
HAL Id: hal-00763325
https://hal.science/hal-00763325

Submitted on 10 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Message Service for Opportunistic Computing in
Disconnected MANETs

Abdulkader Benchi, Frédéric Guidec, Pascale Launay

To cite this version:
Abdulkader Benchi, Frédéric Guidec, Pascale Launay. A Message Service for Opportunistic Com-
puting in Disconnected MANETs. 12th International Conference on Distributed Applications and
Interoperable Systems (DAIS), Jun 2012, Stockholm, Sweden. pp.118-131, �10.1007/978-3-642-30823-
9_10�. �hal-00763325�

https://hal.science/hal-00763325
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Message Service for Opportunistic Computing

in Disconnected MANETs

Abdulkader Benchi, Frédéric Guidec, and Pascale Launay

IRISA-UBS, Université de Bretagne-Sud, 56000 Vannes, France

Abstract. Disconnected mobile ad hoc networks (or D-MANETs) are
partially or intermittently connected wireless networks in which instant
end-to-end connectivity between any pair of mobile hosts is never guar-
anteed. Recent advances in delay/disruption-tolerant networking make it
possible to support communication in such conditions, but designing and
implementing distributed applications for D-MANETs is still a challeng-
ing task. Middleware systems such as the Java Message Service (JMS)
have made application development easy and cost-e�ective in traditional
wired networks. In this paper, we introduce JOMS (Java Opportunistic
Message Service), a JMS provider speci�cally designed for D-MANETs,
and with which pre-existing or new JMS-based applications can be easily
deployed in such networks.

Keywords: Java Message Service, JMS provider, Message Oriented Mid-
dleware, disconnected MANET, JNDI

1 Introduction

Mobile ad hoc networks (MANETs) have justi�ed a fair amount of research ac-
tivity during the last two decades. A MANET is a wireless network that requires
no �xed infrastructure. Each mobile host can communicate with its neighbors
using direct pair-wise wireless links. Because the range of wireless transmissions
is often quite short, many protocols (such as OLSR, AODV, DYMO, DSR...)
have been designed over the years in order to support multi-hop forwarding in
MANETs.

Yet most of these protocols rely on the assumption that the whole network
remains continuously connected, so that whenever one mobile host must send
a message to another host, there actually exists at least one end-to-end path
between these hosts in the network. Unfortunately this assumption does not
hold in many real MANETs that are, at best, only partially or intermittently
connected.

A MANET can for example become disconnected when the mobile hosts
that compose this network are sparsely or irregularly distributed, as shown in
Fig. 1. The whole network then appears as a collection of distinct, continuously
changing �islands� �or connected components� rather than as a single, connected
network. Communication between hosts that belong to the same island is pos-
sible �using multi-hop forwarding if needed� but no instant communication is

��������

�������	

�������A

�������B�������C

Fig. 1: Example of a D-MANET (disconnected mobile ad hoc network)

possible between hosts that reside on di�erent islands. In such conditions, a
method must be devised in order to bridge the gap between non-connected parts
of the network. The mobility of hosts can here be considered as an advantage,
as it makes it possible for messages to propagate network-wide, using mobile
hosts as carriers �or data mules� that can move between non-connected parts
of the network. A message can thus be stored temporarily on a host while this
host is moving in the network, and be forwarded later to another host when
circumstances permit. In Fig. 1, a smartphone or laptop carried by a user mov-
ing (deliberately or by chance) from island 1 to island 2 can serve as a data
mule for messages addressed to hosts located in island 2. This �store, carry, and
forward� approach �ts in the general category of disruption-tolerant �or delay-
tolerant� networking (DTN [1]): connectivity disruptions are indeed tolerated
thanks to the mobility of hosts, but this approach generally yields long trans-
mission delays because transporting a message from source to destination can
take a long time when one or several data mules are involved during the trans-
port. The term opportunistic networking is often used in the literature to denote
delay/disruption-tolerant networking when radio contacts between mobile hosts
are not planned in advance and must thus be exploited opportunistically. This
is typically the case in many kinds of disconnected MANETs (or D-MANETs),
where the mobility pattern of each host is actually that of its physical carrier.
If the physical carriers in a D-MANET are vehicles or robots with pre-de�ned
travel plans, then radio contacts between the hosts they carry can be predicted
accurately, and routing strategies can be devised based on contact predictions.
But if the physical carriers are for example human beings carrying laptops or
smartphones, or animals carrying sensors, then radio contacts cannot always be
predicted, although each contact is still an opportunity for two hosts to exchange
messages.

Many papers published in the last few years address the problem of support-
ing communication in D-MANETs (good surveys can notably be found in [2]
and [3]). In any case, it should be noticed that communication protocols for D-
MANETs usually provide no more than best-e�ort delivery: they cannot guar-
antee that a message will be delivered. This is a consequence of the disconnected
nature of the networks considered. Consider again the example shown in Fig. 1,

and assume a message is addressed by a host in island 1 to a host in island 5 (or
to all hosts in the network, including those in island 5). If no human carrier ever
visits island 5, then there is no chance that the message ever gets delivered in
this island. A communication protocol running in a D-MANET can do no magic
if mobile hosts do not move in such a way that messages can be transported
between non-connected fragments of the network.

A D-MANET is therefore a network in which transmission delays can be
very long, and transmissions can even fail altogether. Designing and implement-
ing distributed applications capable of running in such conditions is quite a
challenge. The peer-to-peer model should generally be preferred over the client-
server model, because in many real D-MANETs no host can be considered as
stable and accessible enough to play the role of a server for all other hosts. Ad-
ditionally, any distributed application running in a D-MANET must obviously
be able to tolerate long transmission delays, and occasional transmission failures
as well.

The concept of middleware has long proved e�cient in easing the development
of distributed applications for �traditional� wired networks. It can be expected
that carefully designed middleware systems might bring similar bene�ts for D-
MANETs. According to Hurwitz there are four types of middleware, which are
transactional, procedural, message-oriented and object-oriented middleware [4].
Message-oriented middleware appears to be the most appropriate model for D-
MANETs because it generally relies on asynchronous message-passing, which
�ts perfectly with the long transmission delays that can be observed in such
networks.

In the remainder of this paper we present JOMS (Java Opportunistic Message
Service), a message-oriented middleware system we designed and implemented
speci�cally for D-MANETs. JOMS is actually a provider for the standard Java
Message Service (JMS), so any pre-existing distributed application using the
JMS API can be executed in a D-MANET with little or no further development.
New applications can also be developed easily, taking bene�t from the server-less
directory service along with the administration tools provided with JOMS.

This paper is structured in the following way. An overview of the JMS spec-
i�cation is provided in Section 2. Section 3 presents the general architecture
and principles of our system JOMS, whose implementation is then evaluated in
Section 4. Related work is later discussed in Section 5. Section 6 concludes this
paper, and describes our plans for future work.

2 Java Message Service (JMS)

The Java Message Service (JMS) is a Message-oriented Middleware (MoM) stan-
dard that allows application components based on the Java 2 Platform Enterprise
Edition (J2EE) to create, send, receive, and read messages. As a MoM standard,
it supports distributed communication in a loosely-coupled, reliable, and asyn-
chronous manner [5]. A client sends (produces) a message to another client, which
can then try to retrieve (consume) it asynchronously. The producer and the con-

sumer do not have to be available at the same time in order to communicate. In
fact, the producer does not need to know anything about the consumer, nor does
the consumer need to know anything about the producer. This brings a major
bene�t to MoM, where the producer and the consumer need to know only what
message format and what channel to use in order to communicate.

2.1 JMS API overview

The JMS API de�nes a common set of interfaces including the associated seman-
tics that allows programs written in Java to communicate. The JMS speci�cation
does not de�ne how messages are transported within a particular implementa-
tion, known as a JMS provider. Because of the lack of uni�ed implementation,
each major vendor proposes its own JMS provider along with the associated
management tools. Each JMS provider supplies the user with an appropriate
transport technology for a particular deployment environment.

The JMS API de�nes two communication models: point-to-point and publish-
subscribe. The point-to-point model is built around the concept of queues. A
queue sender sends a message to a speci�c queue, from which a queue receiver
can receive it asynchronously. This model provides a one-to-one communication
model. In other words, a given queue may have multiple senders and multiple
receivers, but each message sent by a sender to this queue is consumed by one
receiver. This means that some mechanism is required to decide which receiver
candidate will be the actual receiver of a given message.

The publish-subscribe model is based on the use of topics that can be sub-
scribed to by topic subscribers. Messages are published to a topic by topic pub-
lishers and are then received in an asynchronous mode by all the corresponding
topic subscribers. Each message may thus be consumed by multiple subscribers.
This model complements the point-to-point model in that it provides a one-to-
many communication model.

JMS supports two delivery semantics, through the so-called persistent and
non-persistent delivery modes. A non-persistent message should be delivered
in a best-e�ort mode. Conversely, a persistent message must be delivered in a
guaranteed mode.

2.2 Java Naming and Directory Interface (JNDI)

According to the JMS speci�cation, applications learn about the available topics
and queues �or so-called destination objects� through the Java Naming and
Directory Interface (JNDI). JNDI is a Java API that provides a common interface
to access various naming and directory services [6]. It is independent from the
underlying directory services, which could be implemented using a server, a
plain �le, or a database. According to the JNDI speci�cation, any directory
service must provide a hierarchical structure, referred to as a namespace. JNDI
uses this namespace in order to map any name to the corresponding object.
Applications can thus discover names and lookup any data or object via its name.
In traditional server-based JNDI implementations, a client creates a destination

object via some administration tool and binds it to a central JNDI server. This
object then resides there until it is unbound. From then on, applications typically
use JNDI to lookup the destination objects they require.

3 Java Opportunistic Message Service (JOMS)

JMS was primarily designed for systems where clients connect to central servers
via traditional networks and this has remained its typical usage scenario. In
most implementations of JMS, message producers send messages to a server that
stores these messages and forwards (delivers) them later to the consumers. Fur-
thermore, a server is responsible to provide a directory service that allows JMS
clients to discover queues and topics. As explained in Section 1 a server-based
model is hardly compatible with the characteristics of D-MANETs. No host can
act as a reliable server for all other hosts. A server-less JMS implementation
must thus be developed in order to provide JMS services in D-MANETs.

JOMS, or Java Opportunistic Message Service, is a JMS provider that was
designed along that line. Its architecture is composed of three basic modules: a
communication middleware system, a directory service, and the JMS provider
per se.

3.1 Communication layer

Building any application for D-MANETs requires some communication middle-
ware system with which mobile hosts can collaborate in a peer-to-peer manner
to ensure message transportation. JOMS relies on a communication middle-
ware system called DoDWAN (Document Dissemination in mobile Wireless Ad
hoc Networks). This system was designed in our laboratory in order to support
content-based information dissemination in D-MANETs [7].

Messages in DoDWAN are composed of two parts: a descriptor and a payload.
The payload is simply perceived as a byte array. The descriptor is a collection
of attributes expressed as (name, value) tuples, as illustrated in Fig. 2a. These
attributes can be de�ned freely by the developers of application services built
on top on DoDWAN. The only exceptions to this rule are a message identi�er
and a deadline, that must systematically appear in any descriptor. The identi�er
must be unique, for it allows DoDWAN to di�erentiate messages while detecting
duplicate copies of the same message. The deadline is meant to specify how long
a message should be allowed to disseminate in the network, and therefore how
long copies of this message should be stored by mobile hosts in their local cache.

DoDWAN provides application services with a publish/subscribe API. When
a message is published by a local application service, it is simply put in the lo-
cal cache maintained by DoDWAN. Afterwards each radio contact with another
host will be an opportunity for DoDWAN to transfer a copy of the message to
that host. In order to receive messages an application service must subscribe
with DoDWAN and provide a selection pattern that characterizes the kind of
messages it would like to receive. A selection pattern is expressed just like a

id= �ff789�
destination_id= �ChatRoom1�
destination_type= �topic�
date= �Mon Feb 13 20:54:03 CET 2012�
deadline= � Fri Mar 16 20:54:03 CET 2012�
delivery_mode= �PERSISTENT�
priority= �4�
language= �English�

(a)

destination_id= �MailBox1@00b0d086bbf7�
destination_type= �queue�
jms_general= �queue_receiver�
src= �86f8f700dad0�
reply_id= �host_1@86f8f700dad0�
language= �English�

(b)

destination_id= �ChatRoom.*�
language= �English|Chinese|German�

(c)

destination_id = �ChatRoom1�
destination_type = �topic�

deadline = �Sat Feb 11 19:27:32 CET 2012�

(d)

destination_id = �MailBox1@00b0d086bbf7�
destination_type = �queue�

(e)

Fig. 2: Examples of message descriptors and message selectors

message descriptor, except that the value �eld of each attribute contains a regu-
lar expression. Fig. 2c shows a selection pattern, which would for example match
the message descriptor shown in Fig. 2a.

The selection patterns speci�ed by all local application services running on
the same host de�ne this host's interest pro�le. DoDWAN uses this pro�le to
determine which messages should be exchanged whenever a radio contact is es-
tablished between two hosts. The interaction scheme implemented in DoDWAN
de�nes a selective version of the epidemic routing model proposed in [8]. Details
about this interaction schema and about how it performs in real conditions can
be found in [7].

As a general rule, a host that subscribes to receive a particular kind of mes-
sage is expected to serve as a mobile carrier for this kind of message. Yet a host
can also be con�gured so as to serve as an altruistic carrier for messages that
present no interest to the application services it runs locally. This behavior is
optional, though, and it must be enabled explicitly by an administrator of the
DoDWAN platform.

Mobile hosts running DoDWAN only interact by exchanging control and data
messages encapsulated in UDP datagrams, which can themselves be transported
either in IPv4 or IPv6 packets. Large messages are additionally segmented so
that each fragment can �t in a single UDP datagram. Fragments of a large
message can propagate independently in the network and be reassembled only
on destination hosts.

3.2 Directory service (JNDI)

JOMS supports a distributed directory service, which implements a subset of
the API of the standard JNDI, while preserving the semantics [6].

In JOMS, each host maintains a local directory that acts as a local namespace
from which application services can lookup/retrieve destination objects. When
a destination object is created, an entry for this destination object is added to
the local namespace. Each entry in this namespace is characterized by a name,
a type and a deadline.

Ensuring name unicity in a server-based con�guration over traditionnal (con-
nected) networking environments does not raise any major issue. In D-MANETs,
no consensus between hosts can be reached [9], and ensuring name unicity in such
conditions is not a trivial task. In JOMS, when topics with the same name are
added to di�erent local namespaces, they are considered as referring to the same
topic. It is up to the applications to manage topic creations while avoiding name
ambiguities. For queues, it is important to make each name unique. A queue's
name in JOMS therefore has the form queue_name@host_name. Thus, since
DoDWAN ensures that each host is assigned a unique name, then using this
form helps to di�erentiate queues that have been created on di�erent hosts.

The destination object's type can be topic or queue. This property has been
added since the two modes of communication are managed by JOMS quite dif-
ferently. Finally, the deadline represents the expiration date of the entry. An
example of a destination object's entry is shown in Fig. 2d. This destination ob-
ject describes a topic with name �ChatRoom1� and deadline �Sat Feb 11 19:27:32
CET 2012�.

Once an object has been added in a host's local namespace, JNDI advertises
this object using the underlying communication middleware. The hosts that
receive an advertisement message that pertain to new destination objects (that
is, destination objects that are not already available in their own namespaces)
add these objects to their local namespace.

It is worth mentioning that in D-MANETs a strong consistency between
several host's namespaces cannot be guaranteed since there is no central server.
In practice, there is no way to unbind a destination object network-wide. For this
reason, JOMS uses the deadline property introduced in each JNDI entry in order
to delete obsolete destination objects. In addition, JOMS implements a refreshing
mechanism: whenever a message is sent/received to/from a speci�ed destination
object, the lifetime of this destination object is automatically extended in the
local namespace. Thus, if an entry is not refreshed for a long time, this entry is
considered as obsolete and is automatically deleted from the local namespace.
This mechanism prevents a host from advertising an out-of-date destination
object and ensures that each host holds an up-to-date namespace.

3.3 JMS provider

A JMS provider supports the publish-subscribe and the point-to-point styles of
messaging. This Section describes the message model of JOMS and the way it
supports the two models of communication.

Message model according to the JMS speci�cation [5], a JMS message has
three parts: a header, properties, and a body. The JMS message header contains

�elds used by both clients and providers to control messages. The properties
are extra header �elds that act as a set of rules describing the message content.
They are used by clients to �lter messages via message selectors. It is worth
noting that selection criteria cannot reference the message body, that carries the
message content.

A DoDWAN message has two parts: a descriptor and a payload. Since JOMS
is based on DoDWAN, it adopts this message model by mapping the JMS mes-
sage's �elds to the DoDWAN message. An example of a JOMS message is shown
in Fig. 2a. The JMS message's body is carried in a DoDWAN message as its
payload, and considered as a simple byte array. The message descriptor is used
by DoDWAN to manage the message dissemination and delivery. The JMS mes-
sage's header and properties are mapped to the DoDWAN message's descriptor,
as their content is needed by JOMS to process the messages delivery. MessageID
and Destination are standard JMS header �elds; they are used by JOMS to
route the message to its recipients having these criteria in their interest pro�le.
We will explain later how these pro�les are de�ned in JOMS to allow publish-
subscribe and point-to-point communications. As those communication styles
are quite di�erent and implemented in JOMS using distinct models, an extra
property, the destination type, is added to the JMS initial message. The JMS
Expiration �eld is mapped to the DoDWAN message and called deadline. This
�eld, optional according to the JMS speci�cation, is mandatory while using DoD-
WAN, as it is used to avoid the overloading of radio channels and hosts caches
with out-of-date messages. According to the JMS speci�cation, the DeliveryMode
and Priority properties express the expected degree of reliability and priority
for transmitting messages. Given the disconnected nature of the environments
targeted by JOMS, it is not possible to ensure reliability as de�ned by JMS.
JOMS uses these properties to increase the delivery probability for the most
important messages by modifying the DoDWAN's cache management policy in
order to give them more chances to be opportunistically disseminated.

Publish-subscribe model this model is very close to the publish-subscribe
API provided by DoDWAN. Usually, JMS providers implement this communi-
cation pattern using a server-based model: the publications and subscriptions
to a given topic are managed by a central entity. However, the implementation
of publish-subscribe communications using a server-less model is quite obvious
and well suited: messages published to a given topic are disseminated over the
network; thus, any application service interested in this topic is given the op-
portunity to receive its messages. DoDWAN supports content-based dissemina-
tion, rather than destination-based routing of messages. Therefore, JOMS tags
a message published to a given topic with the topic name, and then publishes
it using DoDWAN; DoDWAN manages the message dissemination and the mes-
sage delivery to all interested hosts. JOMS expresses applications' interest in
receiving messages published to a given topic (topic subscribers) by adding the
topic's name in their interest pro�le. Moreover, JMS selectors, allowing topic
subscribers to �lter the messages they receive, are added to the applications'

interest pro�le; thus, the message �ltering is processed at the communication
middleware level.

The JOMS message shown in Fig. 2a, for example, is published to the topic
�ChatRoom1�. This read-only text message, labeled ��789�, has the priority 4
and is to be delivered in persistent mode. It has been published at �Mon Feb
13 20:54:03 CET 2012� and will die at �Fri Mar 16 20:54:03 CET 2012�. The
message selector �language= English� is a set of keywords characterizing this
message.

In D-MANETs, disconnections are the norm rather than the exception. As a
result, the implementation of the JMS non-durable subscriptions concept, where
messages are delivered only to active subscribers, is unsuitable and has no mean-
ing for this environment. We deal with this problem by introducing a way to
con�gure JOMS behaviour for non-durable subscriptions. By setting or unset-
ting some property, JOMS considers all non-durable subscriptions as durable
ones, or refuses non-durable subscriptions and reports attempts to use them by
throwing an exception.

Point-to-point model this model is built around the concept of queue which
has a central role in transmitting the messages from a queue sender to one and
only one queue receiver. In �xed platforms, queues are maintained on a server
which plays this central role in selecting the receiver of a message if there are
multiple recipients associated with it. The main problem now is how to achieve
this semantic of JMS queues in a D-MANET environment, where a server-based
implementation is inappropriate, and where the consensus problem has not been
however solved [9]. The approach to solve this problem is the so-called quasi-
central queue approach: when an application creates a queue, its host will act
as a queue manager (QM) for this queue. Thus, JOMS forwards to this QM all
applications' requests to be receivers for this queue and all the messages sent to
this queue. Then, it is up to the QM to decide to which receiver is to be handed
the message, and to forward it using DoDWAN. Even if this QM is turned o� or
becomes unreachable, DoDWAN gives it a chance to receive later all the missing
requests and messages by caching them on many other hosts. Thus, this queue
acts as a central decision-making but not as a central store. This approach has
the bene�t that no consensus algorithm is required, thus making it more suitable
for D-MANETs. For the sake of illustration, a QM's pro�le is shown in Fig. 2e.
This pro�le matches all messages sent to the queue �MailBox1@00b0d086bbf7�,
whose descriptors contain this property in the same way as the message shown in
Fig. 2a. Now, when an application wants to be a receiver for this queue, JOMS
sends a request to the QM as shown in Fig. 2b. The QM will use the reply_id
property in order to address messages to that application, that has this property
in its interest pro�le.

It is worth noting that each queue manager applies a selection policy in order
to choose one receiver for each message that matches the message properties in
a fair way. The JOMS's administrator can override this policy in order to have
a more appropriate one regarding his requirements.

4 Evaluation

Evaluating the performance of a middleware system capable of running in a
D-MANET is obviously a tricky task. In the literature protocols and systems
designed for D-MANETs are usually evaluated using network simulators, and
little e�ort is devoted to investigate how they can perform when deployed in a
real setting.

In contrast a major outcome of our work is the fact that JOMS1 and DoD-
WAN2 have both been fully implemented in Java, and are now distributed under
the terms of the GNU General Public License. They can thus be tested in real
conditions. Indeed DoDWAN has already been deployed in di�erent kinds of en-
vironments, including military tactical networks, and proved robust and reliable
in such harsh conditions [10].

As explained in Section 1 a middleware system designed for D-MANETs can
do no magic: unless otherwise speci�ed its does not control how mobile hosts
move in the network, so it cannot guarantee that a message will ever reach (or
reach in time) any particular destination. The behavior JOMS can show in a
D-MANET is therefore highly dependent on how this network evolves over time.
Based on this observation we conducted two series of experiments, �rst within
a single connected island, and then in a real disconnected network involving
several user-carried mobile hosts.

E�ciency of JOMS's messaging in a single connected island. We �rst used two
netbooks A and B, running JOMS over a Linux operating system. These net-
books were installed next to each other in the same room, and their built-in
Wi-Fi 802.11bg chipsets were con�gured to operate in ad hoc mode. We mea-
sured the time required to transmit messages of di�erent sizes from one netbook
to the other. These messages were produced by host A and received by host B,
using either a topic-based model or a queue-based model. In the �rst case the
messages were published to a topic by host A, and B was a subscriber to this
topic. In the second case A hosted a local message queue, and B was a subscriber
for messages deposited in this queue.

In order to get reference values regarding the capacity of the wireless link at
application-level, we used the basic Netcat (nc) networking utility, that can read
and write chunks of data across network connections.

Averaged over 150 rounds, the results of these tests are shown in Fig. 3-a,
in terms of application-level data rates. Topic-based and queue-based messag-
ing with JOMS obviously show similar performances. For large messages JOMS
shows between 15% and 20% overhead over Netcat. Moreover the latency we
measured when producing a message was around 10 ms with Netcat, and 25 ms
with JOMS.

To complement these results we also investigated the behavior of JOMS when
messages can propagate over multiple hops within a single connected island. The

1 http://www-irisa.univ-ubs.fr/CASA/JOMS
2 http://www-irisa.univ-ubs.fr/CASA/DoDWAN

D
a

ta
 r

a
te

 (
M

b
p

s
)

0

5

10

15

Message size (kB)

0 500 1 000 1 500 2 000 2 500

(a)

D
a

ta
 r

a
te

 (
M

b
p

s
)

0

2

4

6

8

10

12

14

Message size (kB)

0 500 1 000 1 500 2 000 2 500

1-hop neighbor

2-hop neighbor
3-hop neighbor

(b)

Fig. 3: Data throughputs observed within a single island

tests were conducted using four netbooks deployed so as to constitute a sim-
ple line A-B-C-D.Our test procedure relied on the queue-based model: message
queues were created on B, C, D, and host A was con�gured as a subscriber to
all these queues. Messages were deposited successively in each queue (with lo-
cal deposits), and we measured the time required for these messages to reach
subscriber A. Fig. 3-b shows the transmission data rates we calculated based on
these transmission times, depending on the size of messages and on the number
of hops required for each message to reach host A. It can be observed that the
data rate gets lower as the number of hops increases. This is because when host
B serves as a relay between its neighbors A and C, the radio channel around B
is twice as busy as when B interacts only with host A. The same observation
applies for host C when it must serve as a relay between hosts B and D.

Considering that DoDWAN implements a sophisticated opportunistic proto-
col in order to orchestrate communications between neighbor hosts, we consider
that the above-mentioned results are quite reasonable. Yet JOMS's most salient
feature is of course that it can ensure the delivery of messages in a disconnected
network, where traditional JMS providers (designed for connected environments)
are totally useless.

E�ciency of JOMS's messaging in a real D-MANET. In order to observe how
JOMS can perform in such conditions we implemented a simple chat application
based on JOMS. This application o�ers two services: public chat and private
chat. The public chat service relies on the concept of topic: each message pub-
lished on a topic can be received by all subscribers. With the private chat service,
each message is addressed to a single message queue, which is hosted on the des-
tination netbook.

A dozen of volunteers in our laboratory were equipped with netbooks running
this application, and they were asked to carry their netbook whenever possible
�and use both chat services of course� during a few days while roaming the
laboratory building or its surroundings.

����� ����� ����� ����� ����� ����� ����� ����� ����� �����

��

�	

��

���

��

�A

�B

�C

���

��

��

���

�B

DEF������FF�

(a)

Delivery
time (hour)

Delivery ratio
(Topic)

Delivery ratio
(Queue)

t ≤ 2 56% 6%

t ≤ 4 66% 40%

t ≤ 6 74% 66%

t ≤ 8 80% 74%

t ≤ 10 84% 79%

t > 10 94% 93%

(b)

Fig. 4: Message delivery in a real D-MANET

Several one-day trials were conducted during this test, and an average of 250
chat messages were produced by volunteers during each trial. Fig. 4a illustrates
how one particular message disseminated during one of the trials. This message
was �rst published in the public topic by netbook n1. After only a few minutes
n1 established radio contact with n2, which thus got a copy of the message and
became a new carrier for this message. n1 later managed to forward the message
to n7 and n10 successively, while n2 forwarded it to n4, and later to n8. The
message thus kept disseminating, until it reached the last subscriber n3, about 90
minutes after it was initially published. This example shows how a message can
disseminate in a D-MANET, using unpredicted radio contacts as opportunities
to reach new mobile hosts in the network.

In Fig. 4b we present the cumulative delivery rates of topic-based and queue-
based messages, as observed during these trials. It can be noticed that nearly 60%
of topic-based messages got delivered in less than 2 hours, whereas most queue-
based messages took between 4 and 6 hours to be delivered. This di�erence is
due to the fact that reaching the holder of a given message-queue is more di�cult
than reaching any subscriber to a given topic. In any case the table shows that
during the experiment most of the messages got delivered to their destination(s)
in less than 10 hours. Yet, about 6% of the messages could not be delivered.
This is the consequence of the unpredictable �yet perfectly legitimate� behavior
of the users, which sometimes moved away from the laboratory or switched their
netbook o� unexpectedly. By doing so they prevented any further radio contact
between their netbook and those of other users, and this of course lead to message
loss.

5 Related work

A number of JMS providers have been developed in the last few years in order
to support JMS in MANETs.

EMMA (Epidemic Messaging Middleware for Ad hoc networks [11]) is an
adaptation of JMS that targets MANETs presenting connectivity disruptions.

EMMA assumes the availability of a so-called synchronous protocol, which can
be used to reach mobile hosts that belong to the same cloud �or island� as
the sender. An asynchronous epidemic routing protocol is used to disseminate
messages towards remote clouds. EMMA manages queues in a manner that is
quite similar to that of JOMS: each queue is maintained by a single holder,
which advertises this object periodically with a set lifetime, and which can accept
subscriptions from other hosts. EMMA and JOMS however di�er in the way they
deal with topics. In EMMA topics are managed just like queues, with a single
holder per topic. In JOMS topic subscriptions can be set locally on any host.
Messages published in a topic propagate in the network by being stored, carried
and forwarded by all hosts that have subscribed to this topic. Other hosts can
additionally contribute to the dissemination of such messages, provided they
have been con�gured so as to behave as altruistic carriers. Another di�erence
between EMMA and JOMS is that in EMMA the gossiping mechanism between
neighbor hosts is done in such a way that all messages are considered, so very
large lists of message identi�ers can be exchanged between neighbor hosts. In
JOMS this gossiping is content-based �and thus more frugal� since neighbor
hosts only exchange messages based on their respective interest pro�les.

Extended JMS �or E-JMS� is another JMS provider, that uses an application-
level multicast routing protocol that provides publish/subscribe semantics by
mapping JMS topics to multicast addresses [12]. Since this protocol cannot dis-
seminate messages beyond a single connected fragment of the network, E-JMS
is hardly usable in D-MANETs. It could probably be adapted, though, using a
disruption-tolerant version of the multicast routing protocol. Another problem
is that E-JMS requires that all JMS clients have a local copy of an identical con-
�guration �le, which contains information about queues and topics. No directory
service (such as JNDI) is provided, so queues and topics cannot be created or
destroyed dynamically during the execution of a distributed application. This is
clearly a serious constraint, which limits the usability of E-JMS for developers.

EMMA and E-JMS both de�ne their own communication protocols. In con-
trast JOMS presents a two-layer architecture: the upper layer is concerned with
queue and topic management and utilization, while the lower layer supports op-
portunistic communication. For the lower layer JOMS currently relies on DoD-
WAN, a middleware system we designed to support content-based information
dissemination in D-MANETs [7]. Yet JOMS could theoretically be implemented
above any other communication system. Some protocols have been actually im-
plemented in middleware systems and are openly distributed : DTN2, a refer-
ence implementation of protocols designed by the Delay-Tolerant Networking
Research Group (DTNRG) [13], and Haggle, a content-centric architecture for
opportunistic communication among mobile users (or devices) [14].

6 Conclusion

In this paper we have presented JOMS (Java Opportunistic Message Service), a
JMS provider we designed and implemented speci�cally for disconnected mobile

ad hoc networks (D-MANETs). With JOMS distributed applications using mes-
sage queues and topics �as de�ned in the JMS speci�cation� can be deployed
and executed in partially or intermittently connected ad hoc networks. An op-
portunistic, content-driven communication model is used to enable message for-
warding in such networks, using mobile hosts as carriers that allow messages to
propagate network-wide.

JOMS is distributed under the terms of the GNU General Public License.
It is currently compliant with version 1.1 of the JMS speci�cation, which dates
back to 2002. The next version of the JMS speci�cation, namely JMS 2.0, should
be issued at the end of 2012. JOMS shall be modi�ed or extended so as to comply
with this new speci�cation. In future work we also plan to leverage on JOMS in
order to implement other distributed programming abstractions for D-MANETs,
such as tuple spaces and future objects.

References

1. Fall, K.: A Delay-Tolerant Network Architecture for Challenged Internets, New
York, USA, ACM (2003) 27�34

2. Pelusi, L., Passarella, A., Conti, M.: Opportunistic Networking: Data Forward-
ing in Disconnected Mobile Ad Hoc Networks. IEEE Communications Magazine
(November 2006)

3. Zhang, Z.: Routing in Intermittently Connected Mobile Ad Hoc Networks and De-
lay Tolerant Networks: Overview and Challenges. IEEE Communications Surveys
and Tutorials 8(1) (January 2006) 24�37

4. Hurwitz, J.: Sorting Out Middleware. DBMS 11(1) (January 1998) 10�12
5. Hapner, M., Burridge, R., Sharma, R.: Java Message Service, Version 1.1 (2002)
6. Lee, R., Seligman, S.: JNDI API Tutorial and Reference: Building Directory-

Enabled Java Applications. Addison-Wesley, Reading, USA (2000)
7. Haillot, J., Guidec, F.: A Protocol for Content-Based Communication in Discon-

nected Mobile Ad Hoc Networks. Journal of Mobile Information Systems 6(2)
(2010) 123�154

8. Vahdat, A., Becker, D.: Epidemic Routing for Partially Connected Ad Hoc Net-
works. Technical report, Duke University (April 2000)

9. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of Distributed Consensus
with One Faulty Process. Journal of the ACM 32(2) (April 1985) 374�382

10. Haillot, J., Guidec, F., Corlay, S., Turbert, J.: Disruption-Tolerant Content-
Driven Information Dissemination in Partially Connected Military Tactical Radio
Networks. In: 28th IEEE Military Communication Conference (MILCOM'2009),
Boston, USA, IEEE CS (October 2009)

11. Musolesi, M., Mascolo, C., Hailes, S.: EMMA: Epidemic Messaging Middleware
for Ad Hoc Networks. Personal and Ubiquitous Computing 10(1) (2005) 28�36

12. Vollset, E., Ingham, D., Ezhilchelvan, P.: JMS on Mobile Ad Hoc Networks. In
Personal Wireless Communications (PWC) (2003) 40�52

13. Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst, R., Scott, K., Fall, K.,
Weiss, H.: Delay-Tolerant Networking Architecture. IETF RFC 4838 (April 2007)

14. Nordström, E., Gunningberg, P., Rohner, C.: A search-based network architec-
ture for mobile devices. Technical Report 2009-003, Department of Information
Technology, Uppsala University (January 2009)

