂2rθuθ

)
er

+

(
1

r
∂2rθur +

1

r2
∂θur +

1

r2
∂2θuθ

)
eθ.

Then the operator L takes the form

Lu =

(
(λ+ 2µ)

[
∂2rur +

1

r
∂rur −

1

r2
ur

]
+
µ

r2
∂2θur −

λ+ 3µ

r2
∂θuθ +

λ+ µ

r
∂2rθuθ

)
er

+

(
µ

[
∂2ruθ +

1

r
∂ruθ −

1

r2
uθ

]
+
λ+ 2µ

r2
∂2θuθ +

λ+ µ

r
∂2rθur +

λ+ 3µ

r2
∂θur

)
eθ, (2.1)

and the stress tensor is given by

σ(u) =

[
(λ+ 2µ)∂rur + λ

r (ur + ∂θuθ) µ
(
1
r (∂θur − uθ) + ∂ruθ

)
µ
(
1
r (∂θur − uθ) + ∂ruθ

)
(λ+ 2µ)1r (∂θuθ + ur) + λ∂rur

]
. (2.2)

Singularities of elliptic problems appear to be of tensorial form, see [17, 13, 29], and
especially [24, 18, 19] for the elasticity system. Therefore, we seek solutions of Lu = 0
under the form

u(r, θ) = rs
[
φr(θ)
φθ(θ)

]
. (2.3)

Consequently, using (2.1) and (2.2), we have in polar coordinates

Lu = rs−2
[
µφ′′r + (λ+ 2µ)(s2 − 1)φr + [(λ+ µ)s− (λ+ 3µ)]φ′θ
(λ+ 2µ)φ′′θ + µ(s2 − 1)φθ + [(λ+ µ)s+ (λ+ 3µ)]φ′r

]
, (2.4)

σ(u) = rs−1
[
λφ′θ + ((λ+ 2µ)s+ λ)φr µ(φ′r + (s− 1)φθ)

µ(φ′r + (s− 1)φθ) (λ+ 2µ)φ′θ + (λs+ (λ+ 2µ))φr

]
. (2.5)

Using (2.4), we reduce the second order system Lu = 0 into a bigger system of first order.
Introducing ψr = φ′r, ψθ = φ′θ, and U = (φr, φθ, ψr, ψθ)

T, we get the matricial formulation

U′ = AU,

with

A =


0 0 1 0
0 0 0 1

(λ+2µ)(1−s2)
µ 0 0 (λ+3µ)−(λ+µ)s

µ

0 µ(1−s2)
λ+2µ − (λ+3µ)+(λ+µ)s

λ+2µ 0

 .
The eigenvalues of A are ±i(s± 1). Hence, the polar functions φr, φθ belong to the space
generated by cos ((s± 1)θ), sin ((s± 1)θ). The continuity for θ = 0, θ = 2π requires s to
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be an integer.
The integer s being fixed, we look for coefficients Ar, Br, Cr, Dr, Aθ, Bθ, Cθ, Dθ, so that

φr(θ) = Ar cos((s− 1)θ) +Br sin((s− 1)θ) + Cr cos((s+ 1)θ) +Dr sin((s+ 1)θ),

φθ(θ) = Aθ cos((s− 1)θ) +Bθ sin((s− 1)θ) + Cθ cos((s+ 1)θ) +Dθ sin((s+ 1)θ).

Writing Lu = 0, we get :
aAr +Bθ = 0
aBr −Aθ = 0
Cr +Dθ = 0
Dr − Cθ = 0

with a =
(λ+ µ)s+ (λ+ 3µ)

(λ+ µ)s− (λ+ 3µ)
. (2.6)

Consequently, the functions φr and φθ satisfy:

φr(θ) = Ar cos((s− 1)θ) +Br sin((s− 1)θ) + Cr cos((s+ 1)θ) +Dr sin((s+ 1)θ),

φθ(θ) = aBr cos((s− 1)θ)− aAr sin((s− 1)θ) +Dr cos((s+ 1)θ)− Cr sin((s+ 1)θ).

Remark 2.1 It can be shown that these singular functions describe the behavior at infinity
of the solutions of the elasticity system in the plane. The solution v` of (1.3) satisfies for
any N > 0

v`(x) =
∑

−N<s<0

v
[s]
` (x) +O|x|→∞

(
|x|−N

)
, (2.7)

where v
[s]
` has the structure (2.3). The sum is extended to negative integers since v`

vanishes at infinity. Let us mention that such an expansion still holds for the derivatives
of v` at any order.

2.2 Artificial boundary condition on ∂BR
To approximate Problem (1.3), we introduce the bounded domain HR

∞ = H∞∩BR, where
BR is the ball of radius R centered at the origin. We are looking for a boundary condition
to impose on the artificial boundary ∂BR. Since v` tends to 0 at infinity, a first (naive)
choice consists of setting an homogeneous Dirichlet condition on ∂BR. However, thanks to
expansion (2.7), the resulting error is of order O(R−1), which is rather poor. To improve
this approximation accuracy, we seek a boundary condition which is satisfied by the leading
term in (2.7) so that the error becomes of order O(R−2).
More precisely, we find a linear relation between displacement and traction on the artificial
boundary ∂BR. If s = −1, the relation Lu = 0 reads{

µφ′′r − 2(λ+ 2µ)φ′θ = 0,

(λ+ 2µ)φ′′θ + 2µφ′r = 0.
(2.8)

To determine artificial boundary conditions on ∂BR, we consider σ(u) · n and notice that
n = er on ∂BR. Using (2.5) and (2.8), we get for s = −1:

σ(u) · er = r−2
[
λφ′θ
µφ′r

]
− 2µr−2

[
φr
φθ

]
= r−2

[
λµ

2(λ+2µ) 0

0 −λ+2µ
2

][
φ′′r
φ′′θ

]
− 2µr−2

[
φr
φθ

]
.
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Consequently

σ(u) · n +
1

2R

[
− λµ
λ+2µ 0

0 λ+ 2µ

]
∆τu +

2µ

R
u = 0.

Lamé’s coefficients are linked to the physical parameters (Young’s modulus and Poisson’s
ratio) through the following relations:

λ =
νE

(1 + ν)(1− 2ν)

µ =
E

2(1 + ν)

with E > 0, −1 < ν < 0.5. (2.9)

So that, this boundary condition of Ventcel’s type rewrites on ∂BR:

σ(u) · n +
E

2R(1 + ν)

[
−ν

2(1−ν) 0

0 1−ν
1−2ν

]
∆τu +

E

R(1 + ν)
u = 0.

We notice that

1− ν
(1 + ν)(1− 2ν)

> 0, and


−ν

2(1− ν2)
< 0 if ν ∈ (0, 0.5),

−ν
2(1− ν2)

> 0 if ν ∈ (−1, 0).

We finally get the following boundary value problem: for G ∈ H1/2(∂ω), looking for
u ∈ H2(BR \ ω) such that

−µ∆u− (λ+ µ)∇ div u = 0 in BR \ ω,
σ(u) · n = G on ∂ω,

R(1+ν)
E σ(u) · n + 1

2

[
− ν

2(1−ν) 0

0 1−ν
1−2ν

]
∆τu + u = 0 on ∂BR.

(2.10)

This last equation is written on the polar basis (er, eθ), i.e. u = (ur, uθ). Whatever the
sign of the parameter ν, the obtained approximate boundary condition leads to a non-
coercive weak formulation. A similar problem has been investigated in [10] for the scalar
Laplace equation.

3 Solvability of the equations

3.1 The strategy

We look for a solution u ∈ H2(BR \ ω) of problem (2.10) in the form

u = u0 + v,

where u0 ∈ H2(BR \ ω) lifts the Dirichlet data G ∈ H1/2(∂ω), i.e. satisfies the following
problem with a Dirichlet condition on the artificial boundary :

−µ∆u0 − (λ+ µ)∇ div u0 = 0 in BR \ ω,
σ(u0) · n = G on ∂ω,

u0 = 0 on ∂BR.
(3.1)
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We define the Dirichlet-to-Neumann map ΛR for all s > 0 by

ΛR : Hs+1/2(∂BR) → Hs−1/2(∂BR)

ϕ 7→ R(1+ν)
E σ(v) · n,

(3.2)

where v is the solution in Hs+1(BR \ ω) of
−µ∆v − (λ+ µ)∇ div v = 0 in BR \ ω,

σ(v) · n = 0 on ∂ω,
v = ϕ on ∂BR.

(3.3)

Let ϕ be the solution in H3/2(∂ω) of

R(1 + ν)

E
σ(u0) · n +

1

2

[
− ν

2(1−ν) 0

0 1−ν
1−2ν

]
∂2θϕ+ ϕ+ ΛR(ϕ) = 0. (3.4)

Then u is solution in H2(BR \ ω) of (2.10) if and only if u0 is solution in H2(BR \ ω) of
(3.1) and v is solution in H2(BR \ ω) of (3.3) with ϕ solution in H3/2(∂BR) of (3.4).

We aim at proving that Problem (3.4) is well-posed for any R > 0 except in a bounded
and countable set. We therefore have to reduce the problem to the following boundary
problem of unknown ϕ ∈ H3/2(∂BR), and where u0 is given:

1

2

[
− ν

2(1−ν) 0

0 1−ν
1−2ν

]
∂2θϕ+ ϕ+ ΛR(ϕ) = −R(1 + ν)

E
σ(u0) · n. (3.5)

In order to solve it, we shall give a concrete expression of ΛR and work in polar coordinates.

Remark 3.1 A careful analysis of the strategy before shows that we have the better fol-
lowing regularity properties for the unknown functions: u0 ∈ H2(BR \ ω) as stated, but
ϕ ∈ H5/2(∂BR) and v ∈ H3(BR \ω) by elliptic regularity, since (as a direct consequence of
Proposition 3.2 below) ΛR is in fact an operator of order 1. Note also that the decoupling
in two problems (3.1) in the one side and (3.3)–(3.4) on the other side was necessary in
order to be able to introduce ΛR as an operator (i.e. an unbounded linear application).

3.2 A decoupled system when the inclusion is a disk

We consider the case where ω is the disk B1 of radius 1 centered at the origin. The
boundary problem (3.3) defining the Dirichlet-to-Neumann map is then set in a ring. It
is natural to write the Dirichlet datum ϕ as a fourier series:

ϕ =

[
ϕr0
ϕθ0

]
+
∑
n≥1

[
ϕrn
ϕθn

]
cosnθ +

∑
n≥1

[
ψrn
ψθn

]
sinnθ. (3.6)

We will show in Propositions 3.2 and 3.3 below that the Dirichlet-to-Neumann map takes
the form

ΛR(ϕ) = Λ0
R(ϕ) +R(ϕ), (3.7)

where the principal part Λ0
R is defined in polar coordinates by

Λ0
R(ϕ) =

1− γ
γ

[
ϕr0
0

]
+

1

1 + γ

∑
n≥1

[
(n− γ)ϕrn + (1− nγ)ψθn
(nγ − 1)ψrn + (n− γ)ϕθn

]
cosnθ

+
1

1 + γ

∑
n≥1

[
(n− γ)ψrn + (nγ − 1)ϕθn
(1− nγ)ϕrn + (n− γ)ψθn

]
sinnθ, (3.8)
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where

γ =
1− 2ν

2(1− ν)
,

and the remainder R(ϕ) is controlled. In the following Proposition, we reformulate Prob-
lem (3.5) in terms of the unknown Fourier coefficients ϕrn, ϕθn, ψrn, and ψθn.

Proposition 3.2 Let ϕ ∈ H3/2(∂BR). For all n ≥ 1, let Φn = (ϕrn, ψ
r
n, ϕ

θ
n, ψ

θ
n)T, corre-

sponding to the n-th coordinates of ϕ in (3.6), and let fn,R be the 4-uplet of the decom-

position of −R(1+ν)
E σ(u0) · n with respect to the same basis. Similarly, let Φ0 = (ϕr0, ϕ

θ
0)

T

correspond to the 0-th coordinates of ϕ in (3.6), respectively f0,R be the 2-uplet of the

decomposition of −R(1+ν)
E σ(u0) · n with respect to the last basis.

Then equation (3.5) reads
PnΦn +Rn,RΦn = fn,R, (3.9)

where Pn is the matrix given by
for n ≥ 1,

Pn =
−n2

4


1− 2γ 0 0 0

0 1− 2γ 0 0
0 0 1

γ 0

0 0 0 1
γ

+ Id4 +
1

1 + γ


n− γ 0 0 1− nγ

0 n− γ nγ − 1 0
0 nγ − 1 n− γ 0

1− nγ 0 0 n− γ

 ,
for n = 0,

P0 = 0 + Id2 +

[1−γ
γ 0

0 0

]
=

[ 1
γ 0

0 1

]
,

and the remainder Rn,R is controlled uniformly in n ∈ N for R large: there exist R0 > 0
and a constant C (independent of n and R) such that for any n and R > R0, we have

‖Rn,R‖∞ ≤ Cn2R−2n+2 if n ≥ 2
‖R1,R‖∞ ≤ CR−4,
‖R0,R‖∞ ≤ CR−2,

(3.10)

Proof. The proof of this fundamental result is postponed to Section 4.

Note that (3.8) is a consequence of the expression of Λ0
R in terms of Fourier coefficients.

Using decomposition (3.6) and denoting Φn = (ϕrn, ψ
r
n, ϕ

θ
n, ψ

θ
n)T, this relation reads

Λ0
R(ϕ) = P 0

0

[
ϕr0
ϕθ0

]
+
∑
n≥1

[
cosnθ sinnθ 0 0

0 0 cosnθ sinnθ

]
P 0
nΦn

with

P 0
n =

1

1 + γ


n− γ 0 0 1− nγ

0 n− γ nγ − 1 0
0 nγ − 1 n− γ 0

1− nγ 0 0 n− γ

 when n ≥ 1,

and

P 0
0 =

[1−γ
γ 0

0 0

]
when n = 0.

These matrices have to be considered as a definition of operator Λ0
R in Fourier modes, and

ΛR can be written in the equivalent usual form (3.8) by summing up the Fourier modes.
Now we deal with the remainder term in (3.7):

R = ΛR − Λ0
R (3.11)

Estimates (3.10) directly imply by summation in Fourier modes the following result:
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Proposition 3.3 For all s ∈ R, there exists Cs > 0 such that for any ϕ ∈ C∞(∂BR) and
R > R0,

‖R(ϕ)‖Hs(∂BR) ≤ C−sR
−2‖ϕ‖H−s(∂BR).

In particular, we have by natural extension that for all ϕ ∈ H1/2(∂BR)

‖R(ϕ)‖H−1/2(∂BR) ≤ C1/2R
−2‖ϕ‖H1/2(∂BR).

3.3 Wellposedness for the disk case

As a direct consequence of Propositions 3.2 and 3.3, we get, in the case where ω is the
disk B1, the following result of solvability for equation (3.5), and therefore for the system
(2.10). The expected regularity for each problem is the one stated in Subsection 3.1 when
we developed our strategy : u ∈ H2(BR \ ω), ϕ ∈ H3/2(∂BR) and v ∈ H2(BR \ ω).

Proposition 3.4 Let us recall that γ = 1−2ν
2(1−ν) . We have

1. The matrix Pn is generically (with respect to γ) invertible for all n, which means
that for each γ 6∈ S, where S is an at most countable set of physical parameters, Pn
is invertible with norm of the inverse uniformly bounded in n.

2. For all fixed γ 6∈ S, there exists Rγ such that equation (3.5) admits a unique solution
ϕ for all R ≥ Rγ.

3. For all γ 6∈ S, there exists Rγ such that the system (2.10) admits a unique solution
u for all R ≥ Rγ.

4. For all γ 6∈ S, there exists a bounded and at most countable set Rγ such that the
system (2.10) admits a unique solution u for all R 6∈ Rγ.

Remark 3.5 The system (2.10) is expressed with the parameter ν. But since ν 7→ γ =
1−2ν
2(1−ν) is a strictly decreasing function of ν, it is equivalent to avoid a countable set in ν
or γ variables. It is more convenient to make the computations with parameter γ, so we
express the forbidden set in γ-variable.

Proof. First we notice that the range of values of γ is (0, 3/4) as ν ∈ (−1, 1/2) since,
as already mentioned, the function ν 7→ γ = 1−2ν

2(1−ν) is decreasing on (−1, 1/2).

Let us deal with point 1. First, we observe that P0 is actually invertible. For each
fixed n ≥ 1, we look at the full determinant of Pn and show that only a finite number of
values of γ is forbidden. We can rewrite

Pn =


A1 0 0 B1

0 A1 −B1 0
0 −B1 A2 0
B1 0 0 A2

 ,
with

A1 = −n
2

4
(1− 2γ) + 1 +

n− γ
1 + γ

=
n2(1− γ + 2γ2) + 4n+ 4

4(1 + γ)
,

A2 =
−n2

4γ
+ 1 +

n− γ
1 + γ

=
−n2(1 + γ) + 4nγ + 4γ

4γ(1 + γ)
,

B1 =
1− nγ
1 + γ

.
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Then, we compute detPn and obtain

detPn = (A1A2 −B2
1)2 =

n2

16γ2(1 + γ)2

 3∑
j=0

njPj(γ)

2

,

with

P0(γ) = −32γ,

P1(γ) = 4(1− 3γ + 2γ2) = 4(1− 2γ)(1− γ),

P2(γ) = 4(1 + γ − 2γ2) = 4(1 + 2γ)(1− γ),

P3(γ) = −1 + γ + 2γ2 = (−1 + 2γ)(1 + γ).

Let ∆n(γ) := 16γ2(1 + γ)2 detPn. The expanded expression of ∆n in terms of powers of
n is

∆n(γ) = n2
(
(−1 + γ + 2γ2)n3 + 4(1 + γ − 2γ2)n2 + 4(1− 3γ + 2γ2)n− 32γ

)2
.

We notice that ∆n(γ) is a polynomial function in both n and γ of order at most 4 in γ.
We want to check that ∆n is not identically zero and for this, we look first at the value at
γ = 0 for n fixed:

∆n(0) = n4(−n2 + 4n+ 4)2.

This is clear that ∆n is never identically zero, and therefore is a polynomial with respect
to the variable γ with at most 4 roots in the range (0, 3/4). We denote this set by Sn and
pose S = {1/2} ∪

⋃
n∈N∗ Sn. Then S is at most countable.

Now for each γ fixed in the complementary Sc of S, we notice that the matrix Pn is
equivalent (in the asymptotic sense n→∞) to the matrix

−n
2

4


1− 2γ 0 0 0

0 1− 2γ 0 0
0 0 1

γ 0

0 0 0 1
γ

 .
Recall that γ ∈ Sc (thus γ 6= 1/2), the previous matrix is thus invertible and it implies
that there exists nγ such that for all n > nγ , Pn also is invertible with inverse uniformly
bounded with respect to n. For each integer n in the finite set {1, 2, · · · , nγ}, Pn is again
invertible since γ 6∈ S, and the norm of the inverse can be bounded uniformly since there
is only a finite number of values. At the end, we get that the norm of the inverse of Pn
can be bounded uniformly in n ∈ N. This is the result of uniform boundedness of point 1.

For point 2, we first fix γ 6∈ S. For any n ≥ 0, we notice that the term Rn,R has a
norm going to 0 uniformly in n when R goes to infinity (recall that this term also depends
on γ) as mentioned in (3.10). This means that, according to point 1, there exists Rγ such
that for all R > Rγ , the matrix Pn + Rn,R is invertible for all n ∈ N with norm of this
inverse uniformly bounded with respect to n. At the end, we have been able to solve the
full problem (3.5) mode by mode with a control (uniform in n) of the norm of the inverse.
This gives the result.

For point 3, we just use the reduction in the beginning of Section 3 allowing to reduce
the problem on the boundary, and we get the result.

For point 4, we fix γ 6∈ S and look at the problem mode by mode. For fixed n ≥ 0, we
can notice that for M sufficiently large (for example M > max{2n−2, 4}), the determinant
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of the matrix RMPn + RMRn,R built in the proof is a non-zero polynomial in R. This
implies that for each n, only a finite number of radius give rise to a non solvable equation
(3.9). Again this means that for R 6∈ Rγ , where Rγ is an at most countable set of radii,
the problem PnΦn +Rn,RΦn = fn,R is solvable for all n ≥ 0, with norm of this inverse of
Pn+Rn,R uniformly bounded with respect to n (recall that fn,R was defined in Proposition
3.2). As before we get that for R 6∈ Rγ the problem (3.5) is solvable and so is the problem
(2.10). Notice that point 2 implies that for each γ 6∈ S, Rγ is a bounded set. The proof is
complete.

3.4 A perturbation result for quasi circular inclusions

We aim at extending the previous result obtained for ω = B1 to close domains ω. Now,
applying Point 3 of Proposition 3.4, we consider a real R > 1 such that the system (2.10)
admits a unique solution u on the domain BR \ B1 as soon as γ 6∈ S. Consider a domain
ω close to B1 and ask if the system (2.10) admits a unique solution u on the domain
BR \ω for the same set of parameters S. Our aim is to prove that the perturbed Dirichlet-
to-Neumann map depends continuously (as operator) on smooth perturbations on the
domain.
We adapt directly [10, Theorem 3.1] and consider a C∞ vector field h supported in Bρ for
ρ ∈ (1, R) and the application Th : R2 → R2 defined by Th = IdR2 + h. Clearly, Th is a
diffeomorphism when the norm of h is small, then the perturbed domain BR \ ωh, with
ωh = Th(ω), is just Th(BR \ ω).
For any s ≥ 0, let us first define the Dirichlet-to-Neumann operator

ΛR,h : Hs+1/2(∂BR) → Hs−1/2(∂BR)

φ 7→ R(1 + ν)

E
σ(vh) · n,

where vh ∈ Hs+1(BR \ ωh) solves the boundary values problem (3.3) with ω = ωh.
We are now in position to state the result of this section.

Proposition 3.6 In the previously described geometric setting, and for all s ≥ 0, there
exists Cs such that if ‖h‖W1,∞(BR) < 1 then

‖ΛR,h − ΛR‖L(Hs+1/2(∂BR),Hs−1/2(∂BR)) ≤ Cs‖h‖W1,∞(BR). (3.12)

Proof. The difference with the situation presented in [10] is that one deals with the
elasticity system instead of the Laplace equation. Hence the transported weak formation
for (3.3) is more complicated: one has to transport the symmetrized gradient instead of
the usual gradient. Its reads

eh(u) =
1

2

(
Du ·DT−1h + (DT−1h )T ·DuT

)
.

For example, the starting point is to write the perturbed bilinear form as

a(v, ϕ) =

∫
BR\B1

eh(v) : H : eh(ϕ) detDTh,

with v = u ◦ Th. Then, one adapts straightforwardly step-by-step the proof of Theorem
3.1 in [10]. This is left to the reader.
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3.5 Proof of the Theorem 1.1

Now we can complete the proof of Theorem 1.1. First notice that point 1 corresponding to
the case when ω = B1 is a rephrasing of point 3 and 4 of Proposition 3.4. We can anyway
repeat the argument for point 4 in a slightly more direct formulation, which will be useful
for the proof of part 2.

Proof of point 1 of Theorem 1.1 when R→∞ (Alternative).
As seen when the general strategy was explained in Section 3.1, solvability of the problem
(1.4) is equivalent to solve equation (3.5) on ∂BR. We introduce the following operator

P0
Rϕ =

1

2

[
− ν

2(1−ν) 0

0 1−ν
1−2ν

]
∂2θϕ+ ϕ+ Λ0

R(ϕ),

and we work now with parameter γ instead of parameter ν. Then from point 1 of Propo-
sition 3.4 and Remark 3.1, we know that for any γ 6∈ S, fixed from now on, the problem

P0
Rϕ = −R(1 + ν)

E
σ(u0) · n

is well posed with a unique solution ϕ ∈ H5/2(∂BR) ⊂ H2(∂BR). This is due to the
fact that P0

R is elliptic of order 2 and invertible from Hs+3/2(∂BR) to Hs−1/2(∂BR) for all
s ∈ R, according to the Fourier mode decomposition given in Proposition 3.2. Recall that
ellipticity of P0

R is a consequence of the fact that Λ0 is of order 1. Another consequence
is that P0

R has compact resolvent, and therefore a discrete spectrum as an unbounded
operator in L2(∂BR) (this explains partly the countability argument and the introduction
of the countable set Rγ). The invertibility of P0

R is then equivalent to say that 0 is not
in the spectrum of P0

R. If we introduce the so-called resolvent at 0 defined by abuse by
(P0

R)−1 : L2(∂BR) −→ L2(∂BR), we can write

ϕ = (P0
R)−1

(
−R(1 + ν)

E
σ(u0) · n

)
,

recalling that −R(1+ν)
E σ(u0) · n ∈ H1/2(∂BR). Since the spectrum is discrete, and 0 is not

in the spectrum, there exists εγ such that for all bounded operator QR : H2(∂BR) −→
L2(∂BR) with norm strictly less than εγ , there exists also a unique solution to the problem

(P0
R +QR)ϕ = −R(1 + ν)

E
σ(u0) · n.

For this it is sufficient to take εγ =
∥∥P0

R

∥∥−1
L(H2(∂BR),L2(∂BR))

and the corresponding inverse

is then given by
(P0

R +QR)−1 = (P0
R)−1(Id +QR(P0

R)−1)−1,

where the first inverse is well defined using Neumann series and
∥∥QR(P0

R)−1
∥∥ < 1.

We apply this strategy to QR = R = ΛR−Λ0
R for which we showed in Proposition 3.3

that
‖R‖L(L2(∂BR),L2(∂BR)) ≤ C0(γ)R−2

(recall that the norm of operator P0
R is independant of R from its expression in Fourier

modes). We therefore get that for R such that C0(γ)R−2 < εγ , Problem (3.5) is well
posed, with a solution ϕ ∈ H5/2(∂BR) ⊂ H3/2(∂BR). This concludes the alternative proof
of the part 1 of Theorem 1.1 concerning the existence of Rγ , called Rν in the statement.
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Proof of part 2 of Theorem 1.1.
We apply exactly the same argument in the case when ω = ωh is close to the unit ball in
the sense of Subsection 3.4. In that case, we want to solve on ∂BR:

1

2

[
− ν

2(1−ν) 0

0 1−ν
1−2ν

]
∂2θϕ+ ϕ+ ΛR,h(ϕ) = −R(1 + ν)

E
σ(u0) · n.

This can be rewritten as

(P0
R +QR)ϕ = −R(1 + ν)

E
σ(u0) · n, with QR = (ΛR − Λ0

R) + (ΛR,h − ΛR).

We use Propositions 3.3 and 3.6 to get

‖QR‖L(H1(∂BR),L2(∂BR)) ≤ C1(γ)R−2 + C1/2‖h‖W1,∞(BR),

where C1(γ) and C1/2 are defined in Propositions 3.3 and 3.6 respectively. Choosing Rγ
such that C1(γ)R−2γ < εγ/2 and C1/2‖h‖W1,∞(BR) < εγ/2 give the result of part 2 of

Theorem 1.1, with Rν = Rγ and εν = C−11/2εγ/2 there.

4 Proof of Proposition 3.2

In this section, we give the proof of Proposition 3.2. This will be done in several steps.
The first one is to analyze equation Lv = 0 in Fourier modes and seek solutions which will
appear to have a special form. The second one is to explicit mode by mode the expression
of

r(1 + ν)

E
σ(v) · n on ∂Br.

The third one is to use boundary conditions in (3.3) for r = 1 and r = R to get the
expression of the Dirichlet-to-Neumann map mode by mode (this will be splitted into
cases n ≥ 2, n = 1 and n = 0).

4.1 First step : solutions of Lv = 0 in Fourier modes

We shall look for solutions v in polar coordinates in the form of a Fourier series:

v =

[
v1

v2

]
=

[
er0(r)
eθ0(r)

]
+
∑
n≥1

[
crn(r)
cθn(r)

]
cosnθ +

∑
n≥1

[
drn(r)
dθn(r)

]
sinnθ. (4.1)

We first stick to the case when n ≥ 1. It will appear later that we have to separate
the study between the cases n = 1 and n ≥ 2. Using the expression (2.1) of the elasticity
operator in polar coordinates, the coefficients (crn, c

θ
n, d

r
n, d

θ
n) satisfy

(λ+ 2µ)

(
crn
′′ +

1

r
crn
′ − 1

r2
crn

)
− µn2

r2
crn −

λ+ 3µ

r2
ndθn +

λ+ µ

r
ndθn

′
= 0, (4.2)

(λ+ 2µ)

(
drn
′′ +

1

r
drn
′ − 1

r2
drn

)
− µn2

r2
drn +

λ+ 3µ

r2
ncθn −

λ+ µ

r
ncθn
′

= 0, (4.3)

µ

(
cθn
′′

+
1

r
cθn
′ − 1

r2
cθn

)
− λ+ 2µ

r2
n2cθn +

λ+ µ

r
ndrn

′ +
λ+ 3µ

r2
ndrn = 0, (4.4)

µ

(
dθn
′′

+
1

r
dθn
′ − 1

r2
dθn

)
− λ+ 2µ

r2
n2dθn −

λ+ µ

r
ncrn
′ − λ+ 3µ

r2
ncrn = 0. (4.5)
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This is a system of four differential equations which are coupled two by two. We introduce

γ =
µ

λ+ 2µ
=

1− 2ν

2(1− ν)
∈
(

0,
3

4

)
. (4.6)

Then relations (4.2)–(4.5) rewrite
(
crn
′′ + 1

r c
r
n
′ − 1

r2
crn − n

r2
dθn + n

r d
θ
n
′
)
− γn

r

(
n
r c
r
n + 1

rd
θ
n + dθn

′
)

= 0,

γ
(
dθn
′′

+ 1
rd
θ
n
′ − 1

r2
dθn − n

r2
crn + n

r c
r
n
′
)
− n

r

(
n
r d

θ
n + 1

r c
r
n + crn

′) = 0,
(4.7)


(
drn
′′ + 1

rd
r
n
′ − 1

r2
drn + n

r2
cθn − n

r c
θ
n
′
)
− γn

r

(
n
r d

r
n − 1

r c
θ
n − cθn

′
)

= 0,

γ
(
cθn
′′

+ 1
r c
θ
n
′ − 1

r2
cθn + n

r2
drn − n

r d
r
n
′
)
− n

r

(
n
r c
θ
n − 1

rd
r
n − drn′

)
= 0.

(4.8)

Mimicking the form of solutions in Fourier series for the Laplace problem, we look for
solutions of the form

crn(r) = βrr
α and dθn(r) = βθr

α, (4.9)

drn(r) = β̃rr
α̃ and cθn(r) = β̃θr

α̃, (4.10)

where the parameters α, β and α̃, β̃ have to be determined. Plugging these expressions
into (4.7)–(4.8), we obtain{ (

(α2 − 1)βr + n(α− 1)βθ
)
− γn (nβr + (α+ 1)βθ) = 0,

γ
(
(α2 − 1)βθ + n(α− 1)βr

)
− n (nβθ + (α+ 1)βr) = 0,

(4.11)
(

(α̃2 − 1)β̃r − n(α̃− 1)β̃θ

)
− γn

(
nβ̃r − (α̃+ 1)β̃θ

)
= 0,

γ
(

(α̃2 − 1)β̃θ − n(α̃− 1)β̃r

)
− n

(
nβ̃θ − (α̃+ 1)β̃r

)
= 0.

(4.12)

In a matricial form, these equations read

M(α)

[
βr
βθ

]
=

[
0
0

]
and M̃(α̃)

[
β̃r
β̃θ

]
=

[
0
0

]
, (4.13)

with

M(α) =

[
α2 − 1− γn2 n(α− 1− γ(α+ 1))

n(γ(α− 1)− (α+ 1)) γ(α2 − 1)− n2
]
,

and

M̃(α) =

[
α2 − 1− γn2 −n(α− 1− γ(α+ 1))

−n(γ(α− 1)− (α+ 1)) γ(α2 − 1)− n2
]
.

Thus, the determinants of the later two matrices M(α) and M̃(α) involve the same bi-
quadratic expression in α and are given by

detM(α) = det M̃(α) = γ
(
α4 − 2α2(1 + n2) + (n2 − 1)2

)
. (4.14)

These determinants cancel for
α±±n = ±n± 1.

At this point we notice that we have 4 roots when n ≥ 2 and only 3 in the case when
n = 1 for which α−+1 = α+−

1 = 0. We study the two cases separately.
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4.1.1 Case n ≥ 2

Consider the 4 roots α±±n . For each of them and modulo a multiplicative constant, the
coordinates β±±r,n , β

±±
θ,n , β̃

±±
r,n , β̃

±±
θ,n of vectors satisfying (4.13) are defined by

β±±θ,n =
1

γ − 1

(
γ − (α±±n )2 − 1

n2

)
, β±±r,n =

α±±n − 1− γ(α±±n + 1)

n(γ − 1)
,

β̃±±θ,n = β±±θ,n , β̃±±r,n = −β±±r,n .

After simplification, we have

β±±θ,n = 1− ±± 2

n(γ − 1)
, β±±r,n = −α

±±
n + 1

n
− 2

n(γ − 1)
.

For each choice α±±n = ±n± 1, we choose explicitly coefficients β±±θ,n , β
±±
r,n by

α++
n = n+ 1, β++

θ,n = 1− 2
n(γ−1) , β++

r,n = −1− 2γ
n(γ−1) ,

α+−
n = n− 1, β+−θ,n = 1, β+−r,n = −1,

α−+n = −n+ 1, β−+θ,n = 1 + 2
n(γ−1) , β−+r,n = 1− 2γ

n(γ−1) ,

α−−n = −n− 1, β−−θ,n = 1, β−−r,n = 1.

(4.15)

Then the functions crn, d
θ
n, d

r
n, c

θ
n take the form

crn(r) = β−−r,n A
−−
n r−n−1 + β−+r,n A

−+
n r−n+1 + β+−r,n A

+−
n rn−1 + β++

r,n A
++
n rn+1,

dθn(r) = β−−θ,n A
−−
n r−n−1 + β−+θ,n A

−+
n r−n+1 + β+−θ,n A

+−
n rn−1 + β++

θ,n A
++
n rn+1,

drn(r) = −β−−r,n B−−n r−n−1 − β−+r,n B
−+
n r−n+1 − β+−r,n B

+−
n rn−1 − β++

r,n B
++
n rn+1,

cθn(r) = β−−θ,n B
−−
n r−n−1 + β−+θ,n B

−+
n r−n+1 + β+−θ,n B

+−
n rn−1 + β++

θ,n B
++
n rn+1.

After simplification using (4.15), we obtain

crn(r) = A−−n r−n−1 + β−+r,n A
−+
n r−n+1 −A+−

n rn−1 + β++
r,n A

++
n rn+1, (4.16)

dθn(r) = A−−n r−n−1 + β−+θ,n A
−+
n r−n+1 +A+−

n rn−1 + β++
θ,n A

++
n rn+1, (4.17)

drn(r) = −B−−n r−n−1 − β−+r,n B−+n r−n+1 +B+−
n rn−1 − β++

r,n B
++
n rn+1, (4.18)

cθn(r) = B−−n r−n−1 + β−+θ,n B
−+
n r−n+1 +B+−

n rn−1 + β++
θ,n B

++
n rn+1. (4.19)

For each n ≥ 2, the system (4.7) and respectively (4.8) are systems of two linear equations
of second order, therefore with a vector space of solutions of dimension four. On the other
hand the solutions described in (4.16)–(4.17), respectively (4.18)–(4.19) span each a vector
space of dimension four as the four real numbers A±±n move. We have therefore found all
the solutions of respectively (4.7) and (4.8) for n ≥ 2.

4.1.2 Case n = 1

In this subsection, we keep the subscript n although n = 1. In this case, we have 3 roots
α++
n = 2, α00

n = 0 and α−−n = −2. Associated to each of them we can choose coordinates
of eigenvectors in the following way :

α++
n = 2, β++

θ,n = 1− 2
γ−1 , β++

r,n = −1− 2γ
γ−1 ,

α00
n = 0, β00θ,n = 1, β00r,n = −1,

α−−n = −2, β−−θ,n = 1, β−−r,n = 1.

(4.20)
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Then (for n = 1) the functions crn, d
θ
n, d

r
n, c

θ
n take the form

crn(r) = β−−r,n A
−−
n r−n−1 + β00r,nA

00
n r

n−1 + β++
r,n A

++
n rn+1,

dθn(r) = β−−θ,n A
−−
n r−n−1 + β00θ,nA

00
n r

n−1 + β++
θ,n A

++
n rn+1,

drn(r) = −β−−r,n B−−n r−n−1 − β00r,nB
00
n r

n−1 − β++
r,n B

++
n rn+1,

cθn(r) = β−−θ,n B
−−
n r−n−1 + β00θ,nB

00
n r

n−1 + β++
θ,n B

++
n rn+1.

After simplification using (4.20), we obtain

crn(r) = A−−n r−2 −A00
n + β++

r,n A
++
n r2, (4.21)

dθn(r) = A−−n r−2 +A00
n + β++

θ,n A
++
n r2, (4.22)

drn(r) = −B−−n r−2 +B00
n − β++

r,n B
++
n r2, (4.23)

cθn(r) = B−−n r−2 +B00
n + β++

θ,n B
++
n r2. (4.24)

Let us first prove that we have found the full space of solutions of (4.7) and (4.8) for n = 1.

Lemma 4.1 The space of solutions of systems (4.7) and (4.8) are a 3 dimension space
and any solution reads (4.21)–(4.24).

Proof. We prove this result for system (4.7). The proof is essentially similar for the
system (4.8).
We use the change of variables r = ex and define

crn(r) = f(ln r), dθn(r) = g(ln r).

System (4.7) can be rewritten after simplification:{
(f ′′ − f − g + g′)− γ(f + g + g′) = 0,

γ(g′′ − g − f + f ′)− (g + f + f ′) = 0.
(4.25)

Denoting by U = (f, g, f ′, g′)T, we write (4.25) on the form U′ = MU with

M =


0 0 1 0
0 0 0 1

1 + γ 1 + γ 0 γ − 1
1 + 1

γ 1 + 1
γ

1
γ − 1 0

 .
We have det(M −XId4) = X2(X − 2)(X + 2). We notice that we find again the solutions
e2x = r2, e−2x = r−2, and the constant functions. Computing a Jordan decomposition for
M , we have

M = PTP−1 with T =


2 0 0 0
0 −2 0 0
0 0 0 1
0 0 0 0

 and P =


3γ − 1 1 1 0
3− γ 1 −1 0

2(3γ − 1) −2 0 1
2(3− γ) −2 0 −1

 .
The vector V = P−1U satisfies the equation V′ = TV whose general solution is given by

V(x) =


ae2x

be−2x

c
cx+ d

 , with a, b, c, d ∈ R4.
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We infer

U(x) = PV(x) =


a(3γ − 1)e2x + be−2x + c
a(3− γ)e2x + be−2x − c

2a(3γ − 1)e2x − 2be−2x + cx+ d
2a(3− γ)e2x − 2be−2x − cx− d

 .
Coming back to the initial r-variable, the first two relations give the general expression
for crn and dθn:[

crn(r)
dθn(r)

]
=

[
a(3γ − 1)r2 + br−2 + c
a(3− γ)r2 + br−2 − c

]
=

[
a(1− γ)β++

r,n r
2 + br−2 + c

a(1− γ)β++
θ,n r

2 + br−2 − c

]
,

since β++
r,n = 1−3γ

γ−1 and β++
θ,n = γ−3

γ−1 . This achieves the proof of the lemma.

4.1.3 Case n = 0

The system (2.1) then simply reads

(λ+ 2µ)

(
er0
′′ +

1

r
er0
′ − 1

r2
er0

)
= 0, (4.26)

µ

(
eθ0
′′

+
1

r
eθ0
′ − 1

r2
eθ0

)
= 0. (4.27)

This is a decoupled system of two second order equations, for which the solutions are easily
shown to be

er0(r) = A−−0 r−1 +A++
0 r, (4.28)

eθ0(r) = B−−0 r−1 +B++
0 r. (4.29)

Thus we have found the full vector space of solutions for n = 0.

4.2 Expression of the Neumann operator

In this section, we give the expression of the Neumann operator

r(1 + ν)

E
σ(v) · n(r),

when v has the form (4.1) first, and then in the special case when v is a solution of Lv
and satisfies (4.16)–(4.19), (4.21)–(4.24) and (4.28)–(4.29). Using first (2.2) and (4.1), we
can write

σ(v)·n(r) =

[
(λ+ 2µ)er0

′(r) + λ
r e
r
0(r)

µ
(
eθ0
′
(r)− 1

re
θ
0(r)

) ]
+
∑
n≥1

[
(λ+ 2µ)crn

′(r) + λ
r c
r
n(r) + λ

rnd
θ
n(r)

µ
(
n
r d

r
n(r)− 1

r c
θ
n(r) + cθn

′
(r)
) ]

cosnθ

+
∑
n≥1

[
(λ+ 2µ)drn

′(r) + λ
r d

r
n(r)− λ

rnc
θ
n(r)

µ
(
−n
r c
r
n(r)− 1

rd
θ
n(r) + dθn

′
(r)
) ]

sinnθ.
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Using definition (4.6) of γ, we have λ
λ+2µ = 1− 2γ and we deduce

rσ(v) · n(r) =

[
λ+ 2µ 0

0 µ

]([
er0
′(r)r + (1− 2γ)er0(r)

eθ0
′
(r)r − eθ0(r)

]
+
∑
n≥1

[
crn
′(r)r + (1− 2γ)crn(r) + n(1− 2γ)dθn(r)

ndrn(r)− cθn(r) + cθn
′
(r)r

]
cosnθ

+
∑
n≥1

[
drn
′(r)r + (1− 2γ)drn(r)− n(1− 2γ)cθn(r)

−ncrn(r)− dθn(r) + dθn
′
(r)r

]
sinnθ

)
. (4.30)

Using (2.9) we also get that

1 + ν

E
µ =

1

2
, and

1 + ν

E
(λ+ 2µ) =

1

2γ
, (4.31)

and therefore

1 + ν

E
rσ(v) · n(r) =

[ 1
2γ 0

0 1
2

]([
er0
′(r)r + (1− 2γ)er0(r)

eθ0
′
(r)r − eθ0(r)

]
+
∑
n≥1

[
crn
′(r)r + (1− 2γ)crn(r) + n(1− 2γ)dθn(r)

ndrn(r)− cθn(r) + cθn
′
(r)r

]
cosnθ

+
∑
n≥1

[
drn
′(r)r + (1− 2γ)drn(r)− n(1− 2γ)cθn(r)

−ncrn(r)− dθn(r) + dθn
′
(r)r

]
sinnθ

)
.

For convenience we shall now write

∀n ≥ 1,

{
c1(n, r) = crn

′(r)r + (1− 2γ)crn(r) + n(1− 2γ)dθn(r),

s2(n, r) = −ncrn(r)− dθn(r) + dθn
′
(r)r,

(4.32)

∀n ≥ 1,

{
s1(n, r) = drn

′(r)r + (1− 2γ)drn(r)− n(1− 2γ)cθn(r),

c2(n, r) = ndrn(r)− cθn(r) + cθn
′
(r)r,

(4.33)

c1(r) = er0
′(r)r + (1− 2γ)er0(r), (4.34)

c2(r) = eθ0
′
(r)r − eθ0(r), (4.35)

so that

1 + ν

E
rσ(v) · n(r) =

[ 1
2γ 0

0 1
2

]([
c1(r)
c2(r)

]
+
∑
n≥1

[
c1(n, r)
c2(n, r)

]
cosnθ +

∑
n≥1

[
s1(n, r)
s2(n, r)

]
sinnθ

)
.

(4.36)
In the following, we compute the coefficients c1(n, r), s2(n, r), s1(n, r), c2(n, r), c1(r),

and c2(r). Again we split the study depending on the cases n ≥ 2, n = 1 and n = 0.

4.2.1 Case n ≥ 2

In that case, replacing crn and dθn by their expression (4.16)–(4.17) in (4.32)–(4.33), we get

c1(n, r) = −2γ(n+ 1)A−−n r−n−1 +
(

(−n+ 2− 2γ)β−+r,n + n(1− 2γ)β−+θ,n

)
A−+n r−n+1

+2γ(1− n)A+−
n rn−1 +

(
(n+ 2− 2γ)β++

r,n + n(1− 2γ)β++
θ,n

)
A++
n rn+1

= −2γ(n+ 1)A−−n r−n−1 + 2γ

(
2

n
− 1− n

)
A−+n r−n+1

+2γ(1− n)A+−
n rn−1 + 2γ

(
2

n
+ 1− n

)
A++
n rn+1, (4.37)
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s2(n, r) = −2(n+ 1)A−−n r−n−1 − n(β−+r,n + β−+θ,n )A−+n r−n+1

+2(n− 1)A+−
n rn−1 − n(β++

r,n − β++
θ,n )A++

n rn+1

= −2(n+ 1)A−−n r−n−1 + 2(1− n)A−+n r−n+1

+2(n− 1)A+−
n rn−1 + 2(n+ 1)A++

n rn+1, (4.38)

and similarly with cθn and drn, we get

s1(n, r) = −
(
− 2γ(n+ 1)B−−n r−n−1 + 2γ

(
2

n
− 1− n

)
B−+n r−n+1

+2γ(1− n)B+−
n rn−1 + 2γ

(
2

n
+ 1− n

)
B++
n rn+1

)
, (4.39)

c2(n, r) = −2(n+ 1)B−−n r−n−1 − 2(n− 1)B−+n r−n+1

−2(1− n)B+−
n rn−1 + 2(n+ 1)B++

n rn+1. (4.40)

4.2.2 Case n = 1

A similar computation replacing crn and dθn in (4.32)–(4.33) by their expression (4.21)–
(4.24) gives in the case n = 1,

c1(n, r) = −4γA−−n r−2 + 4γA++
n r2,

s2(n, r) = −4A−−n r−2 + 4A++
n r2,

s1(n, r) = 4γB−−n r−2 − 4γB++
n r2,

c2(n, r) = −4B−−n r−2 + 4B++
n r2.

(4.41)

Note that the constant terms A00
n and B00

n do not appear.

4.2.3 Case n = 0

Using the expressions (4.28)–(4.29) in (4.34)–(4.35), we deduce

c1(r) = −2γA−−n r−1 + 2(1− γ)A++
n r,

c2(r) = −2B−−n r−1.
(4.42)

4.3 DtN map and Ventcel conditions for modes n ≥ 2

Now we are in position to compute the expression of the Dirichlet-to-Neumann map for
each mode n ≥ 2 and prove the corresponding part of Proposition 3.2. The strategy is the
following : We first get relations between the A±±(n) thanks to the property in the inner
disk of radius r = 1. Then we get an expression of the component of ϕ with respect to the
predominant terms A+±(n) thanks to the Dirichlet condition in (3.3), and we control the
remainder terms (Lemma 4.2). Eventually we give the expression of ΛR(ϕ) with respect
to ϕ for mode n.

4.3.1 Neumann conditions on the inner circle

In this subsection we fix n ≥ 2. In (3.3), we use the Neumann condition on the inner circle
∂ω of radius r = 1, in order to get relations between the terms A±±(n) (resp. B±±(n)).
Neumann conditions also read

1 + ν

E
rσ(v) · n|r=1 = 0.
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This implies that for r = 1:

c1(n, r) = s2(n, r) = 0 and s1(n, r) = c2(n, r) = 0.

Using (4.37)–(4.40), these equalities can be written in matrix form

M−n

[
A−−n
A−+n

]
= M+

n

[
A+−
n

A++
n

]
, and M−n

[
B−−n
B−+n

]
= M+

n

[
B+−
n

B++
n

]
, (4.43)

with the same matrices M±n for the two linear systems defined by

M−n = 2

[
−γ(n+ 1) γ( 2

n − 1− n)
n+ 1 n− 1

]
, M+

n = −2

[
γ(1− n) γ( 2

n + 1− n)
1− n −(n+ 1)

]
.

We have

detM−n = detM+
n = 8γ

(
n− 1

n

)
.

We deduce

(M−n )−1 =
1

4γ(n− 1
n)

[
n− 1 −γ( 2

n − 1− n)
−(n+ 1) −γ(n+ 1)

]
= O(1).

Then, denoting Mn = (M−n )−1M+
n , we find

Mn =

[
n− 1 n
−n −(n+ 1)

]
. (4.44)

With matrix Mn given by (4.44), relations (4.43) read[
A−−n
A−+n

]
= Mn

[
A+−
n

A++
n

]
and

[
B−−n
B−+n

]
= Mn

[
B+−
n

B++
n

]
.

Let us define

Mn(R) = R−2n
[
n− 1 nR−2

−nR2 −(n+ 1)

]
, (4.45)

then[
A−−n R−n−1

A−+n R−n+1

]
= Mn(R)

[
A+−
n Rn−1

A++
n Rn+1

]
,

[
B−−n R−n−1

B−+n R−n+1

]
= Mn(R)

[
B+−
n Rn−1

B++
n Rn+1

]
. (4.46)

4.3.2 Dirichlet condition on r = R

The aim of this subsection is to give the relation between the n-th component of ϕ and
the terms A+±(n), B+±(n), and to control the other terms. For this we use the Dirichlet
boundary condition v = ϕ on ∂BR in (3.3). Decomposing the datum ϕ and the solution
v of (3.3) according to (3.6) and (4.1), we have

crn(R) = ϕrn, drn(R) = ψrn, cθn(R) = ϕθn, dθn(R) = ψθn. (4.47)

Using expressions (4.16)–(4.17), we have

ϕrn = A−−n R−n−1 + β−+r,n A
−+
n R−n+1 −A+−

n Rn−1 + β++
r,n A

++
n Rn+1,

ψθn = A−−n R−n−1 + β−+θ,n A
−+
n R−n+1 +A+−

n Rn−1 + β++
θ,n A

++
n Rn+1.
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Using (4.46), we deduce[
ϕrn
ψθn

]
=

[
1 β−+r,n
1 β−+θ,n

] [
A−−n R−n−1

A−+n R−n+1

]
+

[
−1 β++

r,n

1 β++
θ,n

] [
A+−
n Rn−1

A++
n Rn+1

]
= MA

(
Id2 +M−1A NA Mn(R)

) [A+−
n Rn−1

A++
n Rn+1

]
,

with

MA =

[
−1 β++

r,n

1 β++
θ,n

]
=

[
−1 −1− 2γ

n(γ−1)
1 1− 2

n(γ−1)

]
, NA =

[
1 β−+r,n
1 β−+θ,n

]
=

[
1 1− 2γ

n(γ−1)
1 1 + 2

n(γ−1)

]
.

We notice that

detMA = detNA =
2(γ + 1)

n(γ − 1)
, M−1A =

n(γ − 1)

2(γ + 1)

[
1− 2

n(γ−1) 1 + 2γ
n(γ−1)

−1 −1

]
.

Defining N := M−1A NA, we compute

N =
γ − 1

γ + 1

[
n+ 1 n+ 4γ

n(γ−1)2

−n 1− n

]
. (4.48)

Thus we have [
A+−
n Rn−1

A++
n Rn+1

]
= (Id2 +Qn(R))−1M−1A

[
ϕrn
ψθn

]
, (4.49)

with
Qn(R) = N Mn(R), ‖Qn(R)‖∞ = n2R2−2n. (4.50)

Similarly, using expressions (4.18)–(4.19), we have

ψrn = −B−−n R−n−1 − β−+r,n B−+n R−n+1 +B+−
n Rn−1 − β++

r,n B
++
n Rn+1,

ϕθn = B−−n R−n−1 + β−+θ,n B
−+
n R−n+1 +B+−

n Rn−1 + β++
θ,n B

++
n Rn+1.

Using (4.46), we deduce[
ψrn
ϕθn

]
=

[
−1 −β−+r,n
1 β−+θ,n

] [
B−−n R−n−1

B−+n R−n+1

]
+

[
1 −β++

r,n

1 β++
θ,n

] [
B+−
n Rn−1

B++
n Rn+1

]
= MB

(
Id2 +M−1B NB Mn(R)

) [B+−
n Rn−1

B++
n Rn+1

]
,

with

MB =

[
1 −β++

r,n

1 β++
θ,n

]
=

[
1 1 + 2γ

n(γ−1)
1 1− 2

n(γ−1)

]
, NB =

[
−1 −β−+r,n
1 β−+θ,n

]
=

[
−1 −1 + 2γ

n(γ−1)
1 1 + 2

n(γ−1)

]
.

Thus

detMB = detNB = − 2(γ + 1)

n(γ − 1)
, M−1B = −n(γ − 1)

2(γ + 1)

[
1− 2

n(γ−1) −1− 2γ
n(γ−1)

−1 1

]
.
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We therefore have [
B+−
n Rn−1

B++
n Rn+1

]
= (Id2 +Qn(R))−1M−1B

[
ψrn
ϕθn

]
, (4.51)

with the same matrix Qn(R) defined in (4.50) for coefficients A+,±
n Rn±1.

Note that from (4.46), (4.49) and (4.51), we also have[
A−−n R−n−1

A−+n R−n+1

]
= Mn(R) (Id2 +Qn(R))−1M−1A

[
ϕrn
ψθn

]
, (4.52)

and [
B−−n R−n−1

B−+n R−n+1

]
= Mn(R) (Id2 +Qn(R))−1M−1B

[
ψrn
ϕθn

]
. (4.53)

From (4.49)–(4.53) and the expression (4.45) of Mn(R), we get the following first rough
estimate:

Lemma 4.2 There exist R0 > 0 and a constant C such that for any R > R0 and any
n ≥ 2, we have with Φn = (ϕrn, ψ

r
n, ϕ

θ
n, ψ

θ
n)T:

|A+±
n Rn±1| ≤ Cn‖Φn‖∞, |B+±

n Rn±1| ≤ Cn‖Φn‖∞,
|A−±n R−n±1| ≤ C(n3R2−2n)‖Φn‖∞, |B−±n R−n±1| ≤ C(n3R2−2n)‖Φn‖∞.

4.3.3 DtN operator and Ventcel boundary condition on r = R

Now we are in position to give the expression of the Dirichlet-to-Neumann operator as an
operator acting on the mode n ≥ 2 of ϕ, and exhibit the Ventcel boundary condition (3.5)
in mode n as in Proposition 3.2.

Recall that ΛR(ϕ) = R(1+ν)
E σ(v) · n|r=R. We use (4.36), with the explicit components

computed in (4.37)–(4.40). The first component for mode n of ΛR(ϕ) is then[
1− n

2
n + 1− n

]T([
A+−
n Rn−1

A++
n Rn+1

]
cosnθ −

[
B+−
n Rn−1

B++
n Rn+1

]
sinnθ

)
+

[
−n− 1

2
n − 1− n

]T([
A−−n R−n−1

A−+n R−n+1

]
cosnθ −

[
B−−n R−n−1

B−+n R−n+1

]
sinnθ

)

=

([
1− n

2
n + 1− n

]T
+

[
−n− 1

2
n − 1− n

]T
Mn(R)

)

×
([
A+−
n Rn−1

A++
n Rn+1

]
cosnθ −

[
B+−
n Rn−1

B++
n Rn+1

]
sinnθ

)

=

([
1− n

2
n + 1− n

]T
+

[
−n− 1

2
n − 1− n

]T
Mn(R)

)

× (Id2 +Qn(R))−1
(
M−1A

[
ϕrn
ψθn

]
cosnθ −M−1B

[
ψrn
ϕθn

]
sinnθ

)
. (4.54)

Let us now deal with the second component in mode n ≥ 2 of ΛR(ϕ). This is[
n− 1
n+ 1

]T([
B+−
n Rn−1

B++
n Rn+1

]
cosnθ +

[
A+−
n Rn−1

A++
n Rn+1

]
sinnθ

)
+

[
−n− 1
1− n

]T([
B−−n R−n−1

B−+n R−n+1

]
cosnθ +

[
A−−n R−n−1

A−+n R−n+1

]
sinnθ

)
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=

([
n− 1
n+ 1

]T
+

[
−n− 1
1− n

]T
Mn(R)

)([
B+−
n Rn−1

B++
n Rn+1

]
cosnθ +

[
A+−
n Rn−1

A++
n Rn+1

]
sinnθ

)

=

([
n− 1
n+ 1

]T
+

[
−n− 1
1− n

]T
Mn(R)

)

× (Id2 +Qn(R))−1
(
M−1B

[
ψrn
ϕθn

]
cosnθ +M−1A

[
ϕrn
ψθn

]
sinnθ

)
. (4.55)

Let us denote

V1 =

[
1− n

2
n + 1− n

]
and V2 =

[
n− 1
n+ 1

]
. (4.56)

Thus a simple computation gives

V T
1 M

−1
A = 1

1+γ

[
n− γ, 1− nγ

]
, V T

1 M
−1
B = 1

1+γ

[
−(n− γ), 1− nγ

]
,

V T
2 M

−1
A = 1

1+γ

[
1− nγ, n− γ

]
, V T

2 M
−1
B = 1

1+γ

[
−(1− nγ), n− γ

]
.

The main term for mode n ≥ 2 for the Dirichlet-to-Neumann operator is then

1

1 + γ

[
cosnθ

(
(n− γ)ϕrn + (1− nγ)ψθn

)
+ sinnθ

(
(n− γ)ψrn + (nγ − 1)ϕθn

)
cosnθ

(
(nγ − 1)ψrn + (n− γ)ϕθn

)
+ sinnθ

(
(1− nγ)ϕrn + (n− γ)ψθn

)] .
Defining for each n ≥ 2 the vector Φn = (ϕrn, ψ

r
n, ϕ

θ
n, ψ

θ
n)T, we get that in the corresponding

basis, the matrix for mode n of ΛR(ϕ) is given of the form Λn +Rn,R, with

Λn =
1

1 + γ


n− γ 0 0 1− nγ

0 n− γ nγ − 1 0
0 nγ − 1 n− γ 0

1− nγ 0 0 n− γ

 . (4.57)

From (4.55) and the expressions (4.45) and (4.50) of matrices Mn(R) and Qn(R), we get

‖Rn,R‖∞ ≤ Cγn2R−2n+2,

for a fixed constant Cγ .
We can now give the expression of the Ventcel boundary condition in mode n as a

matrix in the same basis. Using the decomposition (3.6) and relation (4.6), we can rewrite
the left-hand-side of (3.5) in the form (Pn +Rn,R)Φn, with Pn given by

Pn =
−n2

4


ν

1−ν 0 0 0

0 ν
1−ν 0 0

0 0 2(1−ν)
1−2ν 0

0 0 0 2(1−ν)
1−2ν

+Id4+
1

1 + γ


n− γ 0 0 1− nγ

0 n− γ nγ − 1 0
0 nγ − 1 n− γ 0

1− nγ 0 0 n− γ

 .
Using (4.6), we have,

ν =
1− 2γ

2(1− γ)
,

ν

1− ν
= 1− 2γ,

1− ν
1− 2ν

=
1

2γ
,

so that Pn can be written in the following form

Pn =
−n2

4


1− 2γ 0 0 0

0 1− 2γ 0 0
0 0 1

γ 0

0 0 0 1
γ

+ Id4 +
1

1 + γ


n− γ 0 0 1− nγ

0 n− γ nγ − 1 0
0 nγ − 1 n− γ 0

1− nγ 0 0 n− γ

 .
This completes the proof of Proposition 3.2 in case n ≥ 2.
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4.4 DtN map and Ventcel conditions for modes n = 1, 0

We follow now the same strategy for the mode n = 1 and the constant term n = 0 in
(4.36).

4.4.1 Case n = 1

The first step is to use Neumann conditions on the inner circle of radius r = 1.

1 + ν

E
rσ(v) · n|r=1 = 0.

This implies that for n = 1, r = 1,

c1(n, r) = s2(n, r) = 0 and s1(n, r) = c2(n, r) = 0.

Using (4.41) we directly get

A−−n = A++
n and B−−n = B++

n when n = 1,

so that

A−−n R−2 = R−4A++
n R2, B−−n R−2 = R−4B++

n
2

when n = 1. (4.58)

Now we apply the Dirichlet condition in (3.3) on r = R, which reads

crn(R) = ϕrn, drn(R) = ψrn, cθn(R) = ϕθn, dθn(R) = ψθn. (4.59)

Using (4.21)–(4.24), we get

ϕrn = A−−n R−2 − A00
n + β++

r,n A
++
n R2,

ψθn = A−−n R−2 + A00
n + β++

θ,n A
++
n R2,

ψrn = −B−−n R−2 + B00
n − β++

r,n B
++
n R2,

ϕθn = B−−n R−2 + B00
n + β++

θ,n B
++
n R2.

Adding the first two equalites and substracting the last ones give:

ϕrn + ψθn = 2A−−n R−2 + S++A++
n R2,

ϕθn − ψrn = 2B−−n R−2 + S++B++
n R2,

with

S++ = β++
r,n + β++

θ,n =
−2(γ + 1)

n(γ − 1)
. (4.60)

Using (4.58), we deduce

ϕrn + ψθn = S++(1 + 2(S++)−1R−4)A++
n R2,

ϕθn − ψrn = S++(1 + 2(S++)−1R−4)B++
n R2,

so that denoting the scalar Q1(R) = 2(S++)−1R−4, we can write

A++
n R2 = (S++(1 +Q1(R)))

−1
(ϕrn + ψθn),

B++
n R2 = (S++(1 +Q1(R)))

−1
(ϕθn − ψrn).

(4.61)

Note that, using (4.58), we get in that case

A−−n R−2 = R−4(1 +Qn(R))−1(S++)−1(ϕrn + ψθn),
B−−n R−2 = R−4(1 +Qn(R))−1(S++)−1(ϕθn − ψrn).

(4.62)

We therefore have proven the following lemma :
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Lemma 4.3 There exist R0 > 0 and a constant C such that for any R > R0 and n = 1,
we have with Φn = (ϕrn, ψ

r
n, ϕ

θ
n, ψ

θ
n)T:

|A++
n R2| ≤ C‖Φn‖∞, |B++

n R2| ≤ C‖Φn‖∞,
|A−−n R−2| ≤ CR−4‖Φn‖∞, |B−±n R−2| ≤ R−4‖Φn‖∞.

Note that we don’t have any control on A00
n . It will appear later that it is not necessary.

Now we focus on what happens on the circle r = R. We give the expression for mode
n = 1 of the components of ΛR(ϕ) = R(1+ν)

E σ(v) · n|r=R. We use (4.36), with the explicit
components computed in (4.41). The first component for mode n = 1 of ΛR(ϕ) is therefore

1

2γ
(c1(n, r) cos θ + s1(n, r) sin θ)

= 2((−A−−n R−2 +A++
n R2) cos θ + (B−−n R−2 −B++

n R2) sin θ)

= 2(S++)−1(1−R−4)(1 +Q1(R))−1
(

(ϕrn + ψθn) cos θ + (ψrn − ϕθn) sin θ
)
,

where we used (4.58) and (4.61) for the last equality. An easy computation gives

2(S++)−1 =
1− γ
1 + γ

,

so that the first component for mode 1 of ΛR(ϕ) is given by

1− γ
1 + γ

(1−R−4)(1 +Q1(R))−1
(

(ϕrn + ψθn) cos θ + (ψrn − ϕθn) sin θ
)
. (4.63)

Working similarly, we get that the second component for mode 1 of ΛR(ϕ) which is given
from is given from (4.36) and (4.41) by

2
(
(−B−−n R−2 +B++

n R2) cos θ + (−A−−n R−2 +A++
n R2) sin θ

)
.

After similar computations this is equal to

1− γ
1 + γ

(1 +Q1(R))−1
(

(ϕθn − ψrn) cos θ + (ϕrn + ψθn) sin θ
)
. (4.64)

Using the vector Φn = (ϕrn, ψ
r
n, ϕ

θ
n, ψ

θ
n)T for n = 1, we get that the matrix of ΛR(ϕ) for

mode n = 1 in this basis is of the form Λn +Rn,R with

Λn =
1

1 + γ


1− γ 0 0 1− γ

0 1− γ γ − 1 0
0 γ − 1 1− γ 0

1− γ 0 0 1− γ

 .
From (4.63) and (4.64), and the expression of matrix Qn(R), we get that for n = 1,

|Rn,R| ≤ CγR−4,

for a fixed constant Cγ . Note that this coincides with the general expression for n ≥ 2
given in (4.57). As a direct consequence, we get the same result as in case n ≥ 2: Using
the decomposition (3.6), we can rewrite the left-hand-side of (3.5) for mode n = 1 in the
form (Pn +Rn,R)Φn, with Pn given by

Pn =
−n2

4


1− 2γ 0 0 0

0 1− 2γ 0 0
0 0 1

γ 0

0 0 0 1
γ

+ Id4 +
1

1 + γ


n− γ 0 0 1− nγ

0 n− γ nγ − 1 0
0 nγ − 1 n− γ 0

1− nγ 0 0 n− γ

 .
This completes the proof of Proposition 3.2 in case n = 1.
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4.4.2 Case n = 0

We follow the same strategy in this much simpler case. We first use Neumann conditions
on the inner circle of radius r = 1:

1 + ν

E
rσ(v) · n|r=1 = 0.

Using (4.36), this implies that

c1(r) = 0 and c2(r) = 0.

Using (4.42), we directly get

γA−−0 = (1− γ)A++
0 , B−−0 = 0. (4.65)

This can be rewritten

A−−0 R−1 =
1− γ
γ

R−2A++
0 R, B−−0 R−1 = 0. (4.66)

Now we apply the Dirichlet condition in (3.3) on r = R, which tells that

er0(R) = ϕr0, eθ0(R) = ϕθ0.

Using (4.28)–(4.29) we get

ϕr0 = A−−0 R−1 +A++
0 R, ϕθ0 = B−−0 R−1 +B++

0 R.

Using (4.66) we therefore get

ϕr0 =

(
1 +

1− γ
γ

R−2
)
A++

0 R, ϕθ0 = B++
0 R,

and therefore

A++
0 R =

(
1 +

1− γ
γ

R−2
)−1

ϕr0, B++
0 R = ϕθ0. (4.67)

Thus we have proven the following Lemma

Lemma 4.4 There exist R0 > 0 and a constant C such that for any R > R0, we have
with Φ0 = (ϕr0, ϕ

θ
0)

T:

|A++
0 R| ≤ C‖Φ0‖∞, |B++

0 R| ≤ C‖Φ0‖∞,
|A−−0 R−1| ≤ CR−2‖Φ0‖∞, B−−0 R−2 = 0.

Now we look at what happens on the circle r = R. We give the expression for mode
n = 0 of the components of ΛR(ϕ) = R(1+ν)

E σ(v) · n|r=R. We use (4.36), with the explicit
expressions computed in (4.42). The components for mode n = 0 of ΛR(ϕ) are (for r = R)[ 1

2γ c1(r)
1
2c2(r)

]
=

[ 1
2γ

(
−2γA−−0 R−1 + 2(1− γ)A++

0 R
)

1
2(−2B−−0 R−1)

]
Using (4.66) and (4.67), we get that for r = R,[ 1

2γ c1(r)
1
2c2(r)

]
=

[1−γ
γ

(
1−R−2

)
A++

0 R

0

]
=

[1−γ
γ

(
1−R−2

)
(1 + 1−γ

γ R−2)−1ϕr0
0

]
.
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We now introduce the vector Φ0 = (ϕr0, ϕ
θ
0, )

T. With respect to this decomposition, we get
that the matrix of ΛR(ϕ) for mode n = 0 is of the form Λn +R0 with

Λ0 =

[1−γ
γ 0

0 0

]
and ‖R0‖∞ ≤ CR−2.

Using the decomposition (3.6), we can rewrite the left-hand-side of (3.5) for mode n = 0
in the form (Pn +Rn,R)Φn, with Pn given by

P0 = Id2 +

[1−γ
γ 0

0 0

]
=

[ 1
γ 0

0 1

]
This completes the proof of Proposition 3.2 in case n = 0.

5 Numerical results

Figure 2: Disk, ellipse with eccentricity 0.5, “generic” domains (R = 2 and Q6 Meshes).

5.1 Fixed parameters – various geometries

In this section, we have set the mechanical paramaters as follows

λ = 0.5769230769, µ = 0.3846153396.

We consider Problem (1.4) for various interior domains ω, see Figure 2. The exterior
radius R is varying. In order to detect the forbidden values of R, we investigate the norm
of the inverse of the operator LR associated with Problem (1.4).

The finite element resolution is performed using the library Mélina [26], with isopara-
metric Q6 lagrangian elements (the mesh for the presented results is made up of 16 such
elements). In Figure 3, we have plotted the norm of the inverse of the operator LR associ-
ated with Problem (1.4) with respect to the external radius R (in logarithmic coordinates)
in the case where ω is the unit disk or en ellipse close to this disk. It turns out that, as
expected, no forbidden ratio is encountered for “large” values of R. A zoom near the small
values of R is shown in the left plot, where several singular radii are present. The forbid-
den radii are close to each other for the first two cases, which is in accordance with the
perturbation arguments developed in Subsection 3.4. In Figure 4, we show the dependence
of the forbidden radii with respect to the eccentricity of the ellipse.

In Figure 5, we present the same results for more generic geometry: the third and
fourth domains plotted on Figure 2.
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Figure 3: Norm of resolvent for the disk and for an “almost disk”.
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Figure 5: Norm of resolvent for the “generic” domains of Figure 2 (ν = 0.5).
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5.2 Fixed geometry – moving parameters

In this part, we fix the Young modulus: E = 1, and the Poisson ratio ν is varying. We
present the results obtained for two values of ν in Figure 6. Let us mention that more
forbidden radii are observed for ν < 0 than for ν > 0.
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Figure 6: Norm of resolvent for a disk and different values ν.
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