
HAL Id: hal-00763379
https://hal.science/hal-00763379v1

Submitted on 10 Dec 2012 (v1), last revised 14 Dec 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward Polychronous Analysis and Validation for Timed
Software Architectures in AADL

Yue Ma, Huafeng Yu, Thierry Gautier, Paul Le Guernic, Jean-Pierre Talpin,
Loïc Besnard, Maurice Heitz

To cite this version:
Yue Ma, Huafeng Yu, Thierry Gautier, Paul Le Guernic, Jean-Pierre Talpin, et al.. Toward Poly-
chronous Analysis and Validation for Timed Software Architectures in AADL. The Design, Automa-
tion, and Test in Europe (DATE) conference, Mar 2013, Grenoble, France. pp.6. �hal-00763379v1�

https://hal.science/hal-00763379v1
https://hal.archives-ouvertes.fr


Toward Polychronous Analysis and Validation for

Timed Software Architectures in AADL*

Yue Ma, Huafeng Yu, Thierry Gautier

Paul Le Guernic, Jean-Pierre Talpin

INRIA Rennes

35042 Rennes Cedex, France

{firstname}.{lastname}@inria.fr

Loı̈c Besnard

IRISA/CNRS

Campus de Beaulieu

35042 Rennes Cedex, France

loic.besnard@irisa.fr

Maurice Heitz

Communication & Systems (C-S)

ZAC de la Grande Plaine

31506 Toulouse Cedex, France

maurice.heitz@c-s.fr

Abstract—High-level architecture modeling languages, such as
Architecture Analysis & Design Language (AADL), are gradually
adopted in the design of embedded systems so that design choice
verification, architecture exploration, and system property check-
ing are carried out as early as possible. This paper presents our
recent contributions to cope with clock-based timing analysis and
validation of software architectures specified in AADL. In order
to avoid semantics ambiguities of AADL, we mainly consider the
AADL features related to real-time and logical time properties.
We endue them with a semantics in the polychronous model of
computation; this semantics is quickly reviewed. The semantics
enables timing analysis, formal verification and simulation. In
addition, thread-level scheduling, based on affine clock relations
is also briefly presented here. A tutorial avionic case study is
finally adopted to illustrate our overall contribution.

Keywords-AADL; MDE; Polychrony; timing analysis

I. INTRODUCTION

High-level standardized modeling languages, such as Ar-

chitecture Analysis & Design Language (AADL) [2], the

UML Profile for Modeling and Analysis of Real-Time and

Embedded Systems (MARTE) [3], and Systems Modeling

Language (SysML) [4], are gradually adopted for system

modeling and specification due to issues of system complexity,

time to market, validation, etc. Without necessarily having

the physical implementation of a system, these languages,

particularly AADL, permit the fast yet expressive modeling of

a system, including software architecture, execution platform,

and their binding. Early-phase analysis and validation can be

therefore rapidly performed [5], [6], [7], [8], [9], [10].

Although AADL provides a fast design entry, there are

still some critical challenges, such as unambiguous semantics,

timing analysis, formal verification and co-simulation. To ad-

dress these issues, expressive formal models and complete tool

chains are required, based on which the previously mentioned

verification and validation are enabled.

In our proposed approach, we first analyze the tim-

ing semantics of AADL, from which the formal poly-

chronous/multiclock semantics is derived thanks to the multi-

clock nature of AADL specifications. Thus users are not suf-

fered to find and/or build the fastest clock in the system. This

distinguishes from [11], [6], where synchronous semantics is

*This work is partially supported by European ITEA2 project OPEES [1].

a prerequisite. This polychronous semantics is then expressed

via a polychronous model of computation (MoC) [12] covering

both AADL software, execution platform, and their binding.

In addition, AADL thread-level scheduling is also explored

and integrated according to affine clock relations [13]. With the

scheduler synthesis, the translated AADL model is complete

and executable, and can be used for the following analysis and

validation.

Polychrony [14], a software environment dedicated to the

trustworthy design of synchronous/polychronous embedded

systems, provides the back-end semantic-preserving transfor-

mation, scheduling, code generation, formal analysis and ver-

ification, architecture exploitation, and distribution [15]. More

precisely, the following concrete techniques are considered in

our work: 1) static analysis, including determinism identifica-

tion and deadlock detection; 2) profiling-based analysis of real-

time characteristics of a system [16]; 3) affine clock calculus

to analyze the affine relations between clocks [13]; 4) real-

time scheduling and allocation through the Syndex tool [17];

5) co-simulation of AADL specifications and demonstration

using the VCD technique [18].

An automatic tool chain has been developed to support our

work. A tutorial avionic case study, initially provided by C-S

Toulouse, is adopted in this paper to show the effectiveness

of our contribution. This case study, taken as a general

design pattern, has been developed and demonstrated in the

framework of the OPEES project [1].

Outline. Section II briefly introduces AADL via the case

study. Section III gives a short introduction to the poly-

chronous MoC. Section IV presents our main contribution,

and exemplifying it with the case study in Section V. Some

related works are summarized in Section VI, and conclusion

is drawn in Section VII.

II. INTRODUCTION TO AADL

AADL is the Society of Automotive Engineers (SAE)

standard dedicated to modeling embedded real-time system ar-

chitectures. Based on a component modeling approach, AADL

describes the structure of systems as an assembly of soft-

ware components allocated on execution platform components

together with timing semantics. Three distinct component



categories are provided in AADL: software application com-

ponents (process, thread, thread group, subprogram, and data),

execution platform components ((virtual) processor, memory,

device, and (virtual) bus), and composite component (system).

In the following, a tutorial avionic case study, called

Producer-Consumer and initially provided by C-S Toulouse

for the OPEES project, will be used as a general design

pattern, to illustrate progressively these AADL models. In

this case study (in Fig. 1), a typical generic component takes

charge of producing and consuming data through a shared data

resource. It is implemented by different components, allowing

the producer and consumer to communicate and to access data.

Fig. 1. AADL Producer-Consumer example (process level)

The system is composed of a process prProdCons (in Fig. 1)

that communicates with two subsystems: sysEnv (models

the environment) and sysOperatorDisplay (informs when a

timeout occurred on data production or consumption). The

prProdCons process is executed on a processor Processor1. It

contains four threads: thProducer, thConsumer, thProdTimer

and thConsTimer. Thread thProducer produces shared data in

Queue, which in turn is consumed by thread thConsumer. The

timer thProdTimer (resp. thConsTimer) manages timer services

for thProducer (resp. thConsumer). It permits to start, stop

timer and send a timeout event (pTimeOut) when the timer

has expired.

Properties are specified to provide more information about

model elements. We are interested in timing properties, such

as Input Time (resp. Output Time) of ports, that assure an

input-compute-output model of thread execution. We will

analyze the timing semantics and associated timing properties

in Section IV-A.

III. THE POLYCHRONOUS MODEL OF COMPUTATION

Synchronous languages are dedicated to the design of

synchronous reactive systems [19]. Their mathematical basis

favors the trusted design of safety critical real-time systems.

Among these languages, the SIGNAL language stands out for

its capability to describe circuits and systems with multi-

clock relations [12], and to support refinement [20]. The

multiclock/polychronous semantics of SIGNAL makes it more

approximate to AADL semantics than other pure synchronous

or asynchronous models, and thus simplify the system mod-

eling, transformation, and validation.

The polychronous MoC of SIGNAL handles unbounded

series of values in the domain Dx, where x = (xt)t∈N,

called signals, implicitly indexed by discrete time. At any

instant, a signal is either present and holds a value v in Dx;

or absent and holds an extra value, denoted by ⊥. The set

of instants when a signal x is present represents its clock.

Two signals are said to be synchronous if they are both

present (or absent) at the same instants (they have the same

clock). Operations on signals include: step-wise functions,

delay, sampling, deterministic merging, etc. More details can

be found in [15]. SIGNAL is associated with the Polychrony

design environment [14], which provides a formal framework

for the trustworthy system design. From a polychronous MoC,

Polychrony automatically synthesizes the fastest simulation

clock and can make the non-determinism caused by multiclock

transparent to users.

IV. AADL MODELING AND ANALYSIS FRAMEWORK

The AADL time model allows the specification of both

logical and chronometric clocks in the system. In addition,

each component can be associated with timing properties,

which indicate their expected real-time characteristics. In

general, this timing information is checked by schedulability

analysis or simulation at runtime, on an informal basis. We

propose to perform formal timing analysis via a different yet

efficient approach based on the polychronous MoC.

A. AADL timing execution model

The thread component and its polychronous execution tim-

ing semantics is mainly involved and presented here. A thread

is dispatched either periodically, or by the arrival of data

or events on ports, or by the arrival of subprogram calls,

depending on the thread type. Several timing properties can

thus be assigned to a thread, e.g.:

Dispatch_Protocol => Periodic;

Period => 4 ms;

Deadline => 4 ms;

Three event ports are predeclared: dispatch, complete and

error (Fig. 2). A thread is activated to perform the computation

at start event, and has to be finished before deadline. A

complete event is sent at the end of the execution.

Fig. 2. Execution time of a thread

Input-compute-output model. The received inputs are

frozen at a specified point (Input Time), by default the dis-

patch time, which means that the content of the port that



is accessible to the recipient does not change during the

execution of a dispatch even though the sender may send

new values. For example, the two values 2 and 3 (in Fig. 2)

arriving after the first Input Time will not be processed until

the next Input Time. As a result, the performed computation

is not affected by a new arrival input until an explicit request

for input. Similarly, the output is made available to other

components at a specified point of Output Time, by default

at complete (resp. deadline) time for out port if the associated

port connection is immediate (resp. delayed) communication.

B. AADL vs Polychrony time models

Due to the different timing semantics, modeling embedded

systems specified in AADL with POLYCHRONY raises some

difficulties:

AADL takes into account execution latency and commu-

nication delay, which are defined on chronometric clocks.

Conversely, the synchronous semantics of POLYCHRONY only

considers atomic instantaneous actions: instantaneous execu-

tion on logical clock. Possible solutions to bridge between

these different time models have been presented in [10], where

additional discrete events are added to model latency and

delay.

The multi-clock feature of SIGNAL allows to model systems

with several clocks, where each component holds its own

activation clock, as well as single-clocked systems, in a

uniform way. This feature suits well for the component-based

architecture design in AADL.

Periodic clocks can be modeled in SIGNAL using affine

clock relations. Thus, synchronizability analysis can be carried

out between multi-period threads.

Data can be shared, read or written by different components

at different time instants in AADL. It is possible in SIGNAL to

have several expressions associated with one signal by partial

definitions [15]. The clock calculus can compute sufficient

conditions to guarantee that the overall definition is consistent

and total.

C. AADL time model in Polychrony

The key idea for modeling the AADL computing latency

and communication delay in SIGNAL is to keep the ideal

view of instantaneous computations and communications mov-

ing computing latency and communication delays to specific

“memory” processes, that introduces delay and well suited

synchronizations [10].

A “memory” process o = fm(i, b) repeats the input signal

i on the instants of Boolean signal b. The result o contains

values of i when i is present and b is true, and the value of

previous i when i is absent and b is true:

o = fm(i, b)
def
≡

∀t > 0 : ot =















it if it 6=⊥, and bt = true

ipred(t) if it =⊥, and bt = true,

pred(t) = max{k < t | ok 6=⊥}
⊥ otherwise

Input freezing. Let f(x) represent the result of the behavior

f of a given in port to its input signal x, e.g., f can be a FIFO

to represent queued event or event data port. A port y = f(x)
gives the available output y from the currently received input

x. It defines an elementary process such that:

y = f(x)
def
≡ ∀t > 0 : (xt 6=⊥⇔ yt 6=⊥) ∧ (yt = f(xt)).

x is frozen at t is a function that takes an input x, a frozen

time event t, and produces a new signal z at time t. It is noted

as x ◮ t:

z = x ◮ t
def
≡ z = fm(f(x), t).

Thread activation. We use th(z1, z2, . . . ) to represent the

original computation of thread th with the frozen inputs

z1, z2, . . . The thread th is activated to perform computation

at “start”, which is denoted as th′(z1, z2, . . . , start), where

its inputs z1, z2, . . . are memorized at start. It is defined as

follows:

th′(z1, z2, . . . , start)
def
≡ th(z′1, z

′

2, . . . )
where z′i = fm(zi, start)

Output sending. Similar to the in port, g(y) represents the

behavior of an out port. The send function defines a process

such that the generated output of g(y) is hold and sent out at

time t. This is noted as y ⊲ t: w = y ⊲ t
def
≡ w = fm(g(y), t).

D. Thread-level scheduler synthesis

An AADL model is not complete and executable if the

thread-level scheduling is not resolved. Some scheduling tools,

such as Cheddar [5], are well connected to AADL for

schedulability analysis, scheduler synthesis and simulation

inside these tools. However, they do not completely satisfy our

demands for the following reasons: 1) logical and chronomet-

ric clocks are easily transformed into each other for formal

and real-time analysis; 2) more events, such as input/output

frozen events are also involved in the analysis; 3) static and

periodic scheduling rather than stochastic/dynamic scheduling

is expected due to predictability and formal verification; 4)

the scheduling is easily and seamlessly connected to affine

clock systems [13] so that formal analysis can be performed in

Polychrony. Affine clock relations yield an expressive calculus

for the specification and the analysis of time-triggered systems.

A particular case of affine relations is the case of affine

sampling relation expressed as y = {d · t + φ | t ∈ x}
of a reference discrete time x (d, t, φ are integers): y is a

subsampling of positive phase φ and strictly positive period d

on x.

We therefore propose a static scheduler synthesis process

including the following subprocesses: 1) calculate hyper-

period from the periods of all the threads according to the

least common multiple principle; 2) perform the scheduling

based on the hyper-period, and valid schedules are calculated

according to a static, non-preemptive, and single-processor

scheduling policy. More precisely, discrete events of each

thread, such as dispatch, input/output frozen time, start and

complete, are allocated in the hyper-period on condition that

all their timing properties are satisfied. Affine clock relations



of these events are ensured during the calculation. In the cal-

culation process, different scheduling policies are considered,

such as EDF and RM; 3) export schedules to SIGNAL affine

clocks in a direct way.

E. A complete and automatic tool chain

A tool chain for modeling, scheduling, timing analysis, and

verification of AADL models in the polychronous MoC has

been developed in the framework of Eclipse. The AADL

model with timing properties, which conforms to the AADL

metamodel, is captured in the OSATE toolkit [21]. A model

transformation ASME2SSME allows to perform analysis on

ASME models (AADL Syntax Model under Eclipse) and gen-

erate corresponding SIGNAL SSME models (SIGNAL Syntax

Model under Eclipse). An AADL2SIGNAL library provides

common SIGNAL processes reducing significantly the trans-

formation complexity and cost. With the SIGNAL and binary

code generated from the SSME model, analysis and validation

is carried out in the framework of Polychrony.

This tool chain is scalable in three aspects: 1) in the

framework of Eclipse EMF, the tool chain defines a CoL (Con-

cept high Level) API to access the MoL (Model low Level)

API. In this way, model transformations are independent of

different low-level metamodels and heterogeneous models are

easily integrated into the tool chain; 2) in the framework of

Polychrony, analysis, verification, simulation, profiling tech-

niques are considered as independent functions connected to

the Polychrony core; 3) more than ten case studies have been

tested, and there is no special size limitation on transformation.

Limitation exists only in some formal validation techniques,

such as model checking. In addition, several thousand clocks

can be handled by the clock calculus. A simple but efficient

mechanism of traceability has been implemented in the tool

chain, i.e., the names of high level models are either preserved

as names or preserved in annotations in the model transfor-

mation and code generation.

V. A CASE STUDY

In this section, we illustrate the translation process from a

high level description in AADL to a synchronous description

using the Producer-Consumer case study introduced above.

The timing semantics and properties are processed during the

transformation.

Fig. 3. ProducerConsumer system modeling in SIGNAL

The SIGNAL process resulting from the system implemen-

tation is given in Fig. 3: an instance of a SIGNAL process

model of the processor Processor1 communicates with two

process instances that represent the systems sysEnv and sysOp-

eratorDisplay. Subprocesses that represent system behavior

(ProducerConsumer others System behavior()) and property

(ProducerConsumer others System property()) are added.

Processes (e.g., prProdCons) will be bound to a proces-

sor (e.g., Processor1) for their execution, that supports the

dispatch protocol required by the contained threads. This

protocol is provided by Actual Processor Binding property:

Actual_Processor_Binding =>

Processor1 applies to prProdCons;

The processes bound to this processor are implemented as

SIGNAL subprocesses of the SIGNAL process that represents

the processor.

Fig. 4. Producer thread modeling in SIGNAL

A. Thread

An AADL periodic thread is implemented as a SIGNAL

process composed of its behavior, properties, ports, subcom-

ponents (if data or subprogram subcomponents exist) and

connections. Some additional timing signals are added (Fig. 4):

• An input bundle signal ctl1 (a bundle represents a

polychronous tuple of signals) contains event signals,

Dispatch, Resume and Deadline, which are implicit pre-

declared ports or added simulation signals.

• An input bundle signal time1 that provides the clock of

the frozen time and output time for the event ports, e.g.,

pProdStart Frozen time event.

• An output bundle signal ctl2 for the events Error and

Complete (predeclared ports in AADL).

• An output signal Alarm that triggers an event when the

properties are not satisfied.

Computing latency and communication delay, allowing to

produce data of the same logical instants at different imple-

mentation instants, is taken into account in the thread. Those

instants are precisely defined in the port and thread properties.



Therefore, the ports of a thread are implemented as SIGNAL

processes instead of simply input/output signals.

The port is a logical connection point for the directional

exchange of data/events between components. A thread port

has special timing semantics: the in (resp. out) port is frozen

(resp. sent out) at Input Time (resp. Output Time). Incoming

events (the event data ports are similar, and the data ports

modeling can be found in [10]) may be buffered in event ports

with queues. The queue size can be explicitly declared by

Queue Size property, by default it is 1. Queues will be serviced

according to the Queue Processing Protocol, by default in a

First In First Out order (FIFO).

Fig. 5. In event port pProdStart modeling in SIGNAL

In event port: two FIFOs are provided: in fifo for

storing the received events, and frozen fifo for storing the

frozen events. The actual items of the in fifo are frozen

(presented as Frozen in Fig. 5) at Input Time (presented as

Frozen time event).

Out event port: for an out event port (e.g., pProdStart-

Timer), the values are stored in a fifo, and sent out (represented

as Send) at Output Time.

B. Shared data

Components can have shared access to data subcomponents,

where the data act as a critical region and mutual exclusion

access clocks are required to assure only one access at a time.

Therefore, in contrast with other categories of components,

e.g., thread, which are translated into different instances of

SIGNAL processes, the shared data is represented as a single

FIFO instance that can be read/written by different components

at different time instants. Depending on the type of access that

is associated with data (i.e., read only, write only), a clock at

which a thread reads, writes or resets the data is provided if

the thread requires access to this data.

The data Queue in the prProdCons process which is shared

by threads thProducer and thConsumer is represented as a

FIFO process instance fifo reset() (equation eq1 in Fig. 6). The

values to be read or written in the FIFO (Queue r, Queue w,

Queue reset) are declared as shared variables, so that they

can be accessed by different threads. To write (or reset) a data

into the FIFO, a partial definition (such as equation eq4) is

provided (e1 is a time instant at which the thread writes data).

C. Formal analysis and simulation

Based on the polychronous MoC, an AADL specification is

translated into the SIGNAL language. POLYCHRONY is used to

Fig. 6. AADL data Queue modeling in SIGNAL

formally analyze and verify the corresponding model, which

includes: static analysis, simulation, performance analysis, etc.

We only give a brief description here. Clock calculus has been

applied, in the compiling stage, to analyze clock relations and

identify the determinism in the AADL model. For example,

the automaton of the thProducer thread has been checked:

without correct priority properties specified on the transitions,

the automaton is found to be non-deterministic. Other static

analyses are also available, such as deadlock detection and

model checking, which will not be illustrated here.

In the case study, all the threads are periodically dispatched,

e.g., the periods of the four threads (thProducer, thConsumer,

thProducerTimer, thConsumerTimer) are 4ms, 6ms, 8ms and

8ms respectively. A thread-level scheduler is first built consid-

ering SIGNAL affine clocks, which implements synchronizabil-

ity rules based on properties of affine relations, against which

synchronization constraints can be assessed. The generated

valid schedules are then seamlessly translated into SIGNAL

for validation and simulation purposes. Our approach to verify

scheduled models makes the main difference compared to

other AADL scheduling tools like Cheddar.

Profiling has been used for performance evaluation, once a

specific hardware architecture is chosen and the corresponding

temporal specification of the SIGNAL program is defined

on this architecture [16]. In addition, code distribution can

also be implemented considering a distributed architecture

[15]. Syndex has equally been connected, taking into account

software and hardware and their binding, to perform low-

level static scheduling, considering real-time, architectural, and

allocation characteristics [17].

VI. RELATED WORK

AADL has been connected to many formal models for

analysis and validation. The AADL2Fiacre project [22] and

the Ocarina project [23] mainly focus on model transformation

and code generation, in other words, formal analysis and veri-

fication are performed externally with other tools and models.

The AADL2Sync project [11] and the Compass Approach [6]

provide complete tool chains from modeling to validation,

but they are generally based on the synchronous semantics,



which is not approximate to AADL timing semantics. We

consider neither error model in [6] nor a more complete

scheduling of shared resources like in [11]. However, con-

nections to allocation and code distribution are not reported

in these works. AADL2Maude [9] introduces a real-time

rewriting logic semantics only for a behavioral subset of

AADL. AADL2BIP [8] allows simulation of AADL models,

as well as application of particular verification techniques, i.e.,

state exploration and component-based deadlock detection. In

comparison of all these projects, we provide a more natural

and closed timing modeling with regard to AADL multiclock

timing semantics, as well as a rich connection to various

formal methods for verification and validation, to support

system-level codesign.

In addition, we are also interested in the related work on

AUTOSAR (AUTomotive Open System ARchitecture) [24]

and its complement EAST-ADL [25] in the automotive do-

main, such as [26], [27] in the TIMMO-2-USE project [28].

A language, called TADL2 [28], has been proposed to deal

with timing characteristics and analysis. In comparison, we

concentrate on a clock-based timing modeling and analysis,

not directly on real-time models and probabilistic models.

VII. CONCLUSION

In this paper, we present a polychronous semantics of

AADL that considers both software and execution platform of

a system, as well as timing properties of AADL components.

The goal of our approach is to benefit both from the high-level,

domain-specific language AADL for the system-level design,

and the Polychrony toolset, based on the synchronous language

SIGNAL, for timing analysis and validation. A tutorial case

study was presented and used to demonstrate our approach. A

perspective of our work is related to modes in AADL. SIGNAL

automata have been proposed to easily handle modes as well

as AADL behavior annex.

Despite the apparent complexity of the process and nota-

tions, but thanks to model engineering techniques and avail-

ability of integrated tool and technology platforms through

initiatives like OPEES, this approach is contributing towards

the dissemination and use of formal verification techniques in

industry.

REFERENCES

[1] Open Platform for the Engineering of Embedded Systems (OPEES
Project), http://www.opees.org/.

[2] SAE Aerospace (Society of Automotive Engineers), “Aerospace Stan-
dard AS5506A: Architecture Analysis and Design Language (AADL) ,”
2009.

[3] Object Management Group (OMG), “The UML Profile for MARTE:
Modeling and Analysis of Real-Time and Embedded Systems,” http:
//www.omg.org/spec/MARTE/1.1/PDF, September 2011.

[4] “Systems Modeling Language (SysML),” http://www.sysml.org/specs.

[5] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Scheduling and mem-
ory requirements analysis with AADL,” in ACM SIGAda international

conference on ADA (SigAda’05), 2005.

[6] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Nguyen, T. Noll, and
M. Roveri, “Safety, Dependability, and Performance Analysis of Ex-
tended AADL Models,” The Computer Journal, vol. 54, no. 5, pp. 754–
775, 2011.

[7] P. Feiler and J. Hansson, “Flow Latency Analysis with the Architecture
Analysis and Design Language (AADL),” Carnegie Mellon University,
Tech. Rep. CMU/SEI-2007-TN-010, 2007.

[8] M. Chkouri, A. Robert, M. Bozga, and J. Sifakis, “Translating AADL
into BIP - Application to the Verification of Real-Time Systems,” in
Models in Software Engineering, M. R. Chaudron, Ed. Springer-Verlag
Berlin, 2009, pp. 5–19.

[9] P. Ölveczky, A. Boronat, and J. Meseguer, “Formal Semantics and
Analysis of Behavioral AADL Models in Real-Time Maude,” in Formal

Techniques for Distributed Systems, J. Hatcliff and E. Zucca, Eds.
Springer, 2010, vol. 6117.

[10] Y. Ma, H. Yu, T. Gautier, J.-P. Talpin, L. Besnard, and P. Le Guernic,
“System Synthesis from AADL using Polychrony,” in Electronic

System Level Synthesis Conference, 2011. [Online]. Available: http:
//hal.inria.fr/inria-00594943

[11] E. Jahier, N. Halbwachs, and P. Raymond, “Synchronous Modeling
and Validation of Priority Inheritance Schedulers,” in Fundamental

Approaches to Software Engineering (FASE’09), 2009.
[12] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann, “Polychrony for System

Design,” Journal for Circuits, Systems and Computers, vol. 12, pp. 261–
304, 2002.

[13] I. M. Smarandache, T. Gautier, and P. Le Guernic, “Validation of Mixed
SIGNAL-Alpha Real-Time Systems through Affine Calculus on Clock
Synchronisation Constraints,” in World Congress on Formal Methods,
1999.

[14] The Polychrony Toolset, http://www.irisa.fr/espresso/Polychrony/.
[15] L. Besnard, T. Gautier, P. Le Guernic, and J.-P. Talpin, “Compilation of

polychronous data flow equations,” in Correct-by-Construction Embed-

ded Software Synthesis: Formal Frameworks, Methodologies, and Tools,
S. Shukla and J.-P. Talpin, Eds., 2010.

[16] A. Kountouris and P. Le Guernic, “Profiling of SIGNAL Programs and
its Application in the Timing Evaluation of Design Implementations,”
in IEE Colloquium on the Hardware-Software Cosynthesis for Recon-

figurable, 1996.
[17] Y. Sorel, “SynDEx: System-Level CAD Software for Optimizing Dis-

tributed Real-Time Embedded Systems,” ERCIM News, vol. 59, pp. 68–
69, 2004.

[18] H. Yu, Y. Ma, Y. Glouche, J.-P. Talpin, L. Besnard, T. Gautier,
P. Le Guernic, A. Toom, and O. Laurent, “System-level Co-
simulation of Integrated Avionics Using Polychrony,” in ACM

Symposium on Applied Computing (SAC’11), 2011. [Online]. Available:
http://hal.inria.fr/inria-00536907/en/

[19] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic,
and R. de Simone, “The Synchronous Languages Twelve Years Later,”
Proceedings of the IEEE, 2003.

[20] J.-P. Talpin, P. Le Guernic, S. Shukla, F. Doucet, and R. Gupta,
“Formal Refinement Checking in a System-level Design Methodology,”
Fundamenta Informaticae, vol. 62, no. 2, pp. 243–273, 2004.

[21] OSATE V2 Project, http://gforge.enseeiht.fr/projects/osate2/.
[22] B. Berthomieu, J.-P. Bodeveix, P. Farail, M. Filali, H. Garavel, P. Gau-

fillet, F. Lang, and F. Vernadat, “Fiacre: an Intermediate Language
for Model Verification in the Topcased Environment,” in 4th European

Congress Embedded Real Time Software (ERTS’08), 2008.
[23] J. Hugues, B. Zalila, L. Pautet, and F. Kordon, “From the Prototype to

the Final Embedded System Using the Ocarina AADL Tool Suite,” ACM

Transactions in Embedded Computing Systems (TECS), vol. 7, no. 4, pp.
1–25, 2008.

[24] AUTOSAR (AUTomotive Open System ARchitecture), http://www.
autosar.org/.

[25] EAST-ADL, http://www.east-adl.info.
[26] M.-A. Peraldi-Frati, A. Goknil, J. DeAntoni, and J. Nordlander, “A

Timing Model for Specifying Multi Clock Automotive Systems. The
Timing Augmented Description Language V2.” in 17th IEEE Conf. on

Engineering of Complex Computer Systems (ICECCS), 2012.
[27] S. Quinton, R. Ernst, D. Bertrand, and P. Meumeu Yomsi, “Challenges

and New Trends in Probabilistic Timing Analysis,” in Design, Automa-

tion, and Test in Europe (DATE), Dresden, Germany, 2012.
[28] TIMMO-2-USE Project, “TADL2 deliverable,” http://www.

timmo-2-use.org/.


