
HAL Id: hal-00763360
https://hal.science/hal-00763360v1

Submitted on 10 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

JOMS: a Java Message Service Provider for
Disconnected MANETs

Abdulkader Benchi, Frédéric Guidec, Pascale Launay

To cite this version:
Abdulkader Benchi, Frédéric Guidec, Pascale Launay. JOMS: a Java Message Service Provider for
Disconnected MANETs. 8th International Workshop on Heterogeneous Wireless Networks, Mar 2012,
Fukuoka, Japan. pp.484-489. �hal-00763360�

https://hal.science/hal-00763360v1
https://hal.archives-ouvertes.fr

JOMS: a Java Message Service Provider

for Disconnected MANETs

Abdulkader Benchi, Frédéric Guidec, Pascale Launay

IRISA, Université de Bretagne-Sud

Vannes, France

Abstract—A disconnected mobile ad hoc network (or D-
MANET) is a wireless network, which because of the sparse
distribution of mobile hosts appears at best as a partially or
intermittently connected network. Designing and implementing
distributed applications capable of running in such a challenged
environment is not a trivial task. Middleware systems such as
Java Message Service (JMS) have made application development
easy and cost-effective in traditional wired networks. It can be
expected that middleware systems designed specifically for D-
MANETs bring similar benefits. In this paper, we introduce
JOMS (Java Opportunistic Message Service), a JMS provider
for D-MANETs with which pre-existing and new JMS-based
applications can be deployed simply in D-MANETs.

Index Terms—Java Message Service, JMS provider, Message
Oriented Middleware, disconnected MANET

I. INTRODUCTION

In a mobile ad hoc network (or MANET), mobile devices

can communicate with one another using direct wireless trans-

missions. Because the range of these transmissions is often

quite short, a number of protocols (such as OLSR, AODV,

DYMO, DSR...) have been developed during the last two

decades in order to support multi-hop forwarding in MANETs.

Yet most of these protocols rely on the assumption that the

network remains connected, that is, a temporaneous end-to-

end path exists at any time between any pair of hosts in

the network. Unfortunately this assumption does not hold in

many MANETs that are, at best, only partially or intermittently

connected.

Figure 1 illustrates a typical disconnected MANET (or D-

MANET). This network appears as a collection of distinct

“islands” (or connected parts of the network) rather than as

a single, connected network. Hosts can communicate within

each island, but no temporaneous communication is possible

between different islands. The concept of delay/disruption-

tolerant networking makes it possible to bridge the gap be-

tween islands, though, using mobile hosts as message carriers

as they move in the network [1]. A message can thus be stored

temporarily on a host, and be carried for a while by this host

before being forwarded to another host when circumstances

permit. In Figure 1, a smartphone or laptop carried by a user

moving –deliberately or by chance– from island 1 to island 2

can serve as a carrier for messages addressed to hosts located

in island 2. Based on this “store, carry and forward” model,

connectivity disruptions can be tolerated. Yet this approach

yields long transmission delays because it depends on the –

usually non-predicted– mobility of hosts.

Figure 1. Example of a disconnected mobile ad hoc network

The term opportunistic networking is usually used in the

literature to denote this kind of networking where non-

predicted radio contacts between mobile hosts are used by

these hosts to exchange messages, and thus contribute to

the propagation of messages network-wide. A number of

opportunistic networking protocols have been developed for

D-MANETs during the last few years [2]. Yet developing

distributed applications capable of running based on these

protocols is not a trivial task: the dynamic nature of D-

MANETs, long transmission delays, occasional transmission

failures all constitute serious challenges developers must face.

As a general rule, when designing an application for D-

MANETs the peer-to-peer model should be preferred over the

client-server one, because in most circumstances no host can

be considered as being stable and accessible enough to play

the role of a server for all other hosts.

In traditional networking environments the concept of mid-

dleware gained popularity as a solution to ease the develop-

ment of distributed applications. It can be expected that mid-

dleware systems designed specifically for D-MANETs should

bring developers similar benefits. According to Hurwitz [3]

there are four main types of middleware: transactional, proce-

dural, message-oriented and object-oriented middleware. The

asynchronous message-passing feature of message-oriented

middleware makes it an appropriate model for D-MANETs,

for the long transmission delays imposed by the “store, carry

and forward” scheme can be easily tolerated through asyn-

chronous messaging.

In the remainder of this paper we present JOMS (Java Op-

portunistic Message Service), a message-oriented middleware

system we designed and deployed for D-MANETs. JOMS

is actually a provider for the standard Java Message Service

(JMS), so the developers of JMS applications can use JOMS

just like they use any other JMS provider.

This paper is structured in the following way: an overview

of the JMS specification is provided in Section II. Section III

presents the general architecture and principles of our system

JOMS, and details about the implementation of this system

are provided in Section IV. Related work is discussed in

Section V. Section VI concludes this paper, and describes our

plans for future work.

II. JAVA MESSAGE SERVICE (JMS)

The Java Message Service (JMS) is a Message-oriented

Middleware (MoM) standard that allows application compo-

nents based on the Java 2 Platform Enterprise Edition (J2EE)

to create, send, receive, and read messages. Since it is a MoM

standard, it supports distributed communication in a loosely-

coupled, reliable, and asynchronous manner [4]. In general,

MoM enables a loosely-coupled type of distributed communi-

cation. A client sends (produces) a message to another client,

which can then try to retrieve (consume) it asynchronously.

The producer and the consumer do not have to be available at

the same time in order to communicate. In fact, the producer

does not need to know anything about the consumer, nor does

the consumer need to know anything about the producer. This

brings a major benefit to MoM, where the producer and the

consumer need to know only what message format and what

channel to use in order to communicate.

The JMS API defines a common set of interfaces including

the associated semantics that allows programs written in Java

to communicate. The JMS specification does not define how

messages are transported within a particular implementation,

known as a JMS provider. Because of the lack of unified

implementation, each major vendor proposes its own JMS

provider along with the associated management tools. Each

JMS provider supplies the user with an appropriate transport

technology for a particular deployment environment.

The JMS API defines two communication models: point-

to-point and publish-subscribe. The point-to-point model is

built around the concept of queues. A queue sender sends

a message to a specific queue, from which a queue receiver

can receive it asynchronously. This model provides a one-

to-one communication model. In other words, a given queue

may have multiple senders and multiple receivers, but each

message sent by a sender to this queue is consumed by one

receiver. This means that some mechanism is required to

decide which receiver candidate will be the actual receiver

of a given message.

The publish-subscribe model is based on the use of topics

that can be subscribed to by topic subscribers. Messages

are published to a topic by topic publishers and are then

received in an asynchronous mode by all the corresponding

topic subscribers. Each message may thus be consumed by

multiple subscribers. This model complements the point-to-

point model in that it provides a one-to-many communication

model.

JMS supports two delivery semantics, through the so-called

persistent and non-persistent delivery modes. A non-persistent

message should be delivered in a best-effort mode. Conversely,

a persistent message must be delivered in a guaranteed mode.

The JMS specification does not define how messages are

transported. It is up to the JMS provider to define how these

two types of delivery semantics are implemented.

III. JAVA OPPORTUNISTIC MESSAGE SERVICE (JOMS)

JMS was primarily designed for systems where clients

connect to central servers via traditional networks and this has

remained its typical usage scenario. In most implementations

of JMS, message producers send messages to a server that

stores these messages and forwards (delivers) them later to the

consumers. As explained in Section I a server-based model is

hardly compatible with the characteristics of D-MANETs. No

host can act as a reliable server for all other hosts. A server-

less JMS implementation must thus be developed in order to

provide JMS services in D-MANETs.

JOMS, or Java Opportunistic Message Service, is a JMS

provider that was designed along that line. Its architecture is

composed of two basic modules: a communication middleware

system and the JMS provider per se.

A. Communication layer

Building any application for D-MANETs requires some

communication middleware system with which mobile hosts

can collaborate in a peer-to-peer manner to ensure message

transportation. JOMS relies on a communication middleware

system called DoDWAN (Document Dissemination in mobile

Wireless Ad hoc Networks). This system was designed in

our laboratory in order to support content-based information

dissemination in D-MANETs [5].

Messages in DoDWAN are composed of two parts: a

descriptor and a payload. The payload is simply perceived as a

byte array. The descriptor is a collection of attributes expressed

as (name, value) tuples, as illustrated in Fig. 2. These attributes

can be defined freely by the developers of application services

built on top on DoDWAN. The only exceptions to this rule are

a message identifier and a deadline, that must systematically

appear in any descriptor. The identifier must be unique, for

it allows DoDWAN to differentiate messages while detecting

duplicate copies of the same message. The deadline is meant to

specify how long a message should be allowed to disseminate

in the network, and therefore how long copies of this message

should be stored by mobile hosts in their local cache.

DoDWAN provides application services with a pub-

lish/subscribe API. When a message is published by a local ap-

plication service, it is simply put in the local cache maintained

by DoDWAN. Afterwards each radio contact with another host

will be an opportunity for DoDWAN to transfer a copy of the

message to that host.

id= “ff789”

destination_id= “ChatRoom1”

destination_type= “topic”

date= “Mon Oct 17 20:54:03 CET 2011”

deadline= “Fri Nov 18 20:54:03 CET 2011”

delivery_mode= “PERSISTENT”

priority= “4”

language= “English”

locked= “true”

Figure 2. Example of a message descriptor

In order to receive messages an application service must

subscribe with DoDWAN and provide a selection pattern that

characterizes the kind of messages it would like to receive. A

selection pattern is expressed just like a message descriptor,

except that the value field of each attribute contains a regular

expression. Fig. 3 shows a selection pattern, which would for

example match the message descriptor shown in Fig. 2.

The selection patterns specified by all local application

services running on the same host define this host’s inter-

est profile. DoDWAN uses this profile to determine which

messages should be exchanged whenever a radio contact is

established between two hosts. The interaction scheme imple-

mented in DoDWAN takes inspiration from the Autonomous

Gossiping (A/G) algorithm [6], which itself defines a selective

version of the epidemic routing model proposed in [7]. Each

host periodically broadcasts an announcement in order to

inform its neighbors (if any) about its identity and interest

profile. By sending such an announcement periodically, a node

informs its neighbors about its presence and about the kinds of

messages it is interested in. Conversely, by receiving similar

announcements a host discovers its neighbors, and learns about

their own interest profiles. By matching its neighbor’s profiles

against the descriptors of the messages it maintains in its

cache, a host can select descriptors of messages that might be

of interest to at least one of its current neighbors. It can thus

build a catalog containing these descriptors, and incorporate

this catalog in its next announcement. Upon receiving such a

catalog, each host matches the descriptors it contains against

its own interest profile in order to identify messages that

match this profile and that are not already present in its local

cache. If such messages are identified, then a request for these

messages is sent to the announcer, which complies by sending

the missing messages on the radio channel. Finally, when a

host receives a message it has requested, this message is put

in the local cache so it can later be proposed to other hosts

met while moving in the network.

destination_id= “ChatRoom.*”

language= “English|Chinese|German”

Figure 3. Example of a selection pattern

As a general rule, a host that subscribes to receive a partic-

ular kind of message is expected to serve as a mobile carrier

for this kind of message. Yet a host can also be configured so

as to serve as an altruistic carrier for messages that present no

interest to the application services it runs locally. This behavior

is optional, though, and it must be enabled explicitly by an

administrator of the DoDWAN platform.

Mobile hosts running DoDWAN only interact by exchang-

ing control and data messages encapsulated in UDP datagrams,

which can themselves be transported either in IPv4 or IPv6

packets. When a message is published on a host, its descriptor

and its payload are both compressed in order to reduce the

bandwidth required for their transmission. Large messages are

additionally segmented so that each fragment can fit in a single

UDP datagram. Fragments of a large message all contain

a copy of the original message’s compressed descriptor, so

they can propagate independently in the network and be

reassembled only on destination hosts, where the payload is

eventually uncompressed.

Interactions between neighbor hosts rely on an opportunistic

scheme rather than on a strict transactional scheme. No session

–and especially no TCP session– is ever established between

neighbor hosts because of the high level of connectivity

disruptions expected between these hosts. Each host only

maintains soft-state information about its neighbors. Thus,

whenever a host broadcasts an announcement, for example,

some of its neighbors may fail to receive this announcement,

without ever compromising either the sender or any potential

receiver. Likewise, whenever a host requests a message and

fails to obtain this message, it simply waits until it can get

another chance to grab this message (either from the same

neighbor, or from a different one).

B. JMS provider

A JMS provider supports the publish-subscribe and the

point-to-point styles of messaging. This Section describes the

message model of JOMS and the way it supports the two

models of communication.

1) Message model: according to the JMS specification [4],

a JMS message has three parts: a header, properties, and a

body. The JMS message header contains fields used by both

clients and providers to control messages. The properties are

extra header fields that act as a set of rules describing the

message content. They are used by clients to filter messages

via message selectors. It is worth noting that selection criteria

cannot reference the message body, that carries the message

content.

A DoDWAN message has two parts: a descriptor and a

payload. Since JOMS is based on DoDWAN, it adopts this

message model by mapping the JMS message’s fields to the

DoDWAN message. An example of a JOMS message is shown

in Fig. 2. The JMS message’s body is carried in a DoDWAN

message as its payload, and considered as a simple byte array.

The message descriptor is used by DoDWAN to manage the

message dissemination and delivery, by selecting carriers or

recipients whose interest profile match the descriptor. The JMS

message’s header and properties are mapped to the DoDWAN

message’s descriptor, as their content is needed by JOMS to

process the messages delivery. MessageID and Destination are

standard JMS header fields used to identify and route the

message. The message identifier is needed by DoDWAN to

differentiate messages and avoid the dissemination of duplicate

copies of the same message. The destination name is used

by JOMS to route the message to its recipients having this

criterion in their interest profile. We will explain later how

these profiles are defined in JOMS to allow publish-subscribe

and point-to-point communications. As those communication

styles are quite different and implemented in JOMS using

distinct models, an extra property, the destination type, is

added to the JMS initial message. The JMS Expiration field

is mapped to the DoDWAN message and called deadline.

This field, optional according to the JMS specification, is

mandatory while using DoDWAN, as it is used to avoid the

overloading of radio channels and hosts’ caches with out-of-

date messages. Its value is set to a default value by JOMS

if the JMS expiration field’s value is zero. According to the

JMS specification, the DeliveryMode and Priority properties

express the expected degree of reliability and priority for

transmitting messages. Given the disconnected nature of the

environments targeted by JOMS, it is not possible to ensure

reliability as defined by JMS. JOMS uses these properties

to increase the delivery probability for the most important

messages by modifying the DoDWAN’s cache management

policy in order to give them more chances to be opportunisti-

cally disseminated. Messages with a persistent delivery mode

are favoured over non-persistent ones, and then the priority

property is taken into account. All extra fields composing the

JMS message’s properties part are carried by the DoDWAN

message’s descriptor as they can act as a message selection

criterion for DoDWAN while implementing the JMS selector

mechanism.

2) Publish-subscribe model: this model is very close to

the publish-subscribe API provided by DoDWAN. Usually,

JMS providers implement this communication pattern using

a server-based model: the publications and subscriptions to

a given topic are managed by a central entity. However, the

implementation of publish-subscribe communications using a

server-less model is quite obvious and well suited: messages

published to a given topic are disseminated over the net-

work; thus, any application service interested in this topic

is given the opportunity to receive its messages. DoDWAN

supports content-based dissemination, rather than destination-

based routing of messages. Therefore, JOMS tags a message

published to a given topic with the topic name, and then

publishes it using DoDWAN; DoDWAN manages the message

dissemination and the message delivery to all interested hosts.

JOMS expresses applications’ interest in receiving messages

published to a given topic (topic subscribers) by adding the

topic’s name in their interest profile. Moreover, JMS selectors,

allowing topic subscribers to filter the messages they receive,

are added to the applications’ interest profile; thus, the mes-

sage filtering is processed at the communication middleware

level.

The JOMS message shown in Fig. 2, for example, is pub-

destination_id= “MailBox1@00b0d086bbf7”

destination_type= “queue”

Figure 4. Example of a queue manager’s interest profile

lished to the topic “ChatRoom1”. This read-only text message,

labeled “ff789”, has the priority 4 and is to be delivered

in persistent mode. It has been published at “Mon Oct 17

20:54:03 CET 2011” and will die at “Fri Nov 18 20:54:03

CET 2011”. The message selector “language= English” is a

set of keywords characterizing this message.

In D-MANETs, disconnections are the norm rather than the

exception. As a result, the implementation of the JMS non-

durable subscriptions concept, where messages are delivered

only to active subscribers, is unsuitable and has no meaning

for this environment. We deal with this problem by introducing

a way to configure JOMS behaviour for non-durable subscrip-

tions. By setting or unsetting some property, JOMS considers

all non-durable subscriptions as durable ones, or refuses non-

durable subscriptions and reports attempts to use them by

throwing an exception.

3) Point-to-point model: this model is built around the

concept of queue which has a central role in transmitting the

messages from a queue sender to one and only one queue

receiver. In fixed platforms, queues are maintained on a server

which plays this central role in selecting the receiver of a

message if there are multiple recipients associated with it. The

main problem now is how to achieve this semantic of JMS

queues in a D-MANET environment, where a server-based

implementation is inappropriate, and where the consensus

problem has not been however solved [8]. The approach

to solve this problem is the so-called quasi-central queue

approach: when an application creates a queue, its host will

act as a queue manager (QM) for this queue. Thus, JOMS

forwards to this QM all applications’ requests to be receivers

for this queue and all the messages sent to this queue. Then,

it is up to the QM to decide to which receiver is to be

handed the message, and to forward it using DoDWAN. Even

if this QM is turned off or becomes unreachable, DoDWAN

gives it a chance to receive later all the missing requests

and messages by caching them on many other hosts. Thus,

this queue acts as a central decision-making but not as a

central store. This approach has the benefit that no consensus

algorithm is required, thus making it more suitable for D-

MANETs.

For the sake of illustration, a QM’s profile is shown in

Fig. 4. This profile matches all messages sent to the queue

“MailBox1@00b0d086bbf7”, which descriptors contain this

property in the same way as the message shown in Fig. 2.

Now, when an application wants to be a receiver for this queue,

JOMS sends a request to the QM as shown in Fig. 5. The QM

will use the reply_id property in order to address messages to

that application, that has this property in its interest profile.

It is worth noting that each queue manager applies a

selection policy in order to choose one receiver for each

destination_id= “MailBox1@00b0d086bbf7”

destination_type= “queue”

jms_general= “queue_receiver”

src= “86f8f700dad0”

reply_id= “host_1@86f8f700dad0”

language= “English”

Figure 5. Example of a request to be a queue receiver

Host 1

// Publish a message named “firstMSG” with payload “Hello”

// and selector “language=English” to “ChatRoom1”

% pub -t ChatRoom1 -id firstMSG -p Hello -ssl language=English

The Message has been published

Host 2

// Subscribe to the topic “ChatRoom1” to receive messages

// with properties “language=English or French”

% sub -t ChatRoom1 -ssl language=English|French

Waiting

You have received a new message with the content: Hello

Figure 6. Simple scenario

message. For each message, the queue manager chooses a

receiver that matches the message properties in a fair way.

The JOMS’s administrator can override this policy in order to

have a more appropriate one regarding his requirements.

IV. IMPLEMENTATION DETAILS

The originality of our work lies in the fact that JOMS1

and DoDWAN2 have been fully implemented in Java and are

now distributed under the terms of the GNU General Public

License.

To date DoDWAN has been deployed and tested extensively

using dozens of hand-held devices (such as laptops and smart-

phones) featuring Wi-Fi interfaces. It has also been used in a

military tactical network involving VHF battlefield radios with

built-in modems, and proved robust and reliable in such harsh

conditions [9]. The scalability and stability of the algorithms

DoDWAN relies on have been verified in simulations, using

scenarios involving hundreds of mobile hosts [5].

JOMS implements Sun Microsystems’ Java Message Ser-

vice API 1.1 specification on top of DoDWAN. An interactive

command-line (console) is distributed with JOMS. The con-

sole is a tool that makes it easy and straightforward to test the

performance of JOMS in real conditions. It provides the user

with the most common JMS commands, i.e., destination-object

management, publish/subscribe and send/receive commands.

Using the console, JOMS has been tested using dozens of

hand-held devices. For the sake of illustration, the following

scenario demonstrates how to use the console. Assume that

two hosts use JOMS. Fig. 6 shows commands executed on

these two hosts along with the returned results.

JOMS is distributed with a number of example programs

that demonstrate how to write simple applications. It is worth

taking into consideration that nearly all JMS applications can

be deployed perfectly over JOMS, even without changing their

1http://www-valoria.univ-ubs.fr/CASA/JOMS
2http://www-valoria.univ-ubs.fr/CASA/DoDWAN

source code. This is an expected result of implementing a stan-

dard specification such as JMS. Application developers should

take into consideration the characteristics of the networks

supported by JOMS, where reliability, messages ordering and

transmission delays cannot be guaranteed.

V. RELATED WORK

A number of JMS providers have been developed in the last

few years in order to support JMS in MANETs.

EMMA (Epidemic Messaging Middleware for Ad hoc net-

works [10]) is an adaptation of JMS that targets MANETs

presenting connectivity disruptions. EMMA assumes the avail-

ability of a so-called synchronous protocol, which can be used

to reach mobile hosts that belong to the same cloud –or island–

as the sender. An asynchronous epidemic routing protocol is

used to disseminate messages towards remote clouds. EMMA

manages queues in a manner that is quite similar to that of

JOMS: each queue is maintained by a single holder, which

advertises this object periodically with a set lifetime, and

which can accept subscriptions from other hosts. EMMA and

JOMS however differ in the way they deal with topics. In

EMMA topics are managed just like queues, with a single

holder per topic. In JOMS topic subscriptions can be set

locally on any host. Messages published in a topic propagate

in the network by being stored, carried and forwarded by

all hosts that have subscribed to this topic. Other hosts can

additionally contribute to the dissemination of such messages,

provided they have been configured so as to behave as altruistic

carriers. Another difference between EMMA and JOMS is that

in EMMA the gossiping mechanism between neighbor hosts is

done in such a way that all messages are considered, so very

large lists of message identifiers can be exchanged between

neighbor hosts. In JOMS this gossiping is content-based –

and thus more frugal– since neighbor hosts only exchange

messages based on their respective interest profiles.

Extended JMS –or E-JMS– is another JMS provider, that

uses an application-level multicast routing protocol that pro-

vides publish/subscribe semantics by mapping JMS topics to

multicast addresses [11]. Since this protocol cannot dissem-

inate messages beyond a single connected fragment of the

network, E-JMS is hardly usable in D-MANETs. It could

probably be adapted, though, using a disruption-tolerant ver-

sion of the multicast routing protocol. Another problem is

that the authors signal persistence as possible future work

for developing consensus algorithms. We argue that such

assumptions restrict MANET asynchronicity and limit the

usability of E-JMS in D-MANETs.

EMMA and E-JMS both define their own communication

protocols. In contrast JOMS presents a two-layer architecture:

the upper layer is concerned with queue and topic management

and utilisation, while the lower layer supports opportunistic

communication. For the lower layer JOMS currently relies

on DoDWAN, a middleware system we designed to support

content-based information dissemination in D-MANETs [5].

Yet JOMS could theoretically be implemented above any

other communication system, provided this system can operate

satisfactorily in D-MANETs.

Although many communication protocols for D-MANETs

have been proposed during the last decade, most of these

protocols have only been described in papers as abstract

algorithms, and tested using pseudo-code in simulators. Only a

handful of these protocols have been actually implemented in

middleware systems (and can thus be used in real conditions),

and only a couple of these systems are openly distributed and

are thus accessible to developers.

DTN2 is the name for a reference implementation of pro-

tocols designed by the Delay-Tolerant Networking Research

Group (DTNRG), a research group chartered as part of the

Internet Research Task Force (IRTF). The DTN architecture

operates as an overlay network, forwarding contiguous data

blocks named bundles in a store and forward manner towards

nodes identified by an EID (Endpoint Identifiers) [12]. Several

convergence layers are defined, so bundles can for example

be transported between two nodes using TCP sessions, UDP

datagrams, plain files, or any other convenient transport pro-

tocol. The DTN2 reference implementation is available and

can easily be deployed on standard workstations or laptops.

However, this system has not primarily been designed to target

highly dynamic D-MANETs presenting short, unpredictable

radio contacts between mobile hosts, so it is still unclear to

us if it could run satisfactorily in such conditions.

Haggle is a content-centric architecture for opportunistic

communication among mobile users (or devices) [13]. In fact

Haggle and DoDWAN obviously share many common points.

In both systems the information dissemination scheme is

content-driven rather than destination-driven, and each mobile

host can be characterised by an interest profile that determines

the kinds of messages it is primarily interested in. A mobile

host can additionally behave as an benevolent carrier for

messages it is not interested in, although interesting messages

are always favoured over less-interesting ones. DoDWAN and

Haggle however differ significantly in the way interest profiles

are dealt with. In Haggle the interest profile is disseminated

network-wide, which may yield significant overheads in a large

network involving hundreds or thousands of mobile devices.

When the profile hence disseminated matches some data on

another user’s device, that device tries to push the matching

data to the owner of the profile through a selected subset

of its neighbors. In contrast DoDWAN does not attempt to

disseminate profiles network-wide, but only up to a given

horizon –defined as a maximum number of hops– around each

host. Besides messages are not pushed by DoDWAN towards

each potentially interested host, but a catalog of available

messages (built according to their interest profiles) is proposed

to all neighbors, and each neighbor can then request –or pull–

the messages it is really interested in.

Another major difference between both systems is that

Haggle was written in C and C++ (with language wrappers

available for C# and Java) while DoDWAN was written

directly in Java. DoDWAN is therefore highly portable, and

readily interoperable with Java-based services such as JOMS.

VI. CONCLUSION

In this paper we have presented JOMS (Java Opportunistic

Message Service), a JMS provider we designed and imple-

mented specifically for disconnected mobile ad hoc networks

(D-MANETs). With JOMS pre-existing and new JMS appli-

cations can be deployed easily over D-MANETs, so the devel-

opers can simply focus on writing standard JMS applications

which will be simply deployed over D-MANETs using JOMS.

JOMS is distributed under the terms of the GNU General

Public License. It is currently compliant with version 1.1 of

the JMS specification, which dates back to 2002. The next

version of the JMS specification, namely JMS 2.0, should

be issued at the end of 2012. JOMS shall be modified or

extended so as to comply with this new specification. In future

work we plan to add a directory service to JOMS so clients

will be able to automatically discover queues and topics. We

also plan to leverage on JOMS in order to implement other

distributed programming abstractions for D-MANETs, such as

tuple spaces and future objects.

REFERENCES

[1] K. Fall, “A delay-tolerant network architecture for challenged internets.”
New York, USA: ACM, 2003, pp. 27–34.

[2] H. A. Nguyen and S. Giordano, “Routing in Opportunistic Networks,”
International Journal of Ambient Computing and Intelligence (IJACI),
vol. 1, 2009.

[3] J. Hurwitz, “Sorting out middleware,” DBMS, vol. 11, no. 1, pp. 10–12,
Jan. 1998. [Online]. Available: http://portal.acm.org/citation.cfm?id=
284196.284204

[4] M. Hapner, R. Burridge, and R. Sharma, “Java message service, version
1.1,” Apr. 2002.

[5] J. Haillot and F. Guidec, “A protocol for content-based communication
in disconnected mobile ad hoc networks,” Journal of Mobile Information

Systems, vol. 6, no. 2, pp. 123–154, 2010.
[6] A. Datta, S. Quarteroni, and K. Aberer, “Autonomous gossiping: a self-

organizing epidemic algorithm for selective information dissemination
in mobile ad hoc networks,” in International Conference on Semantics

of a Networked World, ser. LNCS, no. 3226, Paris, France, Jun. 2004,
pp. 126–143.

[7] A. Vahdat and D. Becker, “Epidemic routing for partially connected ad
hoc networks,” Duke University, Tech. Rep., Apr. 2000.

[8] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility
of distributed consensus with one faulty process,” Journal of the

ACM, vol. 32, no. 2, pp. 374–382, Apr. 1985. [Online]. Available:
http://dl.acm.org/citation.cfm?id=214121

[9] J. Haillot, F. Guidec, S. Corlay, and J. Turbert, “Disruption-tolerant
content-driven information dissemination in partially connected military
tactical radio networks,” in 28th IEEE Military Communication Confer-

ence (MILCOM’2009). Boston, USA: IEEE CS, Oct. 2009.
[10] M. Musolesi, C. Mascolo, and S. Hailes, “EMMA: Epidemic

messaging middleware for ad hoc networks,” Personal and Ubiquitous

Computing, vol. 10, no. 1, pp. 28–36, Aug. 2005. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1103894

[11] E. Vollset, D. Ingham, and P. Ezhilchelvan, “Jms on mobile ad
hoc networks,” In Personal Wireless Communications (PWC), pp.
40–52, 2003. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.63.4140

[12] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott,
K. Fall, and H. Weiss, “Delay-tolerant networking architecture,” IETF
RFC 4838, Apr. 2007.

[13] E. Nordström, P. Gunningberg, and C. Rohner, “A search-based network
architecture for mobile devices,” Department of Information Technology,
Uppsala University, Tech. Rep. 2009-003, Jan. 2009.

