Abdulkader Benchi
email: abdulkader.benchi@univ-ubs.fr

Pascale Launay
email: pascale.launay@univ-ubs.fr

Frédéric Guidec
email: frederic.guidec@univ-ubs.fr

JION: A JavaSpaces Implementation for Opportunistic Networks

Keywords: peer-to-peer computing, opportunistic networking, DTN, coordination middleware, JavaSpaces

Disconnected mobile ad hoc networks (or D-MANETs) are partially or intermittently connected wireless networks in which mobile nodes are enabled to communicate with each other even if there is no end-to-end path connecting them. The special features of D-MANETs bring this technology great opportunities together with severe challenges. Coping with D-MANETs' issues while developing any distributed application remains a major challenge that must be met by the developers. A middleware system is thus needed between D-MANETs and applications levels in order to ease application development and help developers to take advantage of all D-MANETs' features. In this paper, we introduce JION (JavaSpaces Implementation For Opportunistic Networks), a standard coordination middleware specifically designed for D-MANETs, and with which pre-existing or new JavaSpaces-based applications can be easily deployed in such networks.

I. INTRODUCTION

A mobile ad hoc network (or MANET) is a dynamic wireless network that requires no fixed infrastructure. It is generally formed on-the-fly by a collection of wireless nodes without the aid of any centralized administration. Each mobile host can communicate with its neighbors using direct pair-wise wireless links. Communications in MANETs have been enhanced over the years thanks to multi-hop forwarding protocols, such as OLSR, AODV, DYMO, DSR... [START_REF] Liu | A Survey of Mobile Ad Hoc network Routing Protocols[END_REF].

Yet most of these protocols rely on the assumption that the whole MANET remains continuously connected: between any pair of hosts in the MANET, there actually exists at least one temporaneous end-to-end path. Unfortunately, this assumption does not hold in real conditions: many real MANETs are, under the most favorable conditions, only partially or intermittently connected.

The sparsely or irregularly distribution of MANET's hosts can, for example, induce link disruptions in the whole MANET. These disruptions in turn may split the whole MANET into a collection of distinct, continuously changing, disconnected "islands" (connected components) as shown in Figure 1. This kind of MANETs are called Disconnected MANETs (D-MANETs). The "store, carry and forward" approach, which fits in the general category of the Delay/Disruption Tolerant Networking (DTN) [START_REF] Fall | A Delay-Tolerant Network Architecture for Challenged Internets[END_REF], can be used here to bridge the gap between the non-connected parts of networks: the mobility of hosts makes it possible for messages to propagate network-wide by using mobile hosts as carriers (or data mules) that can move between non-connected parts of the network. As shown in Figure 1, the connectivity disruptions are indeed tolerated thanks to the user moving (deliberately or by chance) from island 1 to island 2. This user's device acts as a data mule for messages addressed to hosts located in island 2. Considering that many carriers may be involved during the transmission of a message, this approach generally provides message delivery at the price of additional transmission delays. Taking for example the message transmission from island 1 to island 4 shown in the Figure 1, two message carriers are needed to be involved in this transmission: one from island 1 to island 2 and another one from island 2 to island 4.

In the DTN community, some approaches make the assumption that communications between the hosts can be predicted accurately, and routing strategies can be thus devised based on contact predictions. But in most real D-MANETs, communications are not planned in advance and cannot be predicted, especially if the physical carriers are for example human beings carrying laptops or smartphones. The term opportunistic networking [START_REF] Pelusi | Opportunistic Networking: Data Forwarding in Disconnected Mobile Ad Hoc Networks[END_REF] is often used to denote these disruption tolerant networks where the contacts must be exploited opportunistically. In such wise, each contact represents an opportunity for two hosts to exchange messages. Consequently, communication protocols for D-MANETs usually provide no more than best-effort delivery. Consider again the example shown in Figure 1, and assume a message is addressed by a host in island 2 to a host in island 3. If no human carrier ever visits the island 3, then there is no chance that the message ever gets delivered in this island.

The dynamic nature of D-MANETs creates many challenges for application developers. Due to the inherent stochastic nature of D-MANETs, no host can be considered as stable and accessible enough to play the role of a server for all the other hosts. Consequently, applications developers should generally use a peer-to-peer model rather than a client-server one. Developers, while writing their applications, should additionally take into consideration occasional transmission failures and long transmission delays.

All these reasons result in an increasing need for a middleware system that, while coping with D-MANETs issues, provides the developers with a set of APIs that eases the development of distributed applications over D-MANETs. However, any middleware for D-MANETs must have an asynchronous nature in order to fit with the long transmission delays observed in such networks.

In the remainder of this paper we present JION (JavaSpaces Implementation for Opportunistic Networks), a coordination middleware system we designed and implemented specifically for D-MANETs. JION is actually an implementation of the JavaSpaces specification, so any pre-existing distributed application basing on the JavaSpaces API can be executed in a D-MANET with no further development using JION.

This paper is structured in the following way: the JavaSpaces specification is described briefly in Section II. Section III presents the JION's architecture along with details about its implementation. Evaluation results are shown in Section IV. Section V discusses related work. Section VI concludes this paper and describes our plans for future work.

II. JAVASPACES BACKGROUND

The JavaSpaces technology, implemented by JION, is a Java specification of the concept of tuple space which was originally introduced in the Linda programming language [START_REF] Carriero | Linda in context[END_REF]. In this section we provide a brief introduction to the tuple space as introduced in Linda. The JavaSpaces technology will be presented as well.

A. Tuple space

The tuple space concept has its root in the Linda parallel programming language [START_REF] Carriero | Linda in context[END_REF] developed at Yale University. A tuple space is a shared data space acting as an associative memory used by several processes for communication and/or coordination requirements. A Linda application is viewed as a collection of processes cooperating via the flow of data structures, called "tuples", into and out of a tuple space. Each tuple is a record of typed fields containing the information to be communicated. The coordination primitives provided by Linda allow processes to insert a tuple into the tuple space (out) or retrieve tuples from the tuple space, either removing those tuples (in) or preserving the tuples in the space (read). For retrieving operations, the tuples are selected using a simple pattern matching from a given set of parameters.

B. JavaSpaces

The JavaSpaces technology is a Java specification of the tuple space concept, implemented inside the JINI architecture.

It defines a set of application programming interfaces (APIs) which extends the simple core of the Linda primitives. The JavaSpaces version of Linda tuples, called "entries", are Java objects which contains public fields that act as the Linda's typed fields. JavaSpaces provides read, take and write operations in order to fulfill Linda's read, in, out operations respectively. Moreover, it provides a notify operation which allows processes to do a lookup operation in an asynchronous manner. This operation notifies the processes by sending a special object called event containing information to which the processes react. The matching in read, take and notify operations are performed using a special kind of entry, called a template, that characterizes the kind of entries the process wants to look for. The selected entries are those whose types and fields match the template. Furthermore, JavaSpaces provides lite versions of read and take operations where processes do not need to wait for the answer. These operations, called readIfExist and takeIfExist, can be useful when a process wants an answer immediately with out waiting. As JavaSpaces' entries are passive data, processes cannot perform operations on tuples directly. In order to modify an entry, a process must explicitly remove, update and reinsert it into the space.

III. JAVASPACES IMPLEMENTATION FOR OPPORTUNISTIC NETWORKS (JION)

The JavaSpaces technology was primarily designed to provide persistent object exchange areas (spaces) through which processes coordinate actions and exchange data. Most of the JavaSpaces implementations are server-based systems where centralized servers are used to manage these spaces. As explained in Section I, a server-based system is hardly compatible with the characteristics of D-MANETs as no host can act as a reliable server for all the other hosts. A server-less JavaSpaces implementation must then be developed in order to provide JavaSpaces services for D-MANETs.

JION, or JavaSpaces Implementation for Opportunistic Networks, is a JavaSpaces implementation that was designed along that line. Its architecture is composed of two basic modules: the communication middleware system and the JavaSpaces services system.

A. Communication Middleware

Building any application for D-MANETs requires some communication middleware system with which hosts can collaborate in a peer-to-peer manner to ensure message transportation. JION relies on a communication middleware system called DoDWAN (Document Dissemination in mobile Wireless Ad hoc Networks) [START_REF] Haillot | A Protocol for Content-Based Communication in Disconnected Mobile Ad Hoc Networks[END_REF]. DoDWAN has been designed in our laboratory, and it is now distributed under the terms of the GNU General Public License1 .

DoDWAN supports content-based information dissemination in D-MANETs. In content-based networking, information flows towards interested receivers rather than towards specifically set destinations. This approach notably fits the needs of applications and services dedicated to information sharing or Board= "Sports" Topic= "football" Language= "English" (a)

Board= "Sports" Topic= ".*ball" Language= "English | French | German" (b)
Figure 2: A message descriptor and a message selector event distribution. It can also be used for destination-driven message forwarding, though, considering that destinationdriven forwarding is simply a particular case of content-driven forwarding where the only significant parameter for message processing is the identifier of the destination host (or user).

Messages in DoDWAN are composed of two parts: a descriptor and a payload. The payload is simply perceived as a byte array. The descriptor is a collection of attributes expressed as (name, value) tuples, as illustrated in Figure 2a. These attributes can be defined freely by the developers of application services built on top of DoDWAN.

DoDWAN implements a selective version of the epidemic routing model proposed in [START_REF] Vahdat | Epidemic Routing for Partially Connected Ad Hoc Networks[END_REF]. It provides application services with a publish/subscribe API. When a message is published on a host, it is simply put in the local cache maintained on this host. Afterwards each radio contact with another host is an opportunity for the DoDWAN system to transfer a copy of the message to that host whenever it is interested.

In order to receive messages, an application service must subscribe with DoDWAN and provide a selection pattern that characterizes the kind of messages it would like to receive. A selection pattern is expressed just like a message descriptor, except that the value field of each attribute contains a regular expression, as shown in Figure 2b. The selection patterns specified by all local application services running on the same host define this host's interest profile. DoDWAN uses this profile to determine which messages should be exchanged whenever a radio contact is established between two hosts. Details about this interaction scheme and about how it performs in real conditions can be found in [START_REF] Haillot | A Protocol for Content-Based Communication in Disconnected Mobile Ad Hoc Networks[END_REF].

As a general rule, a mobile host that defines a specific interest profile is expected to serve as a mobile carrier for all messages that match this profile. Yet a host can also be configured so as to serve as an altruistic carrier for messages that present no interest to the application services it runs locally. This behavior is optional, though, and it must be enabled explicitly by setting DoDWAN's configuration parameters accordingly.

Mobile hosts running DoDWAN only interact by exchanging control and data messages encapsulated in UDP datagrams, which can themselves be transported either in IPv4 or IPv6 packets. Large messages are segmented so that each fragment can fit in a single UDP datagram. Fragments of a large message can propagate independently in the network and be reassembled only on destination hosts.

B. JION Implementation

According to the JavaSpaces specification, processes coordinate by exchanging entries through the space using a simple set of operations. Entries and operations represent the basic JavaSpaces' elements. This section describes the JION's architecture and its entry module along with the supported operations.

1) JION's architecture: As mentioned in Section III, JION is a server-less JavaSpaces implementation, as it is intended to be used in D-MANETs where no host can act as a server. Each host maintains a local space in which JION stores the entries produced locally (that is, entries produced by write operations which have been invoked by local processes). If entries were propagated all over the D-MANET and managed in a collaborative manner, this could result in orphan entries: as stated in [START_REF] Fischer | Impossibility of Distributed Consensus with One Faulty Process[END_REF], it is impossible to obtain a consensus between hosts in a distributed disconnected environment. Consequently, D-MANET's hosts could not agree to remove any entry from the space, for example when a process wants to take it. Imagine that an entry has been propagated over the hosts in the islands shown in Figure 1, and a process in island 1 takes this entry. If no user ever visits the island 5 for example, the copies of this entry in this island will become orphan entries. In JION, the write operations are only processed locally, while matching and fetching operations (read, take and notify) are processed by querying hosts over the network for the entries they own.

2) Entries and Templates: According to the JavaSpaces specification, an entry is an object reference characterized by its "fields". In the JavaSpaces terminology, entry fields refer only to the public fields of the entry objects. In fact, entry fields are meant to act as a set of attributes characterizing an entry, and are used to perform matching operations while retrieving entries from the space.

As mentioned above, a DoDWAN message has two parts: a descriptor and a payload. Since DoDWAN's descriptor is also meant to characterize the content of the message, JION maps the entry's fields to the DoDWAN's descriptor, as their content is needed by JION to do match operations. The rest of the entry (that is, non-public fields) is simply carried in the message as its payload, and considered as a simple byte array.

Templates are special entry objects whose fields' values are used in match operation. This notion of a template in JavaSpaces is mapped to the DoDWAN's selection pattern which will be used by JION for the pattern matching operation.

3) Operations: According to the JavaSpaces specification, entries' access must be done through a set of basic operations, which are: write, read, take and notify. This section describes in detail the way JION supports these operations.

write: this operation stores a new entry into the host's local space for a specific period of time, called a lease. A lease represents the lifetime of its associated entry. As mentioned above, each entry is only stored on the local host and is not replicated over the D-MANET. Therefore, it is up to each host to monitor its local space and manage its own entries, and especially ensure that out-of-date entries are not used anymore.

read: this operation requests the JION service for an entry that matches the template provided as a parameter. When a process on a host performs a read operation, the host's local space is queried first in order to find a matching entry. If no matching entry is found, JION disseminates the specified template over the D-MANET. Each host, when it receives this template, will then query its local space to find a matching entry and forward a copy of it back to the requesting process. It is then up to the requesting process to choose one entry as an answer to its read request. Furthermore, readIfExists is also supported by JION. This version queries only the local space to find an entry that matches the specified template. In any case, the request will not be disseminated over the D-MANET.

take: this operation basically performs the same function as read, except that it removes the matching entry from the space. So, for a take operation, JION searches first the local space. If no match is found, JION queries all the hosts over the D-MANET in order to discover which hosts (if any) have a matching entry. Upon receiving the proposals, JION selects one host from which the entry should be taken. JION then asks the chosen host to permanently remove the matching entry from its local space and hand it back to the requesting process. The entire operation may take more time than the read operation since it needs four exchanges to be achieved while two exchanges are required in the read operation. JION supports also a takeIfExists operation which performs exactly like the corresponding readIfExists, except that a matching entry is only requested from the local space.

notify: this operation notifies a process when entries that match a given template are written into a space. So when a notify operation is performed by a process, JION disseminates the given template all over the hosts in the D-MANET. The hosts, in their turn, register the notify request in the hope that a matching entry will be written before the request's lifetime expires. Consequently, when a matching entry is written in a host, the host forwards an event object containing information about this entry and its location to the requesting process.

4) Transactions: According to the JavaSpaces specification, it is possible to group multiple operations (participants) into a bundle that acts as a single atomic operation. This is done using the optional concept of transaction. Either all operations within the transaction will be performed or none will. In fullyconnected stable networks, a transaction is controlled by a specific manager (server) which should always be reachable by all the participants. If a participant is momentarily disconnected, the whole transaction is aborted. Given that hosts in D-MANETs can neither have a reliable server nor agree between themselves, it is not possible to ensure transactions as defined by JavaSpaces. For this reason, JION does not support the concept of transaction and each operation is considered as a singleton operation.

IV. EVALUATION

A D-MANET is a wireless network whose topology is continuously changing, and where radio contacts between mobile hosts do not necessarily follow any predictable pattern. Therefore, protocols and systems designed for D-MANETs are usually evaluated using network simulators. The originality of our work lies in the fact that JION has been fully implemented in Java and is now distributed under the terms of the GNU JION has seen extensive testing to examine how well it performs in D-MANETs. While conducting these tests we strived to evaluate how easy it is for an application developer to implement a distributed application using JION. Furthermore, we have evaluated the efficiency of JION in a real D-MANET.

Read operation Take operation Netcat

A. Developing distributed applications with JION

JION implements the Sun Microsystems' JavaSpaces Technology specification provided as a part of the Java Jini Technology [START_REF] Freeman | JavaSpaces(TM) Principles, Patterns, and Practice[END_REF]. Since JION implements a well-known middleware specification, developers do not need to learn a new programming language, or get familiar with an exotic programming model or API. A developer can simply focus on writing a standard JavaSpaces application, and JION will take care of its execution in a D-MANET. Indeed, any pre-existing JavaSpaces application can be deployed using JION, without any change in its source code.

Developers should however be aware of the specific constraints posed by D-MANETs, where message delivery, message ordering, and transmission delays are usually not guaranteed. Such constraints are not due to limitations in JION; they are due to the very nature of D-MANETs. As explained in Section I, opportunistic protocols and middleware systems designed for D-MANETs can do no magic: they can support network-wide communication in a D-MANET, using mobile hosts as carriers that help to bridge the gap between nonconnected parts of the network. Yet, unless otherwise specified they do not control how mobile hosts move in the network, so they cannot guarantee that a message will ever reach (or reach in time) any particular host in the network. A developer working on an application for D-MANETs should therefore assume that delivery failures and late deliveries may be more common than in-time deliveries, and design the application or organize its deployment accordingly.

For testing and evaluation purposes, we have developed a distributed bulletin board system (D-BBS) inspired from the classical bulletin board system (BBS). A BBS typically consists of a number of bulletin boards which serve as discussion areas relating to general themes. Each bulletin board is generally labeled by an expressive name describing its contents (e.g., Sports). On each board, users can post, read and delete messages under different topics. Since BBS typical implementations are usually server-based, they are not well adapted to D-MANETs, so we developed this application using the JION middleware. In D-BBS, posting a message on a board under a topic is implemented by creating a tuple having the board's and the topic's names as fields and writing it into the JION's space. Similarly, reading/deleting a message from a specific board under a specific topic is performed by creating a template having the board's and topic's name as fields. This template is then to be passed as a parameter to the JION's read/take function. Furthermore, the developer can get benefit from JION's notify function in order to keep users up to date with changes on a specific board under a specific topic using an appropriate template.

Developing and deploying this application for a D-MANET was a straightforward task. Using JION, the programmer focuses on the application features without boring about the specific issues of this kind of very challenging environment.

B. JION efficiency over D-MANETs

Before trying to observe how entries can propagate between several islands in a disconnected network, one can first try to measure how fast they can propagate within a single island. Since JION is implemented on top of the DoDWAN communication system, which itself relies on UDP transmissions, our first objective was to evaluate how our multi-layer middleware architecture performs over the underlying wireless transmission medium.

We first used two netbooks A and B, running JION over a Linux operating system. These netbooks were installed next to each other in the same room, and their built-in Wi-Fi 802.11bg chipsets were configured to operate in ad hoc mode. We actually focused on the response time, which is here defined as the time interval between the time the netbook A writes entries of different sizes and the time when the netbook B receives them using the read/take operations. In order to get reference values regarding the capacity of the wireless link at application-level, we used the basic Netcat (nc) networking utility, that can read and write chunks of data across network connections. 200 series of tests were conducted in this scenario. The results of these tests are presented in Figure 3. Read and take operations show similar performances. However, JION shows about 20% overhead over Netcat. Considering that JION's communication middleware (DoDWAN) implements a sophisticated opportunistic protocol in order to orchestrate communications between neighbor hosts, we consider that these results are quite reasonable.

To increase realism, another real world test was conducted to investigate the behavior of JION when messages can propagate over multiple hops. The tests was carried out by four netbooks (A, B, C and D) distributed in our laboratory. Because of the effect of concrete walls on signal attenuation, the connectivity between these netbooks was such that netbook B could only communicate with A and C, while netbook D could only communicate with C. This test relied on the write/read operations: a total amount of 225 entries were written on B, C, D, and the host A was configured to read these entries. We measured the average time required for these entries to reach the netbook A. The results of this test are shown in Figure 4. We can observe that the time by which the host A gets an entry changes according to the size of entry and the number of hops over which the entry has to be transmitted. As increasing the size of the entry and the number of hops, the response time generally increases. This is because when host B serves as a relay between its neighbors A and C, the radio channel around B is twice as busy as when B interacts only with host A. The same observation applies for host C when it must serve as a relay between hosts B and D. It must also be considered that DoDWAN uses many mechanisms to ensure a high delivery ratio, so entries are retransmitted again and again if they are not received in first place. In the last test, the host A has received all of the 225 sent entries.

Furthermore, we used our D-BBS application to observe how JION can perform in a real D-MANET. A dozen of volunteers in our laboratory were equipped with netbooks running D-BBS. Several one-day tests were conducted by asking the volunteers to carry their netbook whenever possible -and use D-BBS services of course-during a few days while roaming the laboratory building or its surroundings. To analyze the results special attention was paid to the cumulative delivery rates of read/take operations as shown in Figure 5. The cumulative delivery rates were measured in term of time slices where a measure of 2 hours means that the average delivery time observed was between 0 and 2 hours; a measure of 4 hours means it was between 0 and 4 hours, etc. Using the read operation, It can be noticed that nearly 59% of the entries got delivered in less than 2 hours. However, the majority of hosts had to wait between 4 and 6 hours in order to get the required entries using the take operation. This difference is expected since the take operation requires more rounds than the read one. In general, the results show that most of the entries got delivered to their destination(s) in less than 10 hours. Yet, about 6% of the entries could not be delivered. This is the consequence of the unpredictable behavior of the users, which sometimes moved away from the laboratory or switched their netbook off unexpectedly.

V. RELATED WORK

In the last few years, several projects focused their attention on the rebirth of Linda [START_REF] Carriero | Linda in context[END_REF], especially in the context of mobile ad hoc environments.

Both Ara [START_REF] Peine | The Architecture of the Ara Platform for Mobile Agents[END_REF] and LIME [START_REF] Murphy | LIME: A Coordination Model and Middleware Supporting Mobility of Hosts and Agents[END_REF] are coordination middleware implementing tuple spaces stored on hosts acting as servers. These middleware target mobile ad hoc networks. They provide JavaSpaces services to mobile hosts that are in the servers' communication range. Since they rely on a server-based model, they are hardly usable in real D-MANETs. Limone [START_REF] Fok | A Lightweight Coordination Middleware for Mobile Computing[END_REF] is a lightweight alternative to LIME requiring far less overhead than it. Limone starts with the premise that a single round trip message exchange is always possible, making it impractical over D-MANETs, if not impossible, where unpredictable disconnections are always considered as the norm rather than the exception. In contrast, CAST [START_REF] Roman | Tuple Space Coordination Across Space and Time[END_REF] is a server-less coordination middleware for MANETs. By not relying on any centralized service, this middleware suits well the dynamics of wireless open networks. CAST makes it possible to process operations even when no end-to-end route exists between the involved hosts, by implementing a source routing algorithm. This routing strategy relies on the assumption that each host's motion profile is known. This is clearly a serious constraint which limits the usability of CAST over the kind of real D-MANETs JION targets, where hosts' motions are not planned and cannot be predicted. Tuple board (TB) [START_REF] Kaminsky | Tuple Board: A New Distributed Computing Paradigm for Mobile Ad hoc Networks[END_REF] is another server-less coordination middleware for developing collaborative applications running on ad hoc networks of mobile computing devices. Like JION, this middleware has been fully implemented and also distributed. It can thus be used and tested in real conditions. However, the proposal lacks flexibility, in that it is limited to a group of nearby connected devices: when a device leaves the network or turns off, all the tuples posted from this device are withdrawn. The importance that we attribute to disconnections make the disconnection tolerance a vital requirement for any middleware that is meant to support D-MANETs.

Furthermore, all of the middleware mentioned above define their own communication protocol for route discovery and maintenance. Our work is different as JION presents a twolayer architecture: the upper layer is concerned with tuple space services, while the lower layer supports opportunistic communication. As mentioned above, DoDWAN has been chosen from among a few other opportunistic communication protocols that are openly distributed to support opportunistic communications on D-MANETs. Yet JION could theoretically be implemented above any other communication system: DTN2, a reference implementation of protocols designed by the Delay-Tolerant Networking Research Group (DTNRG) [START_REF] Cerf | Delay-Tolerant Networking Architecture[END_REF], or Haggle, a content-centric architecture for opportunistic communication among mobile devices [START_REF] Nordström | A Search-based Network Architecture for Mobile Devices[END_REF].

VI. CONCLUSION AND FUTURE WORK

In this paper we have introduced JION (JavaSpaces Implementation for Opportunistic Networks), a JavaSpaces implementation we designed and implemented specifically for disconnected mobile ad hoc networks (D-MANETs). Using JION, distributed applications which are based on the concept of tuple spaces as defined in the JavaSpaces specification can be deployed and executed in D-MANETs. JION provides an effective base which eases the development of D-MANETs' applications. It is tested in real conditions and now distributed under the terms of the GNU General Public License.

Currently, we are performing several more tests in rural areas to verify how stable JION is in such very challenging environments. For the short-term future work, we plan to implement JION over another communication middleware in order to stand on the portability of JION over communication systems other than DoDWAN.

Figure 1 :

 1 Figure 1: Example of a disconnected mobile ad hoc network

Figure 3 :

 3 Figure 3: Response time observed between two netbooks

Figure 4 :

 4 Figure 4: Response time between multi-hop neighbors

Figure 5 :

 5 Figure 5: Entry delivery in a real D-MANET

http://www-irisa.univ-ubs.fr/CASA/DoDWAN/

http://www-irisa.univ-ubs.fr/CASA/JION/