
HAL Id: hal-00763351
https://hal.science/hal-00763351v1

Submitted on 10 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

JION: A JavaSpaces Implementation for Opportunistic
Networks

Abdulkader Benchi, Pascale Launay, Frédéric Guidec

To cite this version:
Abdulkader Benchi, Pascale Launay, Frédéric Guidec. JION: A JavaSpaces Implementation for Op-
portunistic Networks. The Fourth International Conference on Future Computational Technologies
and Applications, Jul 2012, Nice, France. pp.49-54. �hal-00763351�

https://hal.science/hal-00763351v1
https://hal.archives-ouvertes.fr

1

JION: a JavaSpaces Implementation

for Opportunistic Networks
Abdulkader Benchi, Pascale Launay, Frédéric Guidec

IRISA, Université de Bretagne-Sud

Vannes, France

{abdulkader.benchi, pascale.launay, frederic.guidec}@univ-ubs.fr

Abstract—Disconnected mobile ad hoc networks (or D-
MANETs) are partially or intermittently connected wireless
networks in which mobile nodes are enabled to communicate
with each other even if there is no end-to-end path connecting
them. The special features of D-MANETs bring this technology
great opportunities together with severe challenges. Coping with
D-MANETs’ issues while developing any distributed application
remains a major challenge that must be met by the developers.
A middleware system is thus needed between D-MANETs and
applications levels in order to ease application development and
help developers to take advantage of all D-MANETs’ features. In
this paper, we introduce JION (JavaSpaces Implementation For
Opportunistic Networks), a standard coordination middleware
specifically designed for D-MANETs, and with which pre-existing
or new JavaSpaces-based applications can be easily deployed in
such networks.

Keywords-peer-to-peer computing; opportunistic networking;
DTN; coordination middleware; JavaSpaces

I. INTRODUCTION

A mobile ad hoc network (or MANET) is a dynamic wire-

less network that requires no fixed infrastructure. It is generally

formed on-the-fly by a collection of wireless nodes without the

aid of any centralized administration. Each mobile host can

communicate with its neighbors using direct pair-wise wireless

links. Communications in MANETs have been enhanced over

the years thanks to multi-hop forwarding protocols, such as

OLSR, AODV, DYMO, DSR... [1].

Yet most of these protocols rely on the assumption that the

whole MANET remains continuously connected: between any

pair of hosts in the MANET, there actually exists at least one

temporaneous end-to-end path. Unfortunately, this assumption

does not hold in real conditions: many real MANETs are,

under the most favorable conditions, only partially or inter-

mittently connected.

The sparsely or irregularly distribution of MANET’s hosts

can, for example, induce link disruptions in the whole

MANET. These disruptions in turn may split the whole

MANET into a collection of distinct, continuously changing,

disconnected “islands” (connected components) as shown in

Figure 1. This kind of MANETs are called Disconnected

MANETs (D-MANETs). The “store, carry and forward”

approach, which fits in the general category of the De-

lay/Disruption Tolerant Networking (DTN) [2], can be used

here to bridge the gap between the non-connected parts of net-

works: the mobility of hosts makes it possible for messages to

propagate network-wide by using mobile hosts as carriers (or

��������

�������	

�������A

�������B�������C

Figure 1: Example of a disconnected mobile ad hoc network

data mules) that can move between non-connected parts of the

network. As shown in Figure 1, the connectivity disruptions

are indeed tolerated thanks to the user moving (deliberately or

by chance) from island 1 to island 2. This user’s device acts as

a data mule for messages addressed to hosts located in island 2.

Considering that many carriers may be involved during the

transmission of a message, this approach generally provides

message delivery at the price of additional transmission delays.

Taking for example the message transmission from island 1

to island 4 shown in the Figure 1, two message carriers are

needed to be involved in this transmission: one from island 1

to island 2 and another one from island 2 to island 4.

In the DTN community, some approaches make the as-

sumption that communications between the hosts can be

predicted accurately, and routing strategies can be thus devised

based on contact predictions. But in most real D-MANETs,

communications are not planned in advance and cannot be

predicted, especially if the physical carriers are for example

human beings carrying laptops or smartphones. The term

opportunistic networking [3] is often used to denote these dis-

ruption tolerant networks where the contacts must be exploited

opportunistically. In such wise, each contact represents an op-

portunity for two hosts to exchange messages. Consequently,

communication protocols for D-MANETs usually provide no

more than best-effort delivery. Consider again the example

shown in Figure 1, and assume a message is addressed by a

host in island 2 to a host in island 3. If no human carrier ever

visits the island 3, then there is no chance that the message

ever gets delivered in this island.

The dynamic nature of D-MANETs creates many challenges

2

for application developers. Due to the inherent stochastic

nature of D-MANETs, no host can be considered as stable and

accessible enough to play the role of a server for all the other

hosts. Consequently, applications developers should generally

use a peer-to-peer model rather than a client-server one. De-

velopers, while writing their applications, should additionally

take into consideration occasional transmission failures and

long transmission delays.

All these reasons result in an increasing need for a mid-

dleware system that, while coping with D-MANETs issues,

provides the developers with a set of APIs that eases the

development of distributed applications over D-MANETs.

However, any middleware for D-MANETs must have an

asynchronous nature in order to fit with the long transmission

delays observed in such networks.

In the remainder of this paper we present JION (JavaSpaces

Implementation for Opportunistic Networks), a coordination

middleware system we designed and implemented specifically

for D-MANETs. JION is actually an implementation of the

JavaSpaces specification, so any pre-existing distributed ap-

plication basing on the JavaSpaces API can be executed in a

D-MANET with no further development using JION.

This paper is structured in the following way: the JavaS-

paces specification is described briefly in Section II. Section III

presents the JION’s architecture along with details about its

implementation. Evaluation results are shown in Section IV.

Section V discusses related work. Section VI concludes this

paper and describes our plans for future work.

II. JAVASPACES BACKGROUND

The JavaSpaces technology, implemented by JION, is a

Java specification of the concept of tuple space which was

originally introduced in the Linda programming language [4].

In this section we provide a brief introduction to the tuple

space as introduced in Linda. The JavaSpaces technology will

be presented as well.

A. Tuple space

The tuple space concept has its root in the Linda parallel

programming language [4] developed at Yale University. A

tuple space is a shared data space acting as an associative

memory used by several processes for communication and/or

coordination requirements. A Linda application is viewed as

a collection of processes cooperating via the flow of data

structures, called “tuples”, into and out of a tuple space. Each

tuple is a record of typed fields containing the information

to be communicated. The coordination primitives provided by

Linda allow processes to insert a tuple into the tuple space

(out) or retrieve tuples from the tuple space, either removing

those tuples (in) or preserving the tuples in the space (read).

For retrieving operations, the tuples are selected using a simple

pattern matching from a given set of parameters.

B. JavaSpaces

The JavaSpaces technology is a Java specification of the

tuple space concept, implemented inside the JINI architecture.

It defines a set of application programming interfaces (APIs)

which extends the simple core of the Linda primitives. The

JavaSpaces version of Linda tuples, called ”entries”, are Java

objects which contains public fields that act as the Linda’s

typed fields. JavaSpaces provides read, take and write op-

erations in order to fulfill Linda’s read, in, out operations

respectively. Moreover, it provides a notify operation which

allows processes to do a lookup operation in an asynchronous

manner. This operation notifies the processes by sending a

special object called event containing information to which

the processes react. The matching in read, take and notify

operations are performed using a special kind of entry, called

a template, that characterizes the kind of entries the process

wants to look for. The selected entries are those whose types

and fields match the template. Furthermore, JavaSpaces pro-

vides lite versions of read and take operations where processes

do not need to wait for the answer. These operations, called

readIfExist and takeIfExist, can be useful when a process

wants an answer immediately with out waiting. As JavaSpaces’

entries are passive data, processes cannot perform operations

on tuples directly. In order to modify an entry, a process must

explicitly remove, update and reinsert it into the space.

III. JAVASPACES IMPLEMENTATION FOR OPPORTUNISTIC

NETWORKS (JION)

The JavaSpaces technology was primarily designed to

provide persistent object exchange areas (spaces) through

which processes coordinate actions and exchange data. Most

of the JavaSpaces implementations are server-based systems

where centralized servers are used to manage these spaces.

As explained in Section I, a server-based system is hardly

compatible with the characteristics of D-MANETs as no host

can act as a reliable server for all the other hosts. A server-less

JavaSpaces implementation must then be developed in order

to provide JavaSpaces services for D-MANETs.

JION, or JavaSpaces Implementation for Opportunistic Net-

works, is a JavaSpaces implementation that was designed

along that line. Its architecture is composed of two basic

modules: the communication middleware system and the

JavaSpaces services system.

A. Communication Middleware

Building any application for D-MANETs requires some

communication middleware system with which hosts can

collaborate in a peer-to-peer manner to ensure message trans-

portation. JION relies on a communication middleware system

called DoDWAN (Document Dissemination in mobile Wireless

Ad hoc Networks) [5]. DoDWAN has been designed in our

laboratory, and it is now distributed under the terms of the

GNU General Public License1.

DoDWAN supports content-based information dissemina-

tion in D-MANETs. In content-based networking, information

flows towards interested receivers rather than towards specifi-

cally set destinations. This approach notably fits the needs of

applications and services dedicated to information sharing or

1http://www-irisa.univ-ubs.fr/CASA/DoDWAN/

3

Board= “Sports”

Topic= “football”

Language= “English”

(a)

Board= “Sports”

Topic= “.*ball”

Language= “English | French | German”

(b)

Figure 2: A message descriptor and a message selector

event distribution. It can also be used for destination-driven

message forwarding, though, considering that destination-

driven forwarding is simply a particular case of content-driven

forwarding where the only significant parameter for message

processing is the identifier of the destination host (or user).

Messages in DoDWAN are composed of two parts: a

descriptor and a payload. The payload is simply perceived

as a byte array. The descriptor is a collection of attributes

expressed as (name, value) tuples, as illustrated in Figure 2a.

These attributes can be defined freely by the developers of

application services built on top of DoDWAN.

DoDWAN implements a selective version of the epidemic

routing model proposed in [6]. It provides application services

with a publish/subscribe API. When a message is published

on a host, it is simply put in the local cache maintained on

this host. Afterwards each radio contact with another host is

an opportunity for the DoDWAN system to transfer a copy of

the message to that host whenever it is interested.

In order to receive messages, an application service must

subscribe with DoDWAN and provide a selection pattern that

characterizes the kind of messages it would like to receive. A

selection pattern is expressed just like a message descriptor,

except that the value field of each attribute contains a regular

expression, as shown in Figure 2b. The selection patterns spec-

ified by all local application services running on the same host

define this host’s interest profile. DoDWAN uses this profile

to determine which messages should be exchanged whenever

a radio contact is established between two hosts. Details about

this interaction scheme and about how it performs in real

conditions can be found in [5].

As a general rule, a mobile host that defines a specific

interest profile is expected to serve as a mobile carrier for

all messages that match this profile. Yet a host can also

be configured so as to serve as an altruistic carrier for

messages that present no interest to the application services

it runs locally. This behavior is optional, though, and it must

be enabled explicitly by setting DoDWAN’s configuration

parameters accordingly.

Mobile hosts running DoDWAN only interact by exchang-

ing control and data messages encapsulated in UDP datagrams,

which can themselves be transported either in IPv4 or IPv6

packets. Large messages are segmented so that each fragment

can fit in a single UDP datagram. Fragments of a large

message can propagate independently in the network and be

reassembled only on destination hosts.

B. JION Implementation

According to the JavaSpaces specification, processes co-

ordinate by exchanging entries through the space using a

simple set of operations. Entries and operations represent the

basic JavaSpaces’ elements. This section describes the JION’s

architecture and its entry module along with the supported

operations.

1) JION’s architecture: As mentioned in Section III, JION

is a server-less JavaSpaces implementation, as it is intended

to be used in D-MANETs where no host can act as a server.

Each host maintains a local space in which JION stores the

entries produced locally (that is, entries produced by write

operations which have been invoked by local processes). If

entries were propagated all over the D-MANET and managed

in a collaborative manner, this could result in orphan entries:

as stated in [7], it is impossible to obtain a consensus between

hosts in a distributed disconnected environment. Consequently,

D-MANET’s hosts could not agree to remove any entry from

the space, for example when a process wants to take it.

Imagine that an entry has been propagated over the hosts in

the islands shown in Figure 1, and a process in island 1 takes

this entry. If no user ever visits the island 5 for example, the

copies of this entry in this island will become orphan entries.

In JION, the write operations are only processed locally, while

matching and fetching operations (read, take and notify) are

processed by querying hosts over the network for the entries

they own.

2) Entries and Templates: According to the JavaSpaces

specification, an entry is an object reference characterized by

its “fields”. In the JavaSpaces terminology, entry fields refer

only to the public fields of the entry objects. In fact, entry

fields are meant to act as a set of attributes characterizing

an entry, and are used to perform matching operations while

retrieving entries from the space.

As mentioned above, a DoDWAN message has two parts:

a descriptor and a payload. Since DoDWAN’s descriptor is

also meant to characterize the content of the message, JION

maps the entry’s fields to the DoDWAN’s descriptor, as their

content is needed by JION to do match operations. The rest

of the entry (that is, non-public fields) is simply carried in the

message as its payload, and considered as a simple byte array.

Templates are special entry objects whose fields’ values

are used in match operation. This notion of a template in

JavaSpaces is mapped to the DoDWAN’s selection pattern

which will be used by JION for the pattern matching operation.

3) Operations: According to the JavaSpaces specification,

entries’ access must be done through a set of basic operations,

which are: write, read, take and notify. This section describes

in detail the way JION supports these operations.

write: this operation stores a new entry into the host’s local

space for a specific period of time, called a lease. A lease

represents the lifetime of its associated entry. As mentioned

above, each entry is only stored on the local host and is not

replicated over the D-MANET. Therefore, it is up to each

host to monitor its local space and manage its own entries, and

especially ensure that out-of-date entries are not used anymore.

read: this operation requests the JION service for an entry

that matches the template provided as a parameter. When a

process on a host performs a read operation, the host’s local

space is queried first in order to find a matching entry. If

no matching entry is found, JION disseminates the specified

4

template over the D-MANET. Each host, when it receives this

template, will then query its local space to find a matching

entry and forward a copy of it back to the requesting process.

It is then up to the requesting process to choose one entry

as an answer to its read request. Furthermore, readIfExists is

also supported by JION. This version queries only the local

space to find an entry that matches the specified template. In

any case, the request will not be disseminated over the D-

MANET.

take: this operation basically performs the same function

as read, except that it removes the matching entry from the

space. So, for a take operation, JION searches first the local

space. If no match is found, JION queries all the hosts over

the D-MANET in order to discover which hosts (if any) have

a matching entry. Upon receiving the proposals, JION selects

one host from which the entry should be taken. JION then

asks the chosen host to permanently remove the matching

entry from its local space and hand it back to the requesting

process. The entire operation may take more time than the

read operation since it needs four exchanges to be achieved

while two exchanges are required in the read operation. JION

supports also a takeIfExists operation which performs exactly

like the corresponding readIfExists, except that a matching

entry is only requested from the local space.

notify: this operation notifies a process when entries that

match a given template are written into a space. So when a

notify operation is performed by a process, JION disseminates

the given template all over the hosts in the D-MANET. The

hosts, in their turn, register the notify request in the hope that

a matching entry will be written before the request’s lifetime

expires. Consequently, when a matching entry is written in a

host, the host forwards an event object containing information

about this entry and its location to the requesting process.

4) Transactions: According to the JavaSpaces specification,

it is possible to group multiple operations (participants) into

a bundle that acts as a single atomic operation. This is done

using the optional concept of transaction. Either all operations

within the transaction will be performed or none will. In fully-

connected stable networks, a transaction is controlled by a

specific manager (server) which should always be reachable

by all the participants. If a participant is momentarily discon-

nected, the whole transaction is aborted. Given that hosts in D-

MANETs can neither have a reliable server nor agree between

themselves, it is not possible to ensure transactions as defined

by JavaSpaces. For this reason, JION does not support the

concept of transaction and each operation is considered as a

singleton operation.

IV. EVALUATION

A D-MANET is a wireless network whose topology is

continuously changing, and where radio contacts between

mobile hosts do not necessarily follow any predictable pattern.

Therefore, protocols and systems designed for D-MANETs are

usually evaluated using network simulators. The originality of

our work lies in the fact that JION has been fully implemented

in Java and is now distributed under the terms of the GNU

R
e
s
p
o
n
s
e
 t
im

e
 (
m
s
)

0

500

1 000

1 500

2 000

Entry size (kB)

0 500 1 000 1 500 2 000 2 500

Read operation

Take operation

Netcat

Figure 3: Response time observed between two netbooks

General Public License2.

JION has seen extensive testing to examine how well it per-

forms in D-MANETs. While conducting these tests we strived

to evaluate how easy it is for an application developer to

implement a distributed application using JION. Furthermore,

we have evaluated the efficiency of JION in a real D-MANET.

A. Developing distributed applications with JION

JION implements the Sun Microsystems’ JavaSpaces Tech-

nology specification provided as a part of the Java Jini Tech-

nology [8]. Since JION implements a well-known middleware

specification, developers do not need to learn a new program-

ming language, or get familiar with an exotic programming

model or API. A developer can simply focus on writing a

standard JavaSpaces application, and JION will take care of its

execution in a D-MANET. Indeed, any pre-existing JavaSpaces

application can be deployed using JION, without any change

in its source code.

Developers should however be aware of the specific con-

straints posed by D-MANETs, where message delivery, mes-

sage ordering, and transmission delays are usually not guar-

anteed. Such constraints are not due to limitations in JION;

they are due to the very nature of D-MANETs. As explained

in Section I, opportunistic protocols and middleware systems

designed for D-MANETs can do no magic: they can support

network-wide communication in a D-MANET, using mobile

hosts as carriers that help to bridge the gap between non-

connected parts of the network. Yet, unless otherwise specified

they do not control how mobile hosts move in the network,

so they cannot guarantee that a message will ever reach (or

reach in time) any particular host in the network. A developer

working on an application for D-MANETs should therefore

assume that delivery failures and late deliveries may be more

common than in-time deliveries, and design the application or

organize its deployment accordingly.

For testing and evaluation purposes, we have developed

a distributed bulletin board system (D-BBS) inspired from

the classical bulletin board system (BBS). A BBS typically

consists of a number of bulletin boards which serve as dis-

cussion areas relating to general themes. Each bulletin board

is generally labeled by an expressive name describing its

2http://www-irisa.univ-ubs.fr/CASA/JION/

5

R
e
s
p
o
n
s
e
 t
im

e
 (
m
s
)

0

1 000

2 000

3 000

4 000

Entry size (kB)

0 500 1 000 1 500 2 000 2 500

1-hop neighbor

2-hop neighbor
3-hop neighbor

Figure 4: Response time between multi-hop neighbors

contents (e.g., Sports). On each board, users can post, read

and delete messages under different topics. Since BBS typical

implementations are usually server-based, they are not well

adapted to D-MANETs, so we developed this application using

the JION middleware.

In D-BBS, posting a message on a board under a topic is

implemented by creating a tuple having the board’s and the

topic’s names as fields and writing it into the JION’s space.

Similarly, reading/deleting a message from a specific board

under a specific topic is performed by creating a template

having the board’s and topic’s name as fields. This template

is then to be passed as a parameter to the JION’s read/take

function. Furthermore, the developer can get benefit from

JION’s notify function in order to keep users up to date with

changes on a specific board under a specific topic using an

appropriate template.

Developing and deploying this application for a D-MANET

was a straightforward task. Using JION, the programmer

focuses on the application features without boring about the

specific issues of this kind of very challenging environment.

B. JION efficiency over D-MANETs

Before trying to observe how entries can propagate between

several islands in a disconnected network, one can first try

to measure how fast they can propagate within a single

island. Since JION is implemented on top of the DoDWAN

communication system, which itself relies on UDP transmis-

sions, our first objective was to evaluate how our multi-layer

middleware architecture performs over the underlying wireless

transmission medium.

We first used two netbooks A and B, running JION over a

Linux operating system. These netbooks were installed next to

each other in the same room, and their built-in Wi-Fi 802.11bg

chipsets were configured to operate in ad hoc mode. We

actually focused on the response time, which is here defined

as the time interval between the time the netbook A writes

entries of different sizes and the time when the netbook B

receives them using the read/take operations. In order to get

reference values regarding the capacity of the wireless link at

application-level, we used the basic Netcat (nc) networking

utility, that can read and write chunks of data across network

connections. 200 series of tests were conducted in this sce-

nario. The results of these tests are presented in Figure 3. Read

D
e
li
v
e
ry
 r
a
ti
o

0

20

40

60

80

100

Delivery time (hour)

0 2 4 6 8 10 >10

Read operation
Take operation

Figure 5: Entry delivery in a real D-MANET

and take operations show similar performances. However,

JION shows about 20% overhead over Netcat. Considering that

JION’s communication middleware (DoDWAN) implements

a sophisticated opportunistic protocol in order to orchestrate

communications between neighbor hosts, we consider that

these results are quite reasonable.

To increase realism, another real world test was conducted

to investigate the behavior of JION when messages can

propagate over multiple hops. The tests was carried out by

four netbooks (A, B, C and D) distributed in our laboratory.

Because of the effect of concrete walls on signal attenuation,

the connectivity between these netbooks was such that netbook

B could only communicate with A and C, while netbook D

could only communicate with C. This test relied on the

write/read operations: a total amount of 225 entries were

written on B, C, D, and the host A was configured to read

these entries. We measured the average time required for these

entries to reach the netbook A. The results of this test are

shown in Figure 4. We can observe that the time by which the

host A gets an entry changes according to the size of entry and

the number of hops over which the entry has to be transmitted.

As increasing the size of the entry and the number of hops,

the response time generally increases. This is because when

host B serves as a relay between its neighbors A and C, the

radio channel around B is twice as busy as when B interacts

only with host A. The same observation applies for host C

when it must serve as a relay between hosts B and D. It must

also be considered that DoDWAN uses many mechanisms to

ensure a high delivery ratio, so entries are retransmitted again

and again if they are not received in first place. In the last test,

the host A has received all of the 225 sent entries.

Furthermore, we used our D-BBS application to observe

how JION can perform in a real D-MANET. A dozen of

volunteers in our laboratory were equipped with netbooks

running D-BBS. Several one-day tests were conducted by

asking the volunteers to carry their netbook whenever possible

–and use D-BBS services of course– during a few days

while roaming the laboratory building or its surroundings. To

analyze the results special attention was paid to the cumulative

delivery rates of read/take operations as shown in Figure 5.

The cumulative delivery rates were measured in term of time

slices where a measure of 2 hours means that the average

delivery time observed was between 0 and 2 hours; a measure

6

of 4 hours means it was between 0 and 4 hours, etc. Using the

read operation, It can be noticed that nearly 59% of the entries

got delivered in less than 2 hours. However, the majority of

hosts had to wait between 4 and 6 hours in order to get the

required entries using the take operation. This difference is

expected since the take operation requires more rounds than

the read one. In general, the results show that most of the

entries got delivered to their destination(s) in less than 10

hours. Yet, about 6% of the entries could not be delivered.

This is the consequence of the unpredictable behavior of the

users, which sometimes moved away from the laboratory or

switched their netbook off unexpectedly.

V. RELATED WORK

In the last few years, several projects focused their attention

on the rebirth of Linda [4], especially in the context of mobile

ad hoc environments.

Both Ara [9] and LIME [10] are coordination middle-

ware implementing tuple spaces stored on hosts acting as

servers. These middleware target mobile ad hoc networks.

They provide JavaSpaces services to mobile hosts that are

in the servers’ communication range. Since they rely on a

server-based model, they are hardly usable in real D-MANETs.

Limone [11] is a lightweight alternative to LIME requiring

far less overhead than it. Limone starts with the premise

that a single round trip message exchange is always possible,

making it impractical over D-MANETs, if not impossible,

where unpredictable disconnections are always considered as

the norm rather than the exception. In contrast, CAST [12]

is a server-less coordination middleware for MANETs. By

not relying on any centralized service, this middleware suits

well the dynamics of wireless open networks. CAST makes

it possible to process operations even when no end-to-end

route exists between the involved hosts, by implementing a

source routing algorithm. This routing strategy relies on the

assumption that each host’s motion profile is known. This

is clearly a serious constraint which limits the usability of

CAST over the kind of real D-MANETs JION targets, where

hosts’ motions are not planned and cannot be predicted. Tuple

board (TB) [13] is another server-less coordination middle-

ware for developing collaborative applications running on ad

hoc networks of mobile computing devices. Like JION, this

middleware has been fully implemented and also distributed.

It can thus be used and tested in real conditions. However,

the proposal lacks flexibility, in that it is limited to a group of

nearby connected devices: when a device leaves the network or

turns off, all the tuples posted from this device are withdrawn.

The importance that we attribute to disconnections make the

disconnection tolerance a vital requirement for any middleware

that is meant to support D-MANETs.

Furthermore, all of the middleware mentioned above define

their own communication protocol for route discovery and

maintenance. Our work is different as JION presents a two-

layer architecture: the upper layer is concerned with tuple

space services, while the lower layer supports opportunistic

communication. As mentioned above, DoDWAN has been

chosen from among a few other opportunistic communication

protocols that are openly distributed to support opportunis-

tic communications on D-MANETs. Yet JION could the-

oretically be implemented above any other communication

system: DTN2, a reference implementation of protocols de-

signed by the Delay-Tolerant Networking Research Group

(DTNRG) [14], or Haggle, a content-centric architecture for

opportunistic communication among mobile devices [15].

VI. CONCLUSION AND FUTURE WORK

In this paper we have introduced JION (JavaSpaces Im-

plementation for Opportunistic Networks), a JavaSpaces im-

plementation we designed and implemented specifically for

disconnected mobile ad hoc networks (D-MANETs). Using

JION, distributed applications which are based on the concept

of tuple spaces as defined in the JavaSpaces specification can

be deployed and executed in D-MANETs. JION provides an

effective base which eases the development of D-MANETs’

applications. It is tested in real conditions and now distributed

under the terms of the GNU General Public License.

Currently, we are performing several more tests in rural

areas to verify how stable JION is in such very challenging

environments. For the short-term future work, we plan to

implement JION over another communication middleware in

order to stand on the portability of JION over communication

systems other than DoDWAN.

REFERENCES

[1] C. Liu and J. Kaiser, “A Survey of Mobile Ad Hoc network Routing
Protocols,” University of Magdeburg, Tech. Rep., 2005.

[2] K. Fall, “A Delay-Tolerant Network Architecture for Challenged Inter-
nets,” in ACM Annual Conference of the Special Interest Group on Data

Communication, Aug. 2003.
[3] L. Pelusi, A. Passarella, and M. Conti, “Opportunistic Networking:

Data Forwarding in Disconnected Mobile Ad Hoc Networks,” IEEE

Communications Magazine, Nov. 2006.
[4] N. Carriero and D. Gelernter, “Linda in context,” Commun. ACM,

vol. 32, no. 4, pp. 444–458, Apr. 1989.
[5] J. Haillot and F. Guidec, “A Protocol for Content-Based Communication

in Disconnected Mobile Ad Hoc Networks,” Journal of Mobile Infor-

mation Systems, vol. 6, no. 2, pp. 123–154, 2010.
[6] A. Vahdat and D. Becker, “Epidemic Routing for Partially Connected

Ad Hoc Networks,” Duke University, Tech. Rep., Apr. 2000.
[7] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of

Distributed Consensus with One Faulty Process,” Journal of the ACM,
vol. 32, no. 2, pp. 374–382, Apr. 1985.

[8] E. Freeman, S. Hupfer, and K. Arnold, JavaSpaces(TM) Principles,

Patterns, and Practice. Prentice Hall, Jun. 1999.
[9] H. Peine and T. Stolpmann, “The Architecture of the Ara Platform for

Mobile Agents,” in Proceedings of the First International Workshop on

Mobile Agents. London, UK: Springer-Verlag, 1997, p. 50–61.
[10] A. L. Murphy, G. P. Picco, and G.-C. Roman, “LIME: A Coordination

Model and Middleware Supporting Mobility of Hosts and Agents,” ACM

Trans. Softw. Eng. Methodol., vol. 15, pp. 279–328, July 2006.
[11] C.-L. Fok, G.-C. Roman, and G. Hackmann, “A Lightweight Coordi-

nation Middleware for Mobile Computing,” Coordination Models and

Languages, pp. 135–151, 2004.
[12] G.-C. Roman, R. Handorean, and R. Sen, “Tuple Space Coordination

Across Space and Time,” in COORDINATION, 2006, pp. 266–280.
[13] A. Kaminsky and C. Bondada, “Tuple Board: A New Distributed

Computing Paradigm for Mobile Ad hoc Networks,” First Annual

Conference on Computing and Information Sciences, pp. 5–7, 2005.
[14] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall,

and H. Weiss, “Delay-Tolerant Networking Architecture,” IETF RFC
4838, Apr. 2007.

[15] E. Nordström, P. Gunningberg, and C. Rohner, “A Search-based Net-
work Architecture for Mobile Devices,” Department of Information
Technology, Uppsala University, Tech. Rep. 2009-003, Jan. 2009.

