
HAL Id: hal-00763411
https://hal.science/hal-00763411

Submitted on 4 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Incremental Multiple Classifier Active Learning for
Concept Indexing in Images and Videos

Bahjat Safadi, Yubing Tong, Georges Quénot

To cite this version:
Bahjat Safadi, Yubing Tong, Georges Quénot. Incremental Multiple Classifier Active Learning for
Concept Indexing in Images and Videos. MMM 2011 - International MultiMedia Modeling Conference,
Jan 2011, Taipei, Taiwan. pp.240-250, �10.1007/978-3-642-17832-0_23�. �hal-00763411�

https://hal.science/hal-00763411
https://hal.archives-ouvertes.fr


Incremental Multiple Classifier Active Learning for

Concept Indexing in Images and Videos

Bahjat Safadi, Yubing Tong and Georges Quénot
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Abstract. Active learning with multiple classifiers has shown good performance

for concept indexing in images or video shots in the case of highly imbalanced

data. It involves however a large number of computations. In this paper, we pro-

pose a new incremental active learning algorithm based on multiple SVM for

image and video annotation. The experimental result show that the best perfor-

mance (MAP) is reached when 15-30% of the corpus is annotated and the new

method can achieve almost the same precision while saving 50 to 63% of the

computation time.

Keywords: Multimedia Indexing, Machine Learning, Active Learning and In-

cremental Learning

1 Introduction

Supervised learning consists in training a system from sets of positive and negative

examples. The learning system may be composed of various types of feature extractors,

classifiers and fusion modules. The performance of the systems depends a lot upon

the implementation choices and details but it also strongly depends upon the size and

quality of the training examples. While it is quite easy and inexpensive to get large

amounts of raw data, it is usually very expensive to have them annotated because it

involves human intervention for the judging of the ”ground truth”. While the volume of

data that can be manually annotated is limited due to the cost of manual intervention,

there remains the possibility to select the data samples that will be annotated so that their

annotation is as useful as possible ([1]). Active Learning is a special case of machine

learning which has been used to improve query performance in image retrieval systems.

The objective of Active learning is to maximize the expected information from the query

as a result of user feedback in order to minimize the total number needed for the search.

This can be summarized as following, from relevance feedback, a user subjectively

labels the retrieved images as Positive or Negative, and these labelled images are used

to train a classifier that performs a bi-class classification on the image database. Those

images with the higher scores or probability values, with respect to the positive image

class, are retrieved as the most informative samples to be labelled by the user. However,

in very large databases, the learning performance is often restricted due to a very small

number of available labelled samples to a given concept, because labelling concepts in

too many images or videos is a very hard task, and a user is unwilling to label too many
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retrieved images for relevance feedback. Classifiers (such as Support Vector Machines)

based active learning has been proposed [3, 9, 12, 13, 16] to handle this problem by

maximizing the learning efficiency while minimizing the required number of labelled

image samples for training process.

Recently, some researches like in [12, 17, 18] have shown the effectiveness of using

the multi-learners approach to handle the problem of the imbalances between the major

and minor classes in the very large scale databases. This problem is very common in

concept indexing in images and videos since the most target concepts are very sparse.

For instances, their average frequency in the TRECVID evaluation campaigns [15] for

example, is less than 1%. This imbalance is a serious problem for classical supervised

learning methods. An alternative approach to solve this problem is to sub-sampling the

major class [4] (the negative samples); this sub-sampling can be done by considering all

the positive samples in the training set and selecting randomly a comparable number of

negative to positive samples. This sub-sampling might leads to loss of information, due

to the fact that it ignores a lot of information from the non chosen negative samples,

hence the multi-learner has the ability to balance the loss of information related to

this sub-sampling by making several selections on this class and fusing the outputs of

different classifiers built from these subsets. In [12],our previous work , we showed that

combining between the Active Learning with multi learners approaches significantly

increases the effectiveness of the Active Learning, but it makes it very slower comparing

to a mono-learner approach. This makes a very big challenge in the task of automatically

image annotation, which mostly is directed by learning from user’s feedback.

Since during the iteration of active learning and multi-learners (here multiple SVMs

are used), new labelled samples will always be added to the training set for next itera-

tion, each iteration involves previous training information and the new untrained sam-

ples. The calculation time will be saved if we can re-use the previous information and

learn the incremental information derived from new samples. So it is natural to adopt

incremental learning for this case.

Some incremental learning focus on how to choose the informative samples data

from all the incremental one or retire some samples from previous set [14, 20, 21].

Those methods needs to check KKT conditions of SVM quadratic optimization problem

for every sample which also means much calculation. [6, 7] also consider the calcula-

tion problem in active learning and multi-learner. An early stopping method is proposed

to achieve faster convergence of active learning by counting the number of support

vectors derived from previous training in [5]. If the number of support vectors stabi-

lizes, it means that all possible SVs have been selected by active learning method. This

method may lose some useful information since the number of SVs may still change

after several stable values and the stability of SVs is not clearly defined. Our previous

multi-learner active learning research also shows that for every learner in iteration only

a part of the samples used for training [12, 13]. But many classifiers are still needed to

train during iteration. Although some samples in previous step have been well trained

but they are never used in the following step. Some researchers have tried some incre-

mental methods used in SVM training. [11] proposed an incremental learning of SVM,

that The support vectors from previous training set will be used involved in the new

SVM optimization problem with different weights on them. This method can work for
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balanced data. But for our extremely imbalanced data, the weight is so rough that the

final hyperplane deviated much from the ideal one. Furthermore this method also needs

to train the previous support vector, then no time can be saved. In [19] authors pro-

posed an incremental learning of SVM by classifier combining. Multiple SVM are used

and each output posterior probability information. For the example incremental learn-

ing, the training set can be divided into several learning sequence or incremental batch.

Cross validation was made on every batch and classifier is also trained, then the output

of each classifier predicting on testing sample can be combined to get the average pos-

terior probability. Here every batch works independently without using the information

from previous training.

In this paper, we overcome the problem of processing time for the Active learn-

ing with multiple-learners by proposing a robust Incremental algorithm for the Active

learning based multiple-SVMs and we show that we can save about 50-63% of the pro-

cessing time (depending on the used descriptor and the negative to positive ratio), while

the system performance was not significantly changed in all cases; our experiments

were conducted on the TRECVID 2007 and 2008 collections.

The outline of the paper continues as follows: the combination between the multi-

ple classifier and active learning approach is discussed in section 2. We present our new

incremental learning algorithm in introduced in section 3; section 4 describes the exper-

imental results including the description of the used data collection and the descriptors,

while Section 5 presents concluding remarks.

2 Active learning with multiple classifiers

Active learning has been adopted to solve problems related to unlabelled training data.

For imbalanced data, many papers have shown the possibility to balance the loss of

information related to sub-sampling of the negative class by making several selections

on this class set and fusing the outputs of different classifiers built from these subsets.

This leads to what we call the Multi-learners approach. The active learning algorithm

with multiple classifiers is detailed in Algorithm 1 which is a classical active learning

algorithm in which we have replaced the single classifier by a set of elementary clas-

sifiers. For implementation purposes, the elementary learning algorithm A is split into

two parts: Train and Predict. A global parameter, mono-learner, can force the classical

active learning mode with a single classifier. At each iteration i, the development set

S is split into two parts: Li, labeled samples and Ui, unlabelled samples. A global pa-

rameter fpos defines the ratio between the negative and positive samples in all learners

and for all iterations. This defines the number of negative samples for each learner at

iteration i. In the multi-learner approach, the number of learners is computed so that

each negative sample appears in average a given number of times (usually once) in the

different subsets Tj . The Tj contains all positive samples and a randomly chosen subset

of negative samples. Classifiers Cj are then trained on the Tj with associated labels

and applied to Ui the unlabelled set for the selection of the next samples to annotate.

Predictions from the elementary classifiers are then merged in both cases for producing

a single prediction score per sample. The predictions on the Ui set are used by Q the

selection (or querying) function to produce a sorted list of the next samples to be anno-
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Algorithm 1 Multiple Classifier Active Learning Algorithm

S: all data samples.

Li, Ui: labelled and unlabelled subsets of S.

A=(Train, Predict): the elementary learning algorithm.

Q: the selection (or querying) function.

nl(k) : number of learners at iteration k.

Initialize Li (e.g. 10 positives & 20 negatives).

while S \ Li 6= ∅ do

if mono-learner then

nl(k) = 1
else

nl(k) = Calculate the number of Learners

end if

for all j ∈ [1..nl(k)] do

Select subset Tj from Li for training

Cj ← Train(Tj)

P j
un ← Predict(Ui,Cj)

end for

Pun ←Fuse(P j
un)

Apply Q on Pun and select x̃ ∈ Ui samples.

ỹ = Label x̃

Li+1 ← Li ∪ (x̃; ỹ)
Ui+1 ← Ui \ x̃

end while

tated. From the top of this list, a x̃ set is selected for annotation. The x̃ set is then added

with the associated set of labels ỹ to the Li set to produce the Li+1 set and it is also

removed from the Ui set to produce the Ui+1 set. The global algorithm is determined

by the A=(Train, Predict) elementary learning algorithm (e.g. SVM) and by Q the se-

lection (or querying) function implementing the active learning strategy (e.g. relevance

or uncertainty sampling). It is also determined by some global parameters like the ratio

between the number of negative and positive samples, by the cold start problem, by the

fusion function used to fuse the outputs of the classifiers and by the way we choose

the number of new samples to be integrated at each iteration. For our evaluation exper-

iments we show the system performance by calculating the Mean average precision on

the test set at each step.

3 The proposed incremental method

As described in section 2, algorithm 1 can be used to handle the class imbalance prob-

lem. Even though it gave good results [12, 13, 17], it is still very slow because at each

iteration it generates a lot of learners when the dataset is highly imbalanced. In this sec-

tion we propose an incremental method to reduce the number of learners that need to be

trained at each iteration. Let nl(k) be the number of learners needed at step k, nm[k] to

be the minimum number of learners to be changed at step k. At each iteration the actual
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number of learners which should be trained is equal to nl(k) − (nl(k − 1) −mn[k]).
After training these learners we merge their results with the results obtained from

nl(k − 1) −mn[k] learners from the previous steps, so that at each iteration we keep

the nl(k) of this iteration but we only train part of them as shown in table 1 where rm

and add indicate respectively the number of learners should be removed and added at

each iteration.

At step k:

nl(k) : number of learners at step k

nl(k − 1): learners trained from the previous steps

nm[k] : minimum number of learners to be changed

The number of learners to be removed from

the previous step:

if(nl(k) >= nl(k − 1)) rm = nm

if(nl(k) < nl(k − 1)) rm = nl(k − 1)− nl(k) + nm

The number of learners to be added by:

if(nl(k) <= nl(k − 1)) add = nm

if(nl(k) > nl(k − 1)) add = nl(k)− nl(k − 1) + nm

Table 1. The conditions of removing and adding learners

In figure 4 we show one step of how the proposal algorithm works. At each iteration

the algorithm should remove the learners with the minimum number of positive samples

(normally the learners taken from the oldest iterations), and train some new learners,

each learner should be trained on a subset that consists of all the positive samples and

of a comparable number of negative samples randomly selected from the training set.

At the end it applies the fusion function on the results obtained from the considered

learners to give the final score of each unlabelled sample.

In our experiments, we fixed the minimum and maximum values of nm to be {1,10}
respectively, and nm[k] = 20%nl(k).

4 Experiments

We have evaluated the Multiple Classifiers Active Learning and the proposed incre-

mental methods in a variety of contexts. It has been applied using four types of image

descriptors using the SVM with RBF kernel as classifier and the relevance sampling

strategy for active learning. We also used the harmonic Mean function to fuse the re-

sults of the multi learners. The cold start problem was not really explored; a random

set of 10 positive and 20 negative samples was used. The global parameters like the

fpos ratio were taken from our previous work [13]. For the number of samples to be

added at each iteration, we chose a variable step size since we observed in previous

experiments that having small steps in the beginning of the active learning process is

better for the speed of performance improvement. In practice, we used a geometric scale



6 Safadi, Tong and Quénot

Fig. 1. The framework of the proposed incremental method

with 40 steps. The evaluations were conducted using the TRECVID 2007 and 2008 test

collections and protocols.

4.1 TRECVID 2007 and 2008 collections

The evaluation was conducted on TRECVID-2008 concepts annotated on the TRECVID

2007 and 2008 collections where 20 concepts were evaluated. The training and evalu-

ation were done respectively on the development and test sets of the two collections,

TRECVID 2007 collection contains 21532 video shots as a training set and 22084 shots

as test set, while TREC2008 contains 43616 video shots as a training set and 35766

shots as a test set. In the two collections, the training sets are fully annotated and noth-

ing remains to be annotated which makes the use of the Active learning not relevant,

but such large fully annotated sets constitute opportunities to simulate, evaluate and

compare strategies and methods in active learning without the need of involving a user,

as the simulated active learning [2]. In our experiments active learning methods are ex-

ecuted as if very few annotations are available in the training set. Then, each time a

human annotation is needed, the corresponding subset of the full annotation is made

available to the active learner.

4.2 Image representation

Concepts and Images can be represented by their vector descriptors or features. Many

descriptors could be used to represent a specific concept in an image, finding the best

descriptor to represent a concept in an image is still a big challenge and a wide area of

research. For evaluations we used four descriptors of different types and sizes that have

been produced by various partners of the IRIM project of the GDR ISIS [10] .

– LIG hg104: early fusion with normalization of an RGB histogram 4× 4× 4 and a

Gabor transformation (8 orientations and 5 scales), 64 + 40 = 104 dimensions.

– CEALIST global tlep: early fusion of local descriptors of texture and of an RGB

color histogram, 512 + 64 = 576 dimensions.
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– ETIS global qwm1x3x256: 3 histograms of 3 vertical bands of visual descriptors,

standard Quaternion wavelet coefficients at three scales, 3×256 = 768 dimensions.

– LEAR bow sift 1000: histogram of local visual descriptors, SIFT “classic” [8],

1000 dimensions.

4.3 Optimal negative to positive ratios

Table 2 shows the optimal values for the fpos global parameter on the development set

for single- and multiple-learner versions SVM-RBF with the four considered descrip-

tors. Optimization was done while taking all the development set of TRECVID2007,

in the Multiple-learner versions the results of the classifiers are fused by the harmonic

mean function. These optimal values are higher for the single learner than for the mul-

tiple learner case. This was expected since the multiple-learner has another way to take

into account more negative samples in total.

Descriptor Single Multi

LIG hg104 4 2

CEALIST global tlep 8 4

ETIS global qwm 4 3

LEAR bow sift 8 4

Table 2. Optimal values of the ratio between the numbers of negative to the positive samples for

four descriptors.

4.4 The active learning steps

In our evaluation, we used totally 40 steps for the active learning algorithm, considering

the geometric scale function with the following formula:

Sk = S0 ×

(

N

S0

)k/K

where N is the total size of the development set, S0 is the size of the training set at the

cold-start( 30 samples), K is the total number of steps and k is the current step. At each

step (or iteration) the algorithm calculates the Sk to be the size of the new training set

and it chooses new samples to be labelled with size equal to Sk − Sk−1.

4.5 Active learning effectiveness

Figures 2 and 3 compare the effectiveness of the three methods (the single and Multi-

learner and the Incremental) using the four descriptors and the relevance sampling strat-

egy. The performance of the Single-learner is also shown as baseline. For the multiple-

learner and the incremental experiments, the fusion by harmonic mean has been used.

These plots show the evolution of the indexing performance of the test sets measured
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Fig. 2. The Map results on the TRECVID 2007 test collection evaluated on the four descriptors,

each one of the plots shows the results using the Single-learner (in red), the Multi-learner (in

green) and the Incremental (in blue).

by the Mean Average Precision (MAP) metric with the number of annotated samples at

each step (totally 40 steps). For analysing the plots we consider that The faster it grows

and the higher performance it achieves , especially in the beginning, the better.

As the plots shown in figure 2 and 3, the proposed incremental algorithm has almost

achieved the same performance as that of multi-learner. Both of them are significantly

higher and faster to reach the highest value than single learner. With our incremental

learning method, the highest performance can be reached with training by only 15-30%

samples which means labelling 15-30% samples instead of all the samples can still get

the same result (in MAP).

We considered the index of Ga−b to be the performance measure between two

active learning curves( a and b), this measure was calculated simply as following:

Ga−b = (Aa − Ab)/Ab where Ai indicts the area of the curve i, to calculate this

gain we first normalize the curves in each plot, then we calculate the area using the

following formula:

A =
1

2

∣

∣

∣

∣

∣

n+1
∑

i=0

xi × yi+1 − yi × xi+1

∣

∣

∣

∣

∣

Where n is the total number of iterations (xi, yi) indicates the (number of the annotated

samples and the MAP value) at iteration i, and (xn+1, yn+1) = (x0, y0). Table 3

show the gain when using the incremental method compared to both the single and
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Fig. 3. The Map results on the TRECVID 2008 test collection evaluated on the four descriptors,

each one of the plots shows the results using the Single-learner (in red), the Multi-learner (in

green) and the Incremental (in blue).

multi-learner methods with the two collections that considered in our experiments, as

we can see that the gain is much higher and significant when using our incremental

method compared to the single-learner GI−S while it is very small compared to the

multi-learner GI−M .

Trecvid 2007 Trecvid 2008

Descriptor GI−S(%) GI−M (%) GI−S(%) GI−M (%)

LIG hg104 14.77 2.34 6.50 1.83

CEALIST global tlep 12.84 0.62 22.42 -1.70

ETIS global qwm 4.76 0.73 1.20 0.02

LEAR bow sift 8.04 -3.16 5.22 0.75

Table 3. The gain of the system performance between the proposed incremental to the single-

and the multi-learners, with the four descriptors evaluated on TRECVID 2007 and 2008.

4.6 Execution times

Table 4 gives the total execution times for the whole active learning process (40 itera-

tions) on all 20 concepts on each experiment collection, per method and per descriptor,
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using the relevance strategy. As we can see that Single learner is faster than multiple

learner and incremental methods. But considering the performance of single learner

described in the above section, the performance of single learner is much lower than

that of multi-learner. Compared with multiple learners, the new proposed incremental

method has saved nearly 48-66% time without losing any performance.

Trecvid 2007 Trecvid 2008

Descriptor Single Multi Inc G Single Multi Inc G

LIG hg104 1.40 20.63 7.64 66% 4.80 59.54 23.34 60%

CEALIST global tlep 23.90 115.02 64.17 52% 96.56 395.45 204.9 48%

ETIS global qwm 13.40 142.97 64.10 55% 45.67 460.60 212.3 54%

LEAR bow sift 43.42 162.18 79.16 52% 181.00 592.10 300.6 49%

Table 4. Processing time table for the two evaluated collections: TRECVID 2007 and 2008, with

G that indicates the gain of time using our incremental method compared to the multi-learners.

5 Conclusion

Active learning with multiple classifiers has shown good performance for concept in-

dexing in images or video shots in the case of highly imbalanced data. It involves how-

ever a large number of computations. In this paper, we propose a new incremental active

learning algorithm based on multiple SVM for image and video annotation. The exper-

imental result show that the best performance (MAP) is reached when 15-30% of the

corpus is annotated and the new method can achieve almost the same precision while

saving 50 to 63% of the computation time.
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