N

N
N

HAL

open science

Controlled conflict resolution for replicated document
Stéphane Martin, Mehdi Ahmed-Nacer, Pascal Urso

» To cite this version:

Stéphane Martin, Mehdi Ahmed-Nacer, Pascal Urso.
document. 8th IEEE International Conference on Collaborative Computing: Networking, Applications

and Worksharing, Oct 2012, Pittsburgh, Pennsylvania, United States. hal-00763410

HAL Id: hal-00763410
https://hal.science/hal-00763410
Submitted on 10 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Controlled conflict resolution for replicated

https://hal.science/hal-00763410
https://hal.archives-ouvertes.fr

Controlled conflict resolution for replicated document

Stéphane Martin
Université de Lorraine
CNRS — INRIA - LORIA
54500 Vandoeuvre-les-Nancy, France
Email: stephane.martin@loria.fr

Abstract—Collaborative working is increasingly popular, but
it presents challenges due to the need for high responsiveness
and disconnected work support. To address these challenges the
data is optimistically replicated at the edges of the network, i.e.
personal computers or mobile devices. This replication requires
a merge mechanism that preserves the consistency and structure
of the shared data subject to concurrent modifications.

In this paper, we propose a generic design to ensure eventual
consistency (every replica will eventually view the same data) and
to maintain the specific constraints of the replicated data. Our
layered design provides to the application engineer the complete
control over system scalability and behavior of the replicated
data in face of concurrent modifications. We show that our
design allows replication of complex data types with acceptable
performances.

Index Terms—optimistic replication, replicated document, col-
laborative editing

I. INTRODUCTION

Replication allows accessibility of shared data in collabora-
tive tools (such as Google Docs) and mobile applications (such
as Evernote or Dropbox). Indeed, collaboration is achieved by
different distinct sites that work independently on a replica,
i.e. a copy of the document. Due to high responsiveness and
disconnected work requirements, such applications cannot use
lock or consensus mechanisms.

However, the CAP theorem [3] states that a replicated
system cannot ensure strong Consistency together with Avail-
ability and Partition tolerance. In such applications, where
availability is required by users and partition is unavoidable,
a solution is temporal divergence of replicas, i.e. to use
optimistic replication. Of course, at the end of the modification
process, users aim to have the same document. This kind
of consistency model is called “eventual consistency” which
guarantees that if no new update is made to the object,
eventually all accesses will return the same value. To obtain
eventual consistency, a particular merge procedure that handles
conflicting concurrent modifications, is required.

We consider that two concurrent modifications conflict, if,
once both integrated, they violate the structural constraints of a
data type. For instance, with a replicated structured document,
adding concurrently two titles conflicts if the document type
accepts only one title. To obtain a conflict-free replicated data
type, the merge procedure must make an arbitrary choice (such
as: appending the titles, “priority-replica-wins”, “last-writer-
wins”, etc.). Moreover, every replica must make independently
the same choice. Conflict resolution is also a question of

Mehdi Ahmed-Nacer
Université de Lorraine
CNRS - INRIA - LORIA
54500 Vandoeuvre-les-Nancy, France
Email: mehdi.ahmed-nacer@]loria.fr

Pascal Urso
Université de Lorraine
CNRS - INRIA — LORIA
54500 Vandoeuvre-les-Nancy, France
Email: pascal.urso@loria.fr

scalability and performances since different choice procedures
may have different computational complexities.

Unfortunately, eventual consistency is more difficult to
achieve facing complex conflict resolution as demonstrated
by the numerous proposed approaches that fail to ensure it
for simple plain text document [7], [13]. Indeed, more the
data type is complex, more conflicts appear. For instance, in
a hierarchical document, modifications such as adding and
removing an element, or adding a paragraph while removing
the section to which it belongs, or setting concurrently two
titles conflict.

We propose a framework that decouples eventual consis-
tency management from data type constraints satisfaction. Our
framework is made of layers. A layer can use the result of
one or more independent layers. The lowest layer hosts the
replicated data structure and are in charge to merge concurrent
modifications. These lowest layers encapsulate an existing
eventually consistent data type from the literature. Other layers
are in charge to ensure a constraint on a data type. It does not
modify the inner state of the replicated data but only computes
a view that satisfies the constraint.

Our framework manages each conflict type independently
while assuring eventual consistency. Thanks to layered design,
any combination of conflict resolution is designable, giving to
the application the entire control on the system scalability and
behavior of the replicated data in face of concurrent mutations.

II. MOTIVATION

Our approach is based on the observation that obtaining
eventual consistency while ensuring complex constraints on a
data type is difficult. Thus, we propose to decouple eventual
consistency from data integrity insurance trough layers.

To illustrate the behavior of such a decoupling, let’s imagine
a replicated file system. Ensuring eventual consistency of a file
system is complex [5], while ensuring eventual consistency of
a set can be achieved in numerous ways with quite simple
algorithms. For instance, [17] defines multiple replicated sets
with different behaviors and performances.

So we can imagine a file system as the set of absolute paths
present in the file system.

1) A first layer contains the set of independent couples
(path, type) which are elements present in the file sys-
tem. Types can be directory or file. This layer communi-
cates with the first layer of the other replicas. It transmits
simple messages that correspond to an addition or a

suppression in the set. This layer ensures alone eventual
consistency by merging these messages.

2) The second layer is in charge of producing a tree from
the set of paths. To produce this tree, it must ensure the
constraint that all nodes are accessible by the root. Indeed
if a replica removes a directory, while another adds a file
into this directory, the path to the file is present in the
set while the path to the directory is not. Such a layer
may drop this “orphan” file or place it under some special
“lost-and-found” directory (see Section IV-B).

3) The third layer is in charge of producing a file system
from the tree. It satisfies the unique name constraint
on a directory. Indeed, a directory may contains two
children (one directory and one file) added concurrently
with the same name. Such a layer may rename elements,
or enforce specific name when adding an element (files
and only files must have an extension, such as . java).

Replicated file systems (and some other complex data
types), already exist in the literature. The advantage of our
model is twofold. The first advantage is that only the first
layer is in charge of merging concurrent operations. For the
other layers, the data is handled as local data, simplifying
the eventual consistency issues. The second advantage is the
modularity of the approach. A layer that provides a data type
can be freely substituted by another implementation. Thus, our
approach can provide many different behaviors, while each
existing solution proposes only one or a small number of dif-
ferent behavior(s) with an associated performance level which
could not be appropriate to every collaborative application
context.

III. LAYERED DATA TYPES

We define a data type as an object with a two methods
interface: 1) the “lookup method returns the data type state;
ii) the “modify* method performs modifications in the data
type state.

A replicated data type is a data type with a communication
interface to merge its state with other replicas. Concretely,
on each update invocation from an application, the replicated
data type sends to another replica a message that represents
the local modification. A replicated data type which receives
such a message, integrates it on its own state. We require that a
replicated data type ensures eventual consistency. This means
that, after all modifications were performed, the invocation of
the lookup method eventually returns the same result.

First, we encapsulate an existing eventually consistent data
type in a replication layer. This kind of layer is the bottom
layer of our model. It ensures communication between replicas
and manages concurrent modifications. The other kind of layer
we define is the adaptation layer that uses the data provided
by one or more layers and ensures a particular constraint on
the data type. An adaptation layer can be placed on top of one
or more layers that can be replication or adaptation layers.

As presented in Figure 1, the generic computational aspect
of our model is quite simple. When an application modifies a
data type, it calls the higher layer modify function. The higher
layer adapts the given local operation into one or more local

operation(s) applied on the layer just below. This layer will
itself adapt these local operations for the third layer, and so
on until the replication layer. Only the replication layer is in
charge to communicate local updates to other replicas and to
merge local and remote modifications. When the application
asks for the value of the data type, it calls the higher layer
lookup interface. The layer calls the lookup interface of the
layer just below and computes a result corresponding to the
application needs.

Ad e Replication Layer
Layer N-1

§ ol |
W | lookup

Fig. 1.

fr——
)

' communication
" interface |

Layers

The lookup method of an adaptation layer recomputes
totally its result from the inner layer(s) lookup invocation(s)
result(s). This computation does not affect the inner-layer
state, if any. Assuming this computation is deterministic and
that the below layer(s) ensure(s) eventual consistency, we can
prove straight-forwardly that the adaptation layer provides an
eventually consistent data type.

Such a computation must be done when a view is requested,
but only if the inner data was modified since the last request.
This is adapted to state-based replication mechanisms [16]
(such as version control systems). State-based replication
mechanisms transfer their whole state to other replicas, thus,
fewer merge occurs but each merge may modify up to the
whole state of the data.

However, for operation-based replication mechanisms [16],
we should define incremental adaptation layers. Operation-
based replication mechanisms sends update operations (or
differences).

Incremental Layers

An incremental adaptation layer stores the state of the data
type that will be returned to the application. It modifies this
data type each time its inner layer state is modified, following
an observer design pattern, see Figure 2. Therefore, it modifies
only a part of the data type. Potentially, an incremental lookup
has better performances. Eventual consistency can be ensured
by an equivalence between the incremental lookup and some
non-incremental lookup. Anyway, as non-incremental layers,
incremental layers computations do not affect their inner-layer
state.

Even if incremental layers seem more adapted to operation-
based replication mechanisms, any combination of layers can
be constructed. Indeed, a state-based replication layer that noti-
fies changes to its observers can be used below an incremental
layer. Also, an incremental layer can be used below a non-
incremental one.'

IThis last combination can be useful when no incremental solution is
available for a given constraint (for XSD schema repairing for instance).

Replication Layer

A N
PN

modi -

/ communication
interface

update

u- 4

Fig. 2. Incremental layers

IV. EXAMPLES

This section presents several examples of data types that
can be obtained using our framework. Due to space limitation,
only some of them will be completely detailed.

A. Text data type

In this section, we show how to obtain a text data type,
i.e. an ordered sequence of elements (lines, character, or
paragraphs, etc.). Beside its apparent simplicity, this a non-
trivial problem as evidenced by the huge literature on the
subject: [13], [24], [14]. The challenge comes from puzzles
such as TP2-puzzles [22], where two elements are inserted
concurrently just before and after an element which is be-
ing deleted. Since deleted elements no longer separates the
inserted ones, they may be swapped.

We present a composition of two layers to ensure the
ordering constraint. We use a set element associated with an
un-mutable ordering information called position identifier (PI).

As presented in Figure 3, we define an adaptation ordering
layer on top of a set replication layer. The set contains ele-
ments coupled with a position identifier (PI). For example, the
sequence "AC’ corresponds to the set {("A’, p,), 'C’,p.)}. To
add *B’ between 'A’ and C’, we must forge p; such that p, <
Pb < Pe. The set becomes {("A’, p,), 'C’,p.),('B’,pp)}. The
“lookup” function uses the total order between PIs to compute
the ordered sequence 'ABC’.

update o

Fig. 3. Text data type using sets

Position identifiers are defined in a dense space equipped
with a total ordering relation. The total order ensures that any
pair of elements appear in the same order on each replica. The
space is dense to allow insertion of an element between any
two others.

In the literature, such spaces already exist. Logoot [26] and
FCEdit [10] use integer or strings concatenated with unique
identifiers; the ordering relation is a lexical ordering. The
Treedoc [14] algorithm uses depth-first search on a binary tree
as ordering. The position identifier of Treedoc is a path in this
tree with unique identifiers to distinguish two similar paths.

The algorithms cited above generate unique identifier
(unique for all replicas). These identifiers are unique to ensure
eventual consistency. So, when a same element is added
concurrently at the same place, it is inserted twice with two
different identifiers. For instance, if two users aim to correct
the word ’ct’ into ’cat’, these algorithms add two ’a’ and word
becomes the ’caat’.

In our framework, the set ensures the eventual consistency.
So, we can relax the uniqueness of the position identifier.
For instance, in Logoot positions, the operation timestamp
could be replaced by the element it-self. Thus, we will obtain
a different behavior than the above algorithms since the
concurrent insertion of two same element at the same position
will lead to a unique appearance.” This behavior may seem
more natural to users and is the behavior (called “accidental
clean merge”) of most of the control version system software
(Git, SVN, etc.). Obviously, all editing conflicts cannot be
resolved using such approaches. However, thank to our layered
framework, one can add a semantic correction layer such as [4]
above our own layers.

We define a couple object which contains a position iden-
tifier and a label. We assume that each ordering algorithm
implements the interface described in Figure 4.

" interface Ordering<L>{
> /xgets the position where the pi will be inserted in pis list .x/
3 int getPos(Pl pi, L label, List <Couple> pis);

s /x returns an ordered list built from set of couple.x/
¢ List <Couple> order(Set <Couple> cs);

s /x generate position identifier with c1 < returned pi < c2 x/
9 PI generatePl(Couple c1, Couple c2);

Fig. 4. Interface of ordering algorithm.

We define the Ordering layer in two versions : the non-
incremental version in figure 5 and the incremental version in
figure 6.

The difference between two versions is the presence of the
inner state. The non-incremental layer must order the set to
have a lookup or to modify the sequence, while the incremental
version uses its inner state to avoid re-computation.

The application or upper layer invokes the modify function
of ordering layer with operation as argument. This operation
can be an add or delete operation.

For both layer versions, the “add” operation parameters are
an element (line, characters, ...) and an integer position. In
this case, the layer gets the previous and next element PI
from the lookup list . It generates a position identifier help
with ordering algorithm between two Pls (generatePI) (1.9
fig. 5 and fig. 6) and store the couple with added element and
generated position identifier in the inner set (1.15). In case
of delete, the operation contains only the element position to
remove. The modify function gets the element from lookup

2Two ’a’ added sequentially, for instance, in the word ’aardvark’, will have
different PIs.

list (1.12) and forges the operation for deletion from the inner
set (1.13).

The difference between incremental and non incremental
version is: for non-incremental version, the lookup list is built
from the inner set (using of the ordering algorithm) for each
call (1.6 fig. 5); while the lookup of the incremental version
returns its own up-to-date list (1.3 fig. 6). In incremental case,
when the inner set is modified by local or remote operation
the layer is notified and update function is called. The update
function places the new element in the layer state in position
given by ordering algorithm (1.22 fig 6) or deletes from layer
state the element which, contains the position (1.24).

/! class OrderingLayer{
> Ordering algo;

4+ void modify(SequenceOperation change){

5 SetOperation op;

6 List <Couple> list = lookup(); /#/Reordering
7 if (change.type == add){

8 int pos=change.position;

9 Pl pi = algo.generatePI(list .get(pos), list .get(pos+1));
10 op = new SetOperation(add, new Couple(change.label, pi));
1 telse{ //del operation

12 Couple ¢ = list .get(change.position);

13 op = hew SetOperation(del, c);

14

15 innerSet.modify(op);

6}

18 list lookup(){

19 return algo.order(innerSet.lookup);

0}

2}

Fig. 5. Non-Incremental Sequence layer

B. Unordered tree

In this section, we design replicated unordered trees. The
unordered tree node contains a Label € X, a father and a set
of children. The root is a special node without father and label.

As presented in Figure 7, to provide this tree, the layer uses
a set of paths. More formally, we define a path as a sequence
of label: p € Path,p = lily---1,,1; € ¥,Vi € [1..n]. Each
path in this set represents a node. For example, the tree drew
in figure 8 is represented by {a, ab, ac}. In this example, when
the replica 2 adds c under b the word abc is added in inner set.
When the replica 1 removes b, the word ab is deleted in inner
set. In second time, both replica exchange these operations and
those states become {a, ac, abc}. This set does not represent
directly a tree because the node b is not present and has one
child. We call the path abc, respectively the node represented
by this path, an orphan path respectively an orphan node. In
this case, there are different ways to adapt the tree from the
path set. Each way makes a different behavior.

In Figure 9, we present four different behaviours: i) Skip be-
haviour does not return orphan nodes; ii) Reappear behaviour
returns the orphan node at their original path; if the node abc
is finally deleted, ab disappears; iii) Root behaviour places
orphans under a specific directory (root or lost-and-found);
iv) Compact behaviour moves ¢ node under node a, both ac
are merged.

/! class OrderingLayer{
> Ordering algo;
3 List <Couple> list;

s void modify(SequenceOperation change){
6 SetOperation op;
7 if (change.type == add){

8 int pos=change.position;

9 Pl pi = algo.generatePI(list .get(pos), list .get(pos+1));

10 op = new SetOperation(add, new Couple(change.label, pi));
1 telse{ // del operation

12 Couple ¢ = list .get(change.position);

13 op = new SetOperation(del, c);

15 innerSet.modify(op);

18 void update(SetOperation change){

19 Couple couple = change.label
20 if (change.type == add){
21 int pos = getPos(couple.pi, list);
2 list .add(pos, couple);
2 telse{ // delete
24 list .remove(couple);
25
%}
23 list lookup(){
29 return list ;
30
3t}

L

Fig. 6. Incremental Sequence layer

update o o lookup

update o o lookup

Replicated Sef—Q end

receive

Fig. 7. Layered tree

More formally, we call an orphan path, a path in the inner
set lookup (L.S) that has a prefix which is not in LS. We start
by adding all non-orphan paths of LS to lookup of the tree
(LT). Then, we treat the orphan paths in LS in length order
(shortest first, then X order). Considering each orphan path
ayas . ..a, € LS with Vi € [1,n]. a; € X, we can apply the
following connection policies :
skip: drops the orphan path.
reappear: recreates the path leading to the orphan path. We
add all a; ...a; with j € [1,n].

root: places the orphan subtree under the root. We add
a;...a, to LT with j such that a;...a;_1 ¢ LS and
Vk € [j,n], a1 ...ar € LS.

compact: places the orphan subtree under its longest non-
orphan prefix. We add a;...ana;...a, to LT with
7 and m such that m < j and a;...a, € LT and
ai...0m41 € LS and a1 ...aj—1 ¢ LS and Vk € [j,n],
ay...ap € LS.

Using any of the above policies ensures that the lookup
trees presented to the client by any layered tree are eventually
consistent. Indeed, we assume that the inner set is eventually
consistent. Since the tree lookup is deterministically computed

a a
b c 1) c

Tree Rep.1

Rep.o

Fig. 8.

a
a b c) C a
[c c c

i) Skip iii) Root

Concurrent operations in replicated trees

ii) Reappear iv) Compact

Fig. 9. Different behavior for resolving conflict in trees

each time the set is modified, this tree lookup is eventually
consistent. Of course, re-computing the whole tree lookup is
not efficient, and we can define incremental version of the four
policies. We present here the reappear and root incremental
policies®.

1) Reappear Policy: The reappear algorithm presented in
Figure 10, uses a set of “ghosts”. When an orphan node
is added in the inner set, the policy recreates its ancestors
as ghosts by browsing through the path. When a node with
children is removed in the inner set, this node is not removed in
the tree. But it is just marked as a ghost. Ghosts are unmarked
when the node path is re-added in the set. All leaf nodes
marked as “ghost” are recursively removed until there was
nothing left. In our example b is a ghost (see Fig. 9ii)).

The update function for the reappear algorithm is written
in figure 10. The modify function converts a path of lookup
to a path for inner set. By chance, in this policy the path is
not modified. Thus, add operation is not modified. However,
the delete operation must delete the subtree. In this case, the
algorithm looking for all children to remove from the inner
set.

The update function accepts an operation which contains
type of operation (add or delete) and a path. The path
designates the new label or the label to remove; and where
to add the new node or the node to remove. The constructor
prototype of this operation is Operation(Optype optype, Path path).

2) Root policy: The root algorithm moves all orphan nodes
to the root or some special “lost-and-found” directory. The
update function of this algorithms is presented in figure 11.
When two nodes with same label are orphans, the orphans
are merged and the view presents only one node under the
root. The internal state of the connecting layer is a decorated
tree. Nodes are decorated with Paths, the set of original
paths leading to the node. The connecting layer also uses
path2node, a map to link original paths to the node objects.

When a node is added, if this path is prefix of orphans

3Due to space limitation, skip and compact policies are not presented but
are implemented in our open-source framework.

/! void Update(SetOperation change) {

> Path path = change.content;

s if (change.type == add) { // Adds Operation.

4 Label last = path.removelast(); / Computes the father path
5 Node father = tree.getNode(Path); // Get father from path

6 if (father == null) { // If node is Orphan node

7 Node node = tree.root;

8 Path nPath = new Path();

9 for (Label |: path) {

10 Node ¢ = node.getChild(l);

1" if (c==null) {

12 ¢ = tree.add(node, |); // reappear as ghost
13 ghosts.add(c);

14 }

15 node = c;

16

17 tree.add(node, last);

18 } else { // Not Orphan Node
19 Node node = tree.add(father, last, path);

20 ghosts.remove(node);

21

2 }else { // Del Operation

23 Node node = tree.getNode(path);
2 if (node.children.isEmpty()) {

25 do { // Purge ghosts

26 Node father = node.getFather();

27 ghosts.remove(node);

28 tree.del(node);

29 node = father;

30 } while (ghosts.contains(node) && node.children.isEmpty());
31 } else { // Node has children
32 ghosts.add(node); // Become a ghost
33 }

)

35}

Fig. 10. Update function for incremental reappear policy

paths, then all corresponding nodes are reattached by move
function. The move function looks for all prefixes in Paths
of all children of the root node and removes them. It adds the
node to reattach and adds this prefix. All nodes with empty
Paths are deleted.

The modify function browses the tree through a path, takes
the last node and forges the operation with the Paths. For
example, in case of add operation, the modify function adds
each element of Paths concatenated by new label and in case
of delete operation it deletes every path present is Paths.

In our example9iii), when b is deleted and c is added under
b, the ¢ is moved under the root. However, a node c is already
under the root. Two nodes c fusion and c¢ contains the path ¢
and path abc.

C. Ordered Tree Data Type

In this section, we design ordered tree. As presented in
Figure 12i), we directly use the unordered tree data structure
and we add an ordering layer. To order the children of a
node we use Position Identifier (introduced in Section IV-A).
We mark all labels with a position identifier. Therefore, the
nodes become totally ordered. The set of paths, managed by
the replication layer, is represented by p = (I1,p1) - - - (I, D)
with [; € ¥ a label and p; a position identifier. However, the
modify interface of the tree ordering layer must be independent
of the chosen ordering algorithm. The ordering layer interface
receives operation based on a path defined on integer position
without label (ex : 2.4.5.1). Each integer position corresponds

) //move node identified by path from srcFather to dest
2> void move(Node srcFather, Node dest, List path) {

3 for (Node child: srcFather.getChildren()) {

4 /x Make path with prefix and label «/

5 List childPath = new Path(path, child.getValue ());

6 /% node contains good prefixx/

7 if (child.Paths.contains(childPath)) {

8 child .del(childPath);

9 Node node = dest.add(child.label, childPath);
10 move(child, node, childPath);

1 path2node.put(childPath, node);

12

3}

4}

16 void Update(SetOperation change) {

17 Path path = change.getContenty();

18 if (change.getType() == add) { // Add

19 Path fatherPath = path.clone();

20 Label last = fatherPath.removelast();

21 Node father = tree.path2node.get(fatherPath);

2 if (father == null){ // Orphan node
23 father = tree.root;

25 Node node = father.add(last, path);
2% tree .path2node.put(path, node);

27 move(tree.root, node, path); // Reattach adopted
s }else { // Remove
29 Node node = tree.path2node.get(path);
30 tree .path2node.remove(path);
31 move(node, root, path);
32 tree.del(node, path); //remove if paths is empty
3}
}

L

Fig. 11. Update function for Incremental root policy

update o o lookup

receive

ii) Example of or-
dered tree

i) Ordered tree layers

Fig. 12. Ordered tree

to a children number in the ordered tree. For example, consider
the tree on the Figure 12ii). The inner replicated set contains
{ap.: by, ApaCp.s ap,dp, } With py < p, and p. < pq. The
ordered path leading to c is 2.1.

In fact, in a similar way as an unordered tree, the layer
state contains nodes, but, each node, contains additionally the
position identifier and each child is ordered by chosen ordering
algorithm.

The modify function converts an integer position path
J1---Jn» Ji € N into a path containing couples of label and
position identifier. It browses through the tree and pushes the
couple of label and position identifier for each node, until the
last but one. If the operation is an add, the last position iden-
tifier pi,, is generated by ordering algorithm. The generated
position identified by pi,, where pi;, < pin, < pij,+1 if jn
is the last position of path and p;, is position identifier in

position j,. This holds as the last position of the path is the
new node. In case of delete operation, the modify function
converts all of path.

The update function receives a path with label and positions
identifier from the inner set. It browses through the tree until
the last node but one of the path. The algorithm can use a
Hashmap or dichotomy algorithm to find a node in the children
ordered list. In case of add operation, the update function adds
the new node in good place defined by ordering relation. In
case of delete, the update function deletes the node.

D. Extension to schema

In this section, we consider ordered trees with schema
(such as XSD or DTD for XML documents). Concurrent
modifications can produce a tree which does not respect the
schema. For example, consider a schema which accepts zero
to one title element. If two users add concurrently a title, they
will create two title nodes in the internal tree data type. To
fix it, we add a new layer called schema repair. In this layer
(see Fig. 13), lookup interface calls a repair algorithm (such
as [19]) to return a valid tree. The “modify” must ensure that
each operation generated on lookup view is valid on internal
data structure [11].

For example, in an agenda, we assume that under a par-
ticipants node, there is one or more person. If there are
two persons and two replica delete one distinct, then each
replica has generated an operation compatible with the schema.
However, at the end, no person is present. The repairing
algorithm has two choices: add a person or delete participants
markup. However, if the schema needs participants under event
node, then the algorithm chooses to add a person. In this case,
each replica will repair by adding a person node. This addition
will not be passed to the inner data type. In our model the
lookup or update does not modify the inner state. When a
node is added under the virtual person node like a name, the
modify function creates the missing node before to add name,
because the participant is not present in the inner state. An
addition under non-present node implies a fix in tree layer. If
the chosen policy is different from reappear the result is not
compliant with the schema and the tree will be fixed again.

Tree with schema

Fig. 13.

Optimization with DTD schema: The particularity of
DTD schema is a poor language. An add or remove of a node
can invalidate only a part of the tree. It’s possible to use a sub-
quadratic algorithm [27] to approximate regular expression

matching on children to fix the tree. All added edges by this
algorithm could be added with a template of recursive valid
children.

E. Directed acyclic graph

This kind of data type can be used for task dependence
representation, such as Gantt or Pert diagram. In this example,
we use two replicated sets: a set of nodes and a set of edges.
The nodes represent the tasks, and the edges represent the
dependency between the tasks. Two concurrent dependency
additions conflict when they introduce a cycle in the graph.
An un-cycling layer resolves such conflict by traversing the
graph using a breath-first search (see Fig. 14).

update o o lookup

o update o lookup
| Graph |

o update o lookup o update o lookup
Edges Sei_13 s g send

. O receive
receive

Fig. 14. Directed acyclic graph

V. EXPERIMENTAL EVALUATION

To evaluate the performances of our approach, we have
implemented it in the framework ReplicationBenchmark
developed in Java, available on the GitHub platform 4 under
the terms of the GPL license. In this framework, we have
implemented different set layers, different ordering algorithms,
the connecting layer with the four policies described Sec-
tion IV-B and the tree ordering layer described Section IV-C.

The framework follow our layer structure. For instance,
creating a ordered tree based on a reappear policy and a
counter replicated set is done by the following Java expression:
new PositionldentifierTree(new WordTree(new Reappear-
Policy(), new CounterSet())). The framework provides base
classes for common elements, such as a version vector, set,
tree and ordered tree operations.

The framework provides a simulator that generates a trace of
operations randomly, according to provided parameters such
as trace length, percentage of adding, removing, number of
replica, communication delay, etc. It also provides a controlled
simulation environment that replays a trace of operations and
measures the performance of the replicated algorithms. The
simulation ensures that each replica receives operations in the
order as defined in the logs. The framework lets replicas of
every algorithm generate operations in its own formats for the
given trace operations provided from the simulated logs. The
trace obtained to run our experiment has 30000 operations with
88% of insertions and four replicas. The trace is available on
the web °.

We denote a local operation an operation appearing in the
trace. Such operation will be given to the modify interface.

“http://github.com/score-team/replication-benchmarker
Shttp://www.loria.fr/~mahmedna/trace

For ordered tree, operations are insertion of an element or
deletion of a sub-tree. A local operation is divided into
one to several remote operation that the simulation sends
to remote replicas. A replica, therefore, executes remote
operation. We measure the net execution time of local and
remote operations for each algorithm. The framework uses
java.lang.System.nanoTime() for the measurement of exe-
cution time of each local operation and each remote operation.

To obtain a correct result, we ran each algorithm on traces
three times on the same JVM execution. We also measure
the size memory occupied by each algorithm. We serialize
each document replica by using Java serialization after each
hundred operations generated, and measure the size of the
serialized object.

All executions are run on the same JVM, on a dual-
processor machine with Intel(R) Xeon(R) 5160 dual-core pro-
cessor (4Mb Cache, 3.00 GHz, 1333 MHz FSB), that has
installed GNU/Linux 2.6.9-5. During the experiment, only one
core was used for measurement. All graphics are smoothed by
bezier curves.

Before the representation out result of the experiment, we
briefly describe some representative algorithms that exist and
which we will compare our approach.

A. TreeOpt and OTTree

TreeOPT (tree OPerational Transformation) [6] is a gen-
eral algorithm designed for hierarchical documents and semi-
structured documents. Each node contains an instance of
an operation transformation algorithm [2], [15], [21]. The
algorithm applies the operational transformation mechanism
recursively over the different document levels. In our exper-
imentation, we have used this algorithm with SOCT2 [20]
algorithm and TTF (Tombstone Transformation Functions)
approach [13]. For little optimization, we save only insertion
operation in log of SOCT2.

The OTTree, an unpublished algorithm, uses only one
instance of SOCT2 for entire the tree (not on each node)
and TTF on each children list. The operation of TTF and
its integration function were modified to include the path
information.

B. FCEdit

FCEdit [10] is a CRDT designed for collaborative editing
of semi-structured documents. It associates to each element a
unique identifier. FCEdit maps identi fier — node. So it uses
just an hash table to find an element in the tree. Each child is
ordered by a position identifier. Unlike OTtree, FCEdit does
not need to store an element in tombstone. The elements are
really deleted from tree making it more efficient in memory.

In the following, we present behaviors of each ordered tree
algorithms executed on simulated traces with the different
policies described in Section IV.

C. Execution times

In [8], studies have shown that users can comfortably
observe modifications on their application if the local and
remote response time do not exceed 50ms. In this section,

we address an experimental evaluation of algorithms based on
our layer structure, compared to existing ones to verify if this
design is suitable for real time collaborative applications.

1) Skip policy:

a) Local operations: The average execution time of

Local operations are presented in figure 15.

35 T T T T

30

20

Time (in microseconds)

5H™ 1
0
0 50 100 150 200 250 300
Operation (100x)
Fig. 15. Execution time for algorithms with Skip -local-

The performances of the algorithms based on the layer
structure (Logoot and WOOTH) are the less efficient compare
to the algorithms that exist (OTTree and FCEdit), but it
remains stable throughout the experiment. They do not exceed
30us, and thus 50 ms, what makes them acceptable for the
users. The performances of OTTree and TreeOPT based on
SOCT2 algorithm degrade in the beginning of experiment,
since the rate of insertion is greater than the deletion, the tree
becomes quickly large. TreeOPT makes an operation by each
element of the path contrary to OTTree. This explains that the
difference of both algorithms depends of tree depth. After the
100 000 operations, the majority of algorithms become stable.
FCEdit is the best algorithm since each node is identified by
an unique identifier, using a hash table to link identifiers and
node, they obtain a result with a complexity around O(1+n/k)
in the average case. Such a “trick” is only possible since
FCEdit uses a unique identifiers.

The global performance behaviors of Logoot and WOOTH
are quite similar, even if they are very different algorithms.
This proves that the layer structure cost in performance, but
this remains stable and does not exceed 50 ms.

b) Remote operations: In Figure 16 we present an exe-
cution time behaviours of algorithms using a skip policy for
the remote operations on logarithmic scale.

To simulate a real experiment, the garbage collection mech-
anism of SOCT2 is disabled. Indeed, when users may dis-
connect, a garbage collection mechanism of SOCT2 cannot
purge the history. The performances of OTTree and TreeOPT
degrade over time since SOCT?2 algorithm can not purge the
history. Thus, the whole of operations received are stored in the
history and it takes time to separate concurrent operations and
transforms them that makes the algorithm the least efficient.

10000 T T T T T
FCEdit

1000

Time (in microseconds)

0.1 L L L L
0 50 100 150 200 250 300

Operation (100x)
Fig. 16. Execution time for algorithms with Skip -remote-

Indeed, even if some garbage collection mechanisms exist,
we consider that they can not be used in a general context
where the number of replicas is unknown and fluctuating.
As locally, the behaviors of Logoot and WOOTH algorithms
remains stable, although these algorithms are based on layer
structure, they outperform OTTree and TreeOPT with 10us
compare to 10 ms. The performance of FCEdit remains good
and stable during all experiments, with just 3us it represents
the best algorithm in our experiment.

2) Compare policies: In what follows, we will present the
behaviors of Logoot algorithm with different policies that
exist and also WOOTH with reappear policy. For ordered
tree based on WOOTH algorithm, a root and compact policies
are not permitted. Because, we cannot merge different nodes
that depends by their previous and next element with another
located in different origin.

a) Local operations: In Figure 17 the global perfor-
mance behaviors are the same excepted for root policy. In
both policies, the algorithm must move all subtree deleted. In
case of root policy, it moves under the root while for compact
policy it moves under the last father on the tree. In the case
where the node located in the origin path has a same label as
the node in the new path, the two nodes are merged. Since,
number of nodes located under the root in root policy are
greater than the number of children under a node in compact
policy, the time lost to find the nodes with the same label in
root policy takes more time than for compact policy. Indeed,
all nodes deleted in the tree are located under the root whereas
in compact policy, a node contains his children and the nodes
removed from their child.

b) Remote operations: The behavior of the different
algorithm for remote operation presented in 18 is a slightly
different compared to figure 17 since the behaviors are more
chaotic for the root policy.

The behavior of Logoot with skip policy is the most stable.
The average time of execution remains around 10us. As
previously, the root behavior is the least efficient and the most
chaotic. It improves when a replica deletes a path from the
tree, as in operation number 6000 or 23000. In both algorithms
Logoot and WOOTH with Reappear policy and also Logoot

250

Logoot-Reéppear
Logoot-Skip -

Logoot-Root
Logoot-Compact
WOOTH-Reappear -

200 A

100 -

Time (in microseconds)

L L L
100 150 200 250 300
Operation (100x)

Execution time for algorithms with policies -local-

160

T
Logoot-Reappear
Logoot-Skip =======
Logoot-Root -
Logoot-Compact
WOOTH-Reappear ===~

120 - Bl

100 F “

Time (in microseconds)

60 | 1

150 200 250 300
Operation (100x)

Fig. 18.

Execution time for algorithms with policies -remote-

with compact policy have a chaotic behaviors although it
remains stable globally.

Finally, although some algorithms are less efficient than
other, the execution time never exceeds 1ms (far below 50ms).
And almost every algorithm has a very stable behaviour below
30us. The Algorithms based on layer structure are accept-
able and suitable for real-time collaboration. Moreover, they
outperform some representative operational transformation as
OTTree.

D. Memory occupation

Size of memory occupied by each studied algorithm may
increase over time due to history, tombstones or growing iden-
tifiers. We present in the following, the algorithms behavior
regarding memory usage in case of skip policy on logarithmic
scale illustrated in figure 19.

A tree based on WOOTH algorithm occupies more memory
compared to other tree algorithms, since in WOOTH an
identifier is never deleted but just stored in tombstone and
marked as invisible to users. OTTree and tree based on Logoot
algorithm have almost the same behavior. The memory size
occupied by Logoot depends of the size of identifiers Logoot,

1e+08

1e+07

1e+06

Memory (bytes)

100000 [

10000 |- 1

OTTree -------
Logoot «-----+
WOOTH
TreeOPT ====
1000 s s s s !
0 50 100 150 200 250 300
Operation(x100)
Fig. 19. Memory occupation for algorithms with Skip

whereas OTTree depends of number operation generated.
Indeed, SOCT?2 used in OTTree stores all operations in history,
in addition, the garbage collector was quenched, moreover
a deleted node is never removed. TreeOPT consumes more
memory than OTTree because each node has a SOCT2 in-
stance with a log. FCEdit remains the best algorithm regarding
the memory space requirement since the identifiers are less
cost than Logoot and the nodes removed are really deleted
contrary to WOOTH and OTTree.

VI. RELATED WORK

Some collaborative system, such as version control system
(Git, SVN, etc.), or distributed file systems [5] relies on
human merging phases for some conflict cases, while some
conflicts are resolved automatically. For instance, SVN creates
a “tree conflict” when a file is created in a concurrently
deleted directory. On the other hand, Git behavior is similar to
“reappear policy” (see Section IV-B) since it recreates silently
the directory. However, human conflict resolving does not
scale to massive collaboration use cases, and complex data
types conflicts may be difficult to represent and resolve. For
instance, Git is unable to merge correctly XML files. Our
approach computes automatically a best effort merge, and can
be combined to awareness mechanisms [1] to allow users to
be conscious of concurrent modifications.

There exists many systems which satisfy the eventual
consistency properties. Industrial systems, such as No-SQL
data-stores (Amazon S3, CouchDB, Cassandra, etc.), relies on
eventual consistency, but only manage key-value data types.
Bayou [23] and Icecube [9] systems use constraints resolution
mechanisms to resolve the conflicts. So, they can ensure
generic data types constraints. But, these approaches do not
scale well since they require a central or primary server and, as
in version control systems, the system is not stable as soon as
the update are delivered, since their merge procedures produce
new operations.

Replicated data types are well-known in the literacy. For
instance, there exists sets [18], sequences [13], [25], trees [12],
file systems [5], etc. In Operational Transformation (OT) [2],
replicas transform received operations against concurrent ones.

The OT approach has been successfully applied on several
general public collaborative editing software, including Google
Docs. Conflict-free Replicated Data Types (CRDT) [18] aims
to design replicated data-types that integrate remote modi-
fications without transformation. The goal of our approach
is encapsulate any eventually consistent approach (OT or
CRDT) in a replication layer and to design adaptation layer
provide to satisfy non-trivial constraints. For instance, in our
implementation (see Section V), we have implemented and
tested trees layers on top of both different CRDT sets and OT
sets.

VII. CONCLUSION

In this paper, we have presented a layered approach to de-
sign eventually consistent data types. Our approach composes
one or several existing replicated data types which ensure
eventual consistency, and adaptation layers to obtain a new
eventually consistent data type. Each layer or replicated data
type can be freely substituted by one providing the same
interface.

We have demonstrated that our approach is implementable
and obtains acceptable performances, even if these perfor-
mance are sometimes slightly worse than some specific al-
gorithms. Our experiments and implementation are public
available and re-playable. Compared to existing solutions, the
composition design can fit precisely the distributed application
engineer wishes in terms of behavior and scalability.

In the future works, we will run experiments on a real data
like git software histories and we will formally establish the
equivalence proof between incremental and non-incremental
algorithms.

ACKNOWLEDGEMENT

This work is partially supported by the ANR national
research grants STREAMS (ANR-10-SEGI-010) and ConcoR-
DanT (ANR-10-BLAN 0208).

REFERENCES

[1]1 P. Dourish and V. Bellotti. Awareness and coordination in shared
workspaces. In Proceedings of the 1992 ACM conference on Computer-
supported cooperative work, CSCW °92, pages 107-114, New York,
NY, USA, 1992. ACM.

[2] C. A. Ellis and S. J. Gibbs. Concurrency control in groupware
systems. In J. Clifford, B. G. Lindsay, and D. Maier, editors, SIGMOD
Conference, pages 399-407. ACM Press, 1989.

[3] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. SIGACT News,
33:51-59, June 2002.

[4] N. Gu,J. Xu, X. Wu, J. Yang, and W. Ye. Ontology based semantic con-
flicts resolution in collaborative editing of design documents. Advanced
Engineering Informatics, 19(2):103 — 111, 2005.

[51 R. G. Guy, J. S. Heidemann, and T. W. Page, Jr. The ficus replicated
file system. SIGOPS Oper. Syst. Rev., 26(2):26—, April 1992.

[6] C.-L. Ignat and M. C. Norrie. Customizable collaborative editor relying
on treeopt algorithm. In Proceedings of the eighth conference on
European Conference on Computer Supported Cooperative Work, EC-
SCW’03, pages 315-334, Norwell, MA, USA, 2003. Kluwer Academic
Publishers.

[71 A. Imine, P. Molli, G. Oster, and M. Rusinowitch. Proving correctness
of transformation functions in real-time groupware. In Proceedings of
the eighth conference on European Conference on Computer Supported
Cooperative Work, ECSCW’03, pages 277-293, Norwell, MA, USA,
2003. Kluwer Academic Publishers.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

C. Jay, M. Glencross, and R. Hubbold. Modeling the Effects of Delayed
Haptic and Visual Feedback in a Collaborative Virtual Environment.
ACM Transactions on Computer-Human Interaction, 14(2), August
2007.

A.-M. Kermarrec, A. I. T. Rowstron, M. Shapiro, and P. Druschel.
The IceCube approach to the reconciliation of divergent replicas. In
Proceedings of the twentieth annual ACM symposium on Principles of
distributed computing - PODC’01, pages 210-218. ACM Press, 2001.
S. Martin and D. Lugiez. Collaborative peer to peer edition: Avoiding
conflicts is better than solving conflicts. In H. Weghorn and P. T. Isaias,
editors, IADIS AC (2), pages 124-128. TADIS Press, 2009.

S. Martin and D. Lugiez. Fixing collaborative edition on typed
documents. In CDVE, 2010.

S. Martin, P. Urso, and S. Weiss. Scalable xml collaborative editing with
undo. In R. Meersman, T. Dillon, and P. Herrero, editors, On the Move
to Meaningful Internet Systems: OTM 2010, volume 6426 of Lecture
Notes in Computer Science, pages 507-514. Springer, 2010.

G. Oster, P. Urso, P. Molli, and A. Imine. Tombstone transformation
functions for ensuring consistency in collaborative editing systems.
In The Second International Conference on Collaborative Computing:
Networking, Applications and Worksharing (CollaborateCom 2006),
Atlanta, Georgia, USA, November 2006. IEEE Press.

N. M. Pregui¢a, J. M. Marques, M. Shapiro, and M. Letia. A
commutative replicated data type for cooperative editing. In ICDCS,
pages 395-403. IEEE Computer Society, 2009.

M. Ressel, D. Nitsche-Ruhland, and R. Gunzenhéuser. An Integrating,
Transformation-Oriented Approach to Concurrency Control and Undo
in Group Editors. In Proceedings of the ACM Conference on Computer-
Supported Cooperative Work - CSCW ’96, pages 288-297, Boston, MA,
USA, November 1996. ACM Press.

Y. Saito and M. Shapiro. Optimistic replication.
Surveys, 37(1):42-81, 2005.

M. Shapiro, N. Preguica, C. Baquero, and M. Zawirski. A compre-
hensive study of Convergent and Commutative Replicated Data Types.
Research Report RR-7506, INRIA, January 2011.

M. Shapiro, N. Preguica, C. Baquero, and M. Zawirski. Conflict-free
replicated data types. In X. Défago, F. Petit, and V. Villain, editors,
Stabilization, Safety, and Security of Distributed Systems (SSS), volume
6976, pages 386400, Grenoble, France, October 2011.

S. Staworko and J. Chomicki. Validity-sensitive querying of XML
databases. In EDBT Workshops (dataX), pages 164—177. Springer LNCS
4254, 2006.

M. Suleiman, M. Cart, and J. Ferrié. Serialization of Concurrent
Operations in a Distributed Collaborative Environment. In Proceedings
of the ACM SIGGROUP Conference on Supporting Group Work -
GROUP 97, pages 435-445, Phoenix, AZ, USA, November 1997. ACM
Press.

C. Sun and C. Ellis. Operational Transformation in Real-Time Group
Editors: Issues, Algorithms and Achievements. In Proceedings of the
ACM Conference on Computer-Supported Cooperative Work - CSCW
'98, pages 59-68, Seattle, WA, USA, November 1998. ACM Press.

C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achieving conver-
gence, causality preservation, and intention preservation in real-time
cooperative editing systems. ACM Transactions on Computer-Human
Interaction (TOCHI), 5(1):63-108, March 1998.

D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer,
and C. H. Hauser. Managing update conflicts in Bayou, a weakly
connected replicated storage system. In Proceedings of the fifteenth ACM
symposium on Operating systems principles - SOSP’95, pages 172-182.
ACM Press, 1995.

S. Weiss, P. Urso, and P. Molli. Wooki: a P2P Wiki-based Collaborative
Writing Tool. In Web Information Systems Engineering, pages 503-512,
Nancy, France, December 2007. Springer.

S. Weiss, P. Urso, and P. Molli. Logoot: A scalable optimistic replication
algorithm for collaborative editing on p2p networks. In 29th IEEE
International Conference on Distributed Computing Systems (ICDCS
2009), pages 404 —412, Montréal, Québec, Canada, jun. 2009. IEEE
Computer Society.

S. Weiss, P. Urso, and P. Molli. Logoot-undo: Distributed collaborative
editing system on p2p networks. [EEE Transactions on Parallel and
Distributed Systems, 21:1162—1174, 2010.

S. Wu, U. Manber, and E. Myers. A subquadratic algorithm for approx-
imate regular expression matching. Journal of Algorithms, 19(3):346 —
360, 1995.

ACM Computing

