Thomas Gobet 
  
Categorification Of The Kazhdan 
  
Categorification of the Kazhdan-Lusztig basis of the Temperley-Lieb algebra by bimodules

come    

Categorification of the Kazhdan-Lusztig basis of the

Temperley-Lieb algebra by bimodules

Introduction

The purpose of this work was to try to realize the Temperley-Lieb algebra in type A by bimodules, motivated by unexplained positivity properties in this algebra.

The category of Soergel bimodules defined in [START_REF] Soergel | Kazhdan-Lusztig polynomials and indecomposable bimodules over polynomial rings[END_REF] categorifies the Kazhdan-Lusztig basis of the Hecke algebra of any Coxeter system of finite rank. A diagrammatic categorification of the Temperley-Lieb category obtained by taking a quotient of (a diagrammatic version of) the category of Soergel bimodules in type A was described in [START_REF] Elias | A diagrammatic Temperley-Lieb categorification[END_REF]. Such a quotient category is a priori not a category whose objects can be viewed as bimodules anymore, but Elias gives some indications that there could exist such a realization of it by considering quasi-coherent sheaves on Weyl lines, that is, one dimensional subspaces of the geometric representation of the Coxeter group that are intersections of reflection hyperplanes. A natural framework for this is the analogues of Soergel bimodules that are suggested by Elias in [START_REF] Elias | A diagrammatic Temperley-Lieb categorification[END_REF]. As he noticed, such bimodules are not free anymore as left or right modules over the algebra of regular functions on the union of all Weyl lines.

Writing Z for the union of all the Weyl lines viewed as a subvariety of the geometric representation we are able to realize the Temperley-Lieb algebra as a monoidal category of graded R-bimodules where R is the algebra of regular functions on Z by considering a slightly more complicated operation than a usual tensor product: given two graded R-bimodules B, B ′ , one can consider the right, resp. left annihilators of B ′ , resp. B and associate to each of them the corresponding varieties V r B , V ℓ B ′ ⊂ Z. We then define a product of bimodules by setting

B * B ′ = B ⊗ R O(V r B ∩ V ℓ B ′ ) ⊗ R B ′ ,
where O(-) stands for the algebra of regular functions. Unfortunately such a product is neither additive nor associative on the category of finitely generated graded R-bimodules but it will be associative when restricted to a suitable stable class of bimodules containing some special bimodules called fully commutative together with some of their sums and shifts; proving that the fully commutative bimodules are indecomposable, which is a long combinatorial argument, will allow us to extend our product to direct sums of shifts of fully commutative bimodules by bilinearity. Setting

B i = O(V i )⊗ O(V i ) s i O(V i )
for the analogue of the Soergel bimodule, where V i stands for the union of the Weyl lines not included in the reflecting hyperplane of s i where s i is the simple transposition (i, i + 1), we give a categorification theorem for the Temperley-Lieb algebra (theorem 3.20); the bimodule B i corresponds to the element b i of the Kazhdan-Lusztig basis of the Temperley-Lieb algebra and the * -product of bimodules to the multiplication in the Temperley-Lieb algebra.

To be able to compute the * -product of bimodules B i we need to understand inductively their annihilators ; it turns out that given a bimodule B w = B i 1 * • • • * B i k where w = s i 1 • • • s i k where one can pass from any reduced expression of w to any other only by commutation relations (such elements of the Weyl group turn out to index the Kazhdan-Lusztig basis of the Temperley-Lieb algebra and are usually called fully commutative or braid avoiding), the left and right varieties corresponding to the left and right annihilators of B w can be characterized by two subsets of pairwise commuting reflections of the Weyl group, which turn out to be exactly the two sets obtained in the realization of the Temperley-Lieb algebra by planar diagrams by considering the diagram associated to the element b i 1 • • • b i k after removing the lines going from the top to the bottom of the diagram (that is, keeping only the half circles and viewing them as reflections by numbering the points from the left to the right). Hence this also gives some categorical interpretation of the realization of the Temperley-Lieb algebra by planar diagrams (proposition 3.7).

Stroppel obtained in [START_REF] Stroppel | Categorification of the Temperley-Lieb category, tangles, and cobordisms via projective functors[END_REF] a categorification of the Temperley-Lieb algebra by considering projective functors on the principal block of graded parabolic versions of the BGG category O; due to the relationship between Soergel bimodules and projective functors on category O (see [START_REF] Soergel | Perverse Garben und Moduln über den Koinvarianten zur Weylgruppe[END_REF], Korollar 1), we can expect our categorification to be related to the one obtained in [START_REF] Stroppel | Categorification of the Temperley-Lieb category, tangles, and cobordisms via projective functors[END_REF].

Organization of the paper. Section 1 gives some basic results on Weyl lines and introduces varieties and sets of reflections defined inductively, which will correpond to varieties associatied to left and right annihilators of bimodules. Section 2 gives some results on graded bimodules as well as on analogues of Soergel bimodules considered here and introduces the product of bimodules; we show that when restricted to a suitable class of bimodules this product turns out to be associative. Section 3 gives the realization of the Temperley-Lieb algebra by analogues of Soergel bimodules; for this we need to show the Temperley-Lieb relations and in order have a way to extend our product to direct sums of fully commutative bimodules we need to show that these are indecomposable.

Combinatorics of Weyl lines

The Coxeter systems (W, S) considered will always be of type A unless otherwise specified, identifying W of type A n with the symmetric group on n + 1 letters and S with the set of simple transpositions s i = (i, i + 1) for all i = 1, . . . , n. We will denote by T the set of reflections, by H t the reflecting hyperplane of t ∈ T and by V the geometric representation over a field k of characteristic zero, which is reflection faithful in the sense of [START_REF] Soergel | Kazhdan-Lusztig polynomials and indecomposable bimodules over polynomial rings[END_REF].

Weyl lines

Definition 1.1. A Weyl line is a subspace of V of dimension 1 that is the intersection of reflection hyperplanes. A Weyl line is transverse to some reflection t ∈ T if it is not contained in H t .

We denote by Z the union of all Weyl lines in V , which is a W-stable subvariety of V . We write V t for the union of Weyl lines transverse to t as a subvariety of Z ⊂ V ; if the reflection is simple we will often write V i to mean V s i .

Lemma 1.2. There exists a bijection

Weyl lines in V ∼ -→ partitions of {1, . . . , n + 1} into two subsets , which to any Weyl line L = n-1 i=1 H t i , where H t i is the reflection hyperplane of t i ∈ T , associates the partition given by the decomposition of t 1 • • • t n-1 into disjoint cycles (which turns out to be a partition in two sets as the proof will show).

Proof. One has to show that the map defined above is well-defined. Suppose L = n-1 i=1 H t i is a Weyl line in V . The product w = t 1 • • • t n-1 has T -length equal to n -1 since L has dimension 1 (the set of roots of the t i consists of linearly independent vectors, which implies that t 1 • • • t n-1 is a reduced T -decomposition for w ; the parabolic subgroup generated by the t i is equal to the subgroup of elements of W fixing L; see [START_REF] Carter | Conjugacy classes in the Weyl group[END_REF], section 2). Now the Tlength of an element of the symmetric group S n+1 is equal to n + 1 minus the number of cycles occuring in the decomposition into disjoint cycles. This forces w as element of S n+1 to fix at most 1 letter. If it fixes exactly one letter j, suppose L is written as another intersection of reflecting hyperplanes

n-1 i=1 H t ′
i . Then all the t ′ i fix L and hence have to be in the parabolic subgroup of W generated by the t i . Hence all the t ′ i have to fix the letter j and one gets the same partition of n + 1 into two sets as before.

If no letter is fixed, write S 1 ∪ S 2 for the disjoint union of the supports of the two cycles. If L is written n-1 i=1 H t ′ i , then every t ′ j has to be in the parabolic subgroup generated by the t i and since it is a conjugate of some t i it will either fix S 1 or fix S 2 . Hence we obtain the same partition into two sets as before. Now for each partition S 1 ∪ S 2 of {1, . . . , n + 1} write a corresponding n-cycle if either S 1 or S 2 has cardinal one or write a corresponding product of 2 cycles if both have cardinal more than 1 and decompose them in the obvious way as products of n -1 reflections. This proves that the above map is surjective. Now if L = L ′ are two different Weyl lines, then one can find some reflecting hyperplane L ′ ⊂ H s such that L ∩ H s = 0. Then s cannot be in the parabolic subgroup of elements fixing L and hence L and L ′ will not yield the same cycle decomposition.

Remark 1.3. In fact, Weyl lines are in bijection with rank n -1 parabolic subgroups (that is, maximal parabolic subgroups, not necessarily standard).

Lemma 1.4. Let t, t ′ , t ′′ ∈ T be three distinct reflections not commuting with each other (in particular t ′ tt ′ = tt ′ t = t ′′ ). Then

V t ∩ V t ′ = V t ∩ H t ′′ = V t ′ ∩ H t ′′ . In particular V t ∩ (V t ′ ∪ V t ′′ ) = V t . Proof. Let L ⊂ V t ∩ V t ′ . By definition, L = n-1 i=1 H t i for some t i ∈ T . Since L is transverse to both t and t ′ , H r ∩ n-1 i=1 H t i = 0 for r = t, t ′ . It follows that tt 1 • • • t n-1 and t ′ t 1 • • • t n-1
have reflection length equal to n and hence that they are (n+ 1)-cycles. Since t, t ′ are non-commuting, there exists distinct letters i, k, k ′ ∈ {1, . . . , n + 1} such that t = (k, i), t ′ = (k ′ , i). An easy computation then shows that when considering the decomposition of t 1 • • • t n-1 as a product of two cycles, the letters k and k ′ must lie in the same cycle and the letter i must lie in the other cycle. This means that tt

′ t = (k, k ′ ) divides t 1 • • • t n-1 , which implies that L ⊂ H tt ′ t = H t ′′ . Conversely if L ⊂ H t ′′ and L ⊂ H t then L ⊂ H t ′′ tt ′′ = H t ′ since L is fixed by t ′′ .
Remark 1.5. Identifying W with the symmetric group and viewing a reflection as a transposition, if t = (i, k) and t ′ = (k, j) with j = i, then V t ∩ V t ′ consists exactly of the Weyl lines corresponding to the maximal parabolic subgroups whose operation on {1, . . . , n + 1} yields exactly two orbits S 1 and S 2 with i, j ∈ S 1 and k ∈ S 2 . In particular V t ∩ V t ′ = {0}.

Noncrossing and dense sets of reflections

Notation. For i ≤ j two indices in {1, . . . , n} we write [i, j] for the set {i, i + 1, . . . , j -1, j}. Definition 1.6. Two indices i, j in [1, n] 

are distant if |i -j| > 1.
To any sequence i 1 • • • i m with i j ∈ {1, . . . , n} of length at least one, we associate the variety

W i 1 •••im built inductively by setting W i = V i and W i 1 •••im = V i 1 ∩ (W i 2 •••im ∪ s i 1 W i 2 •••im ).
These varieties will play a key role later on. We write V n for the family of varieties obtained in this way.

Example 1.7 For i and j with |j -i| > 1, one has

W ij = V i ∩ V j = W ji . Example 1.8 We have W i(i±1) = V i ∩ (V i±1 ∪ s i V i±1 ) = V i by lemma 1.4. Example 1.9 One has W i(i±1)i = V i .
We will show in proposition 1.12 that any W ∈ V n can be written as an intersection t∈T W V t for a unique set T W with interesting properties.

Lemma 1.10. Let j ≤ m ≤ i. Then W m(m-1)•••j = V m and W m(m+1)•••i = V m .
Proof. We prove the first equality by induction on m -j, the second being similar. If m -j = 0 then W m = V m by definition. Suppose m -j > 0. Then

W m(m-1)•••j = V m ∩ (W (m-1)•••j ∪ s m W (m-1)•••j ) and W (m-1)•••j = V m-1 by induction. Example 1.8 concludes.
Notation. For short, if s i ∈ S is a simple reflection and W ⊂ Z a closed subset, we write

s i • W or even i • W for the variety V i ∩ (W ∪ s i W ). More generally given any sequence i 1 • • • i k of indices in {1, . . . , n}, we write i 1 • • • i k • W for the variety s i 1 • (s i 2 • (• • • (s i k • W ) • • • ). Lemma 1.11. Suppose Q ⊂ T is a set of commuting reflections. Let s ∈ T . Set W := t∈Q V t . Then W = 0 and s • W = t∈Q ′ V t where Q ′ =    Q ∪ {s} if st = ts for each t ∈ Q (Q\t) ∪ {s} if ∃!t ∈ Q such that st = ts (Q\{t, t ′ }) ∪ {s, tt ′ st ′ t} if ∃t = t ′ ∈ Q such that st = ts, st ′ = t ′ s.
and Q ′ is also commuting. In particular s • W = 0.

Proof. First notice that W = {0}: since the reflections from Q pairwise commute, any Weyl line corresponding to a parabolic subgroup P with the following property will be in W : the operation of P on {1, . . . , n + 1} yields two orbits S 1 and S 2 where each t ∈ Q has an index from its support in S 1 and the other one in S 2 . The same will hold for s • W . The fact that the sets Q ′ are commuting is obvious in the two first cases ; for the third case it is an easy computation viewing the reflections as transpositions and considering their supports.

First recall that for s, t any two reflections,

sV t = V sts . If s ∈ T commutes with any of the t ∈ Q then s • W = t∈Q V t ∩ V s since sV t = V sts = V t whenever s and t commute.
If st = ts for some t ∈ T W but s commutes with any t ′ ∈ Q with t ′ = t, then

s • W =   r∈Q\t V r   ∩ V s ∩ (V t ∪ V sts )
As we have seen in lemma 1.4 we have

V s ∩ (V t ∪ V sts ) = V s hence s • W = r∈(Q\t)∪{s} V r ,
The remaining case is the case where s does not commute with exactly two reflections t, t ′ ∈ Q. In that case one has

s • W =   r∈Q\{t,t ′ } V r   ∩ V s ∩ ((V t ∩ V t ′ ) ∪ (V sts ∩ V st ′ s )).
We claim that

V s ∩ ((V t ∩ V t ′ ) ∪ (V sts ∩ V st ′ s )) = V s ∩ V tst ′ st ,
which concludes. By lemma 1.4 we have

V s ∩ V t ∩ V t ′ = V t ∩ V t ′ ∩ H st ′ s = V t ′ ∩ (V t ∩ H st ′ s ) = V t ′ ∩ V t ∩ V tst ′ st . Similarly, V s ∩ V sts ∩ V st ′ s = V sts ∩ V st ′ s ∩ V tst ′ st . Conversely, since V s ∩ V tst ′ st in not equal to zero consider a Weyl line L ⊂ V s ∩ V tst ′ st . If L ⊂ H t , then L ⊂ H st ′ s and hence L ⊂ H t ′ since L ⊂ H s . Similarly if L ∈ V s ∩ V tst ′ st and L ⊂ H t then L ⊂ H st ′ s (since L ⊂ H tst ′ st ) and L ⊂ H sts (since L ⊂ H s ).
Proposition 1.12. Let W ∈ V n . Then W = {0} and there exists a unique set

T W ⊂ T with tt ′ = t ′ t for each t, t ′ ∈ T W such that W = t∈T W V t .
Proof. Existence is shown using induction on the length of a sequence associated to a variety in V n . If W ∈ V n is obtained from a sequence of length 1, then W = V j for some j and W = 0. Now assume the result holds for each variety in V n obtained from a sequence of length less than or equal to m, and suppose W ∈ V n is obtained from a sequence of length equal to m + 1.

Then by definition W = s • W ′ for some simple reflection s and some variety W ′ ∈ V n obtained from a sequence of length equal to m. By induction W ′ = t∈T W ′ V t and thanks to lemma 1.11 we have W = t∈Q ′ V t with Q ′ commuting and W = {0}.

For unicity, suppose W ∈ V n and suppose there exists another set Q of pairwise commuting reflections such that W = t∈Q V t . Let s ∈ Q. Suppose s / ∈ T W . If there exists t ∈ T W such that ts = st, then W ⊂ V t ∩ V s ⊂ H sts using lemma 1.4. But this is impossible because since t commutes to any reflection in T W , W is t-invariant, hence W = tW ⊂ tV s = V sts . Now suppose s commutes with any reflection in T W . In type A, a set of commuting reflections contains at most n+1 2 elements. Hence

|T W | + 1 ≤ n+1 2 . First suppose |T W | + 1 < n+1 2 .
As a consequence, if n > 1, there must exist a reflection s ′ ∈ T such that s ′ commutes with any element of T W but not with s (think about identifying reflections with transpositions and considering their supports). If L ⊂ W is a Weyl line, then by assumption L ⊂ V s . This forces L ⊂ H s ′ or L ⊂ H ss ′ s : otherwise L = s ′ L ⊂ H s . Suppose L ⊂ H s ′ , which implies by lemma 1.4 that L ⊂ H ss ′ s and s ′ L ⊂ H s . But since s ′ commutes with any reflection in T W one has that W is s ′ -stable, hence s ′ L ⊂ W ⊂ V s , a contradiction. The case where L ⊂ H s ′ is similar, permuting s ′ and ss ′ s. Hence any case with s / ∈ T W leads to a contradiction. This forces Q ⊂ T W and also T W ⊂ Q by exchanging the roles of Q and T W . Now suppose |T W | + 1 = n+1 2 . Write T W ∪ {s} = {t 1 , . . . , t k , s} and we can suppose without loss of generality that t i = s 2i-1 , s = s 2k+1 . Notice that k = (n -1)/2. Consider the intersection of hyperplanes

H s 1 s 2 s 1 ∩ H s 2 s 3 s 2 ∩ H s 3 s 4 s 3 ∩ • • • ∩ H s 2k-2 s 2k-1 s 2k-2 ∩ H s 2k-1 s 2k s 2k-1 ∩ H s 2k+1 that involves 2k = n -1 reflecting hyperplanes. The product (s 1 s 2 s 1 )(s 2 s 3 s 2 ) • • • (s 2k-2 s 2k-1 s 2k-2 )(s 2k-1 s 2k s 2k-1 )s 2k+1
has reflection length equal to n -1. It follows that the above intersection of hyperplanes is a Weyl line L. But then L ⊂ H s and L ⊂ H t for each t ∈ T W : if L ⊂ H s j for some j = 1, 3, . . . , 2k -1, it follows by successive conjugations that L ⊂ H s j for each index j = 1, . . . , n and hence that L = 0.

Hence t∈T W V t = t∈T W ∪{s} V t .
Remark 1.13. When proving unicity in the above proof we have shown that if W ∈ V n and W ⊂ V t for some reflection t ∈ T , then t ∈ T W and in particular W is t-invariant. Hence we have :

Proposition 1.14. Let W ∈ V n . Then T W = {s ∈ T | W ⊂ V s }.
The following consequence will be crucial further:

Corollary 1.15. Let W ∈ V n , i ∈ {1, . . . , n}. Then V i ∩ W = {0} and the following are equivalent: 1. The variety W is s i -invariant, 2. The variety W ∩ V i is s i -invariant, 3. For each t ∈ T such that ts i = s i t, (W ∩ V i ) ∩ V t = 0.
Proof. Thanks to the above proposition, W = t∈T W V t , where T W ⊂ T is a set of pairwise commuting reflections. Hence we can find a partition S 1 ∪ S 2 = {1, . . . , n} such that i ∈ S 1 , i + 1 ∈ S 2 and each t ∈ T W can be written as a transposition (j, k) with j ∈ S 1 and k ∈ S 2 . Thanks to lemma 1.2 this gives us a corresponding Weyl line included in W ∩V i , hence W ∩V i = {0}. If W is s i -invariant then so is W ∩ V i , and then if W ∩ V i ⊂ H t for some reflection t which does not commute with s i , one would get W ∩ V i ⊂ H s i ts i by s i -invariance and hence also W ∩V i ⊂ H i which would force

W ∩V i = {0}. Now if W is not s i -invariant, there exists t ′ ∈ T W such that t ′ s i = s i t ′ and V i ∩ W ⊂ V i ∩ V t ′ ⊂ H s i t ′ s i
by lemma 1.4, and t = s i t ′ s i does not commute with s i since t ′ does not. Definition 1.16. A set Q ⊂ T of pairwise commuting reflections is noncrossing if after identification with a set of transpositions of the isomorphic symmetric group, it contains no pair of transpositions (i, j) and (k, l) with i < k < j < l.

If we draw n + 1 points on a circle and label each of them with an index between 1 and n + 1, starting by 1 at some point and writing the increasing indices in clockwise order, and represent a transposition by a line segment between the two indices it exchanges, a set Q ⊂ W of reflections is noncrossing if and only if any two segments in the corresponding circle never cross each other. Equivalently, if one draws a line with n + 1 points starting on the left by 1 and represent a transposition by an arc between the two indices it exchanges (up to homotopy), then a set of reflections is noncrossing if and only if there is a way of writing the arcs such that any two arcs associated to distinct reflections from this set never cross. This last way of representing noncrossing sets will turn out to be the most convenient one. Definition 1.17. Given any subset Q ⊂ W, the support of Q, written supp(Q), is the union of the supports of its elements viewed as elements of the symmetric group. A set Q ⊂ T of pairwise commuting reflections will be said to be dense if it is noncrossing and if there exists an integer k > 0

and indices 0 < m 1 < j 1 < m 2 < j 2 < • • • < m k < j k ≤ n + 1 such that (m q , j q ) ∈ Q and supp(Q) = k
q=1 {m q , m q + 1, . . . , j q }. This forces in particular j q -m q to be odd for each q since Q is noncrossing and (m q , j q ) ∈ Q. A subset of supp(Q) of the form {m q , m q + 1, . . . , j q } as above will be called a block of indices from Q.

Lemma 1.18. Let W ∈ V n . Then T W is noncrossing.
Proof. Again, we use induction on the length of the sequence defining W . If such a sequence has length one the result is clear. Let W = s • W ′ and suppose Q = T W ′ is noncrossing, then Q ′ = T s•W ′ is also noncrossing using the formulas from lemma 1.11 (it is obvious in the two first cases and clear for the last one if we represent Q and Q ′ as arcs joining points on a line).

Notation. If W ∈ V n is associated to a sequence i 1 • • • i k we will often write T (i 1 • • • i k ) instead of T W
for convenience. Notice that using lemma 1.11 one can inductively compute the variety and the corresponding dense set associated to a sequence.

Theorem 1.19. Let W ∈ V n . Then T W is dense. Conversely, any dense subset Q ⊂ T is equal to a T V ′ for some variety V ′ ∈ V n . In formulas, {T W | W ∈ V n } = {Q ⊂ T | Q is dense}.
Proof. Thanks to the previous lemma T W is noncrossing for each W ∈ V n . If W is associated to a sequence of length 1 then T W contains only one simple reflection, hence is dense. It suffices then to show that the rules from lemma 1.11 preserve dense sets, which is clear for the first two rules and easy for the last one if we write the reflections as transpositions.

Conversely suppose that Q is dense, in particular supp(Q) = k q=1 [m q , j q ], with j q -m q odd for each 1 ≤ q ≤ k. Consider the set of simple reflections k q=1 {s mq , s mq+2 , . . . , s jq-1 } and rewrite this union as {s k 1 , . . . , s k n(Q) } with k i < k j if i < j. Notice that this is a set of pairwise commuting reflections. We will show by induction on the size of the biggest block of Q that there exists a sequence seq = n

1 n 2 • • • n ℓ with n i ∈ k q=1 [m q , j q -1] for each 1 ≤ i ≤ ℓ such that Q = T W where W is associated to the sequence seqk 1 k 2 • • • k n(Q)
obtained by concatenation of the sequence seq and the sequences k

1 k 2 • • • k n(Q) .
First we suppose that the size of the biggest block is 1. Then each block has size one, in other words, j q = m q + 1 for each q and there is only one corresponding dense set Q: the set of reflections

{s k 1 , s k 2 , . . . , s k n(Q) }. One then has Q = T W with W associated to the sequence k 1 k 2 • • • k n(Q) (see example 1.7). Now suppose that the biggest block B i = [m i , j i ] of Q has size bigger than 1. It suffices to show the induction hypothesis for the set Q i of reflec- tions in Q supported in B i , i.e., that Q i is equal to T W for some W associated to a sequence s(i) = seq i m i (m i + 2) • • • (j i -1)
where seq i is a sequence with all indices in [m i , j i -1] : if this holds, one associates to each block B q of Q the variety W s(q) such that T W s(q) is equal to the set Q q of reflections in Q supported in B q (this is possible since we show it for the biggest block(s) and the result holds by induction for blocks of smaller size); but then if q = q ′ the reflections in Q q commute with the reflections in Q q ′ since they are supported in [m q , j q ] and [m q ′ , j q ′ ] which are disjoint. Hence one gets

Q = k q=1 T (s(q)) = T (s(1) • • • s(k)) = T (seq 1 m 1 (m 1 + 2) • • • (j 1 -1) • • • seq k m k (m k + 2)) • • • (j k -1) = T (seq 1 • • • seq k m 1 (m 1 + 2) • • • (j 1 -1) • • • m k (m k + 2) • • • (j k -1) =k 1 k 2 •••k n(Q) ),
where second and last equalities hold since the indices in s(i) are distant from the indices s(i ′ ) whenever i = i ′ (if two sequences x and y are such that any index in x is distant from any index in y then it is a consequence of lemma 1.11 that T (xy) = T (yx) = T (x) ∪ T (y)).

Therefore we have to show that a dense set Q having only one block

[k 1 , k n(Q) + 1] can be obtained as T W for W associated to a sequence obtained by concatenating a sequence with indices in [k 1 , k n(Q) ] to the left of k 1 • • • k n(Q) ; since Q has a single block we have k j+1 = k j +2 for each k = 1, . . . , n(Q)-1.
We first show that we can concatenate a sequence to the left of this sequence to obtain a corresponding variety W ′ such that T W ′ = Q ′ contains exactly the reflection (k 1 , k n(Q) + 1) and all the simple reflections

(k 1 + 1, k 2 ), (k 2 + 1, k 3 ), . . . , (k n(Q)-1 + 1, k n(Q)
) and then we will build W from W ′ by induction ; see figure 1 for an illustration of this process. By induction using lemma 1.11 we get that

T W (k i +1)•••(k n(Q)-1 +1)k 1 •••k n(Q)
is equal to the set

{s k 1 , s k 2 , . . . , s k i-1 , (k i , k n(Q) + 1), s k i +1 , s k i+1 +1 , . . . , s k n(Q)-1 +1 }, hence Q ′ = T W ′
where W ′ is associated to the sequence

(k 1 + 1)(k 2 + 1) • • • (k n(Q)-1 + 1)k 1 • • • k n(Q) . Now if we remove the reflection (k 1 , k n(Q) + 1) from Q we obtain again a dense subset Q ′′ with support equal to [k 1 + 1, k n(Q) ] by density of Q ; hence all blocks of Q ′′ have a size smaller than k n(Q) + 1 -k 1 . Hence by induction, Q ′′ can be obtained as a T W ′′ for W ′′ associated to a sequence seq(k 1 +1)(k 2 +1) • • • (k n(Q)-1 +1) for some sequence seq having all its indices lying in {k 1 + 1, . . . , k n(Q)-1 + 1}. But then s = (k 1 , k n(Q) + 1)
commutes with any reflection s ℓ where ℓ is an index in seq, hence one has

W seq(k 1 +1)•••(k n(Q)-1 +1)k 1 •••k n(Q) = seq • W (k 1 +1)•••(k n(Q)-1 +1)k 1 •••k n(Q) = seq • W ′ = seq • t∈Q ′ V t = seq •   V s ∩ n(Q)-1 i=1 V s k i +1   = seq • (V s ∩ W (k 1 +1)•••(k n(Q)-1 +1) ) = V s ∩ (seq • W (k 1 +1)•••(k n(Q)-1 +1) ) = V s ∩ t∈Q ′′ V t = t∈Q V t ,
and the sequence seq(k

1 + 1)(k 2 + 1) • • • (k n(Q)-1 + 1) has all its indices lying in [k 1 , k n(Q)-1 + 1] ⊂ [k 1 , k n(Q) ]. k 1 k 2 k 3 k n(Q) → k 1 k 2 k 3 k n(Q) → k 1 k 2 k 3 k n(Q)
Fig. 1: Illustration of the process used in the proof of theorem 1.19 to build a block Q of maximal size from the sequence

k 1 • • • k n(Q) with n(Q) = 4.
On the left is the dense subset associated to this sequence; in the middle is the block Q ′ associated to the sequence

(k 1 + 1) • • • (k n(Q)-1 + 1)k 1 • • • k n(Q) ; on the right is the block Q. The dense set Q ′′ is obtained from Q by removing the reflection represented by the arc joining k 1 to k n(Q) + 1.
2 Quasi-coherent sheaves on Weyl lines

Regular functions

Let R be the algebra of regular functions on V and R be the algebra of regular functions on Z. Notice that R ։ R. For each subset J ⊂ T , we write R J for the algebra of regular functions on the union of Weyl lines transverse to any element in J. If the reflection considered are simple, we will write R i instead of R {s i } , R i,j instead of R {s i ,s j } , etc. We denote by f k an element of R or R which is an equation of the reflecting hyperplane H s k . We will often abuse notation and write f i for f i | X where X is a subvariety of Z.

If X ⊂ V is a Zariski closed subset which is t-stable for t ∈ T , then t induces a map O(X) → O(X) and one has a decomposition into eigenspaces O(X) = O(X) t ⊕O(X) t f t where f t is an equation of the reflecting hyperplane H t . If moreover no irreducible component of X lies in H t , then the Demazure operator

∂ t : R → R, f → (2f t ) -1 (f -tf ) induces a map O(X) → O(X) and as R t -modules O(X) t ∼ -→ O(X) t f t
where the isomorphism is given by multiplication by f t and its inverse by the restriction of ∂ t .

Remark 2.1. A consequence of corollary 1.15 which will be crucial further is the following : suppose

W ∩ V i is not s i -invariant. Then W ∩ V i ⊂ H t for some t ∈ T such that ts i = s i t. Then t = (i, k) or (i + 1, k) for some k = i, i + 1, say t = (i + 1, k). Suppose k < i. In H t one has f k + f k+1 + • • • + f i = 0, hence f i = -2f k -• • • -2f i-1 -f i .
Viewing the right hand side in R i one sees that it lies in R s i i . One can do the same for the other cases (the case where k > i + 1 and the cases where

t = (i, k)). Since R i = R s i i ⊕ R s i i f i one has that R s i i ։ O(W ∩ V i ).
In other words, when choosing a function

f in R i such that f | W ∩V i is equal to a given g ∈ O(W ∩ V i ), one can always suppose f is s i -invariant.

Graduations

The Temperley-Lieb algebra will be realized via ( R, R)-bimodules. Now in order to interpret the parameter in a categorification of the Temperley-Lieb algebra, the bimodules we will consider need to be Z-graded. If A, B are two Z-graded rings, we write Amod -B for the category of A ⊗ B op -modules (that we will call "(A, B)-bimodules") and Amod Z -B for the category of Z-graded A⊗B op -modules (that we will call "graded (A, B)-bimodules") with morphisms the bimodule morphisms that are homogeneous of degree zero. In all the cases we will consider in this document, A and B will be commutative rings, hence both operations give left or right-module structures. However, to distinguish the operations for example in case A = B, we will always refer to the operation of A as the "left" operation and the operation of B as the "right" operation on a (A, B)-bimodule M.

Notation. If M ∈ A -mod Z -B, we write M[k] for the bimodule equal to M in A-mod -B but with graduation shifted by k, that is, (M[k]) i = M i+k .
The algebra R of regular functions on V is naturally graded ; we use the convention that it is positively graded with R 2 = V * . Now I(Z) is the intersection of the ideals of all the Weyl lines and the ideal of a line is homogeneous ; hence I(Z) is also homogeneous and R inherits a Z-grading from R. From now on the word "graded" will always mean "Z-graded".

Lemma 2.2. Let A, B, C be graded rings, let M ∈ A -mod Z -B and N ∈ B -mod Z -C. Then M ⊗ B N lies in A -mod Z -C.
Proof. See [START_REF] Stroppel | Category O : gradings and translation functors[END_REF] lemma 1.2, where N has only a left-module structure : the graded decomposition B = B i of the tensor product as left module which is built in the proof of this lemma is also a graded decomposition in case we have an additional right-module structure on N and hence on the tensor product, so the same proof can be given in our case. 

-mod -C, resp. B -mod Z -C M ⊗ C A ′ ∼ = M ⊗ C (A ′ /π(I)).
Proof. Write ψ : A ′ ։ A ′ /π(I) for the canonical surjection and define a map

ϕ : M ⊗ C A ′ → M ⊗ C (A ′ /π(I)) by ϕ(m⊗n) = m⊗ψ(n). It is well defined and defines a (B, A)-bimodule homomorphism. It is clearly surjective. Conversely define a map ϕ ′ : M ⊗ C (A ′ /π(I)) → M ⊗ C A ′ by setting ϕ ′ (m⊗ (n)) = m⊗n, where n is such that ψ(n) = n. It is well defined since if n ′ = n are such that ψ(n ′ ) = ψ(n), then n ′ -n ∈ π(I), hence one has for any a ∈ I with π(a) = n ′ -n: m ⊗ n ′ -m ⊗ n = (m ⊗ 1) • a = 0,
because a lies in the annihilator of M ⊗ C A ′ . The map ϕ is a morphism of (B, A)-bimodules which is an inverse to ϕ. The proof works in the graded case thanks to lemma 2.2 and thanks to the fact that A ′ /π(I) inherits a grading from A ′ because ker π is homogeneous and the morphisms we defined are all homogeneous of degree 0.

Lemma 2.4. Let W ∈ V n . Then O(W ) is graded.
Proof. Since W is a union of Weyl lines its vanishing ideal is homogeneous as it is an intersection of ideals of lines (which are known to be homogeneous).

Remark 2.5. Putting 2.2, 2.3 and 2.4 together we have the following: if

M ∈ R -mod Z -R, W ∈ V n and if the right operation of R on M factors through O(V M ) where V M ∈ V n (in other words, M can be viewed in R - mod -O(V M )), then M lies in R -mod Z -O(V M ) and B := M ⊗ O(V M ) O(V M ∩ W ) lies in R -mod Z -R. Lemma 2.6. Let i ∈ {1, . . . , n}. The bimodule B i := R i ⊗ R s i i R i is graded. It is free as left R i -module and as right R i -module. Proof. Since s i preserves the degrees R s i i is a graded subring of R i and so R i lies in R i -mod Z -R s i i and in R s i i -mod Z -R i .
Then apply lemma 2.2. The fact that the bimodule B i is free as left R i -module and as right R i -module is a consequence of the decomposition

R i = R s i i ⊕ R s i i f i
The bimodules B i as defined in the above lemma are the equivalent of the Soergel bimodules R ⊗ R s R used in [START_REF] Soergel | Kazhdan-Lusztig polynomials and indecomposable bimodules over polynomial rings[END_REF] to categorify the Kazhdan-Lusztig basis of the Hecke algebra of an arbitrary Coxeter system of finite rank.

Elementary bimodules

Lemma 2.7. The ring R i,i+1 of regular functions on V i ∩ V i+1 is a free R s i imodule of rank 1 and a free R

s i+1 i+1 -module of rank 1. Proof. Since V i is s i -stable we have a decomposition R i = R s i i ⊕ R s i i f i . Since R i ։ R i,i+1 if follows that R i,i+1 is generated by 1 and f i as a R s i i -module. Thanks to the preceding lemma, V i ∩ V i+1 ⊂ H s i s i+1 s i and hence f i + f i+1 = 0 in R i,i+1 . It follows that the element 2f i+1 + f i ∈ R s i i applied on 1 ∈ R i,i+1 yields -f i and hence that R i,i+1 is generated as a R s i i -module by 1. It remains to show that if f ∈ R s i i , f • 1 = f | V i ∩V i+1 = 0 implies f = 0. Since f is s i - invariant it is enough to show that (V i ∩ V i+1 ) ∪ s i (V i ∩ V i+1 ) = V i .
But this holds thanks to example 1.8. The proof of the second statement is similar.

Corollary 2.8. As a left R s i i -module, R i,i+1 ⊗ R s i+1 i+1 R i+1 is free of rank 2.
Similarly as a right R

s i+1 i+1 -module, R i ⊗ R s i i R i,i+1 is free of rank 2. Proof. Thanks to lemma 2.7, R i,i+1 ∼ = R s i i as a left R s i i -module. Since R i+1 = R s i+1 i+1 ⊕ R s i+1 i+1 f i+1 , the claim follows. Corollary 2.9. The bimodule B i,i+1 := R i ⊗ R s i i R i,i+1 ⊗ R s i+1 i+1 R i+1 which lies in R i -mod Z -R i+1 is free of rank 2 in R i -mod and free of rank 2 in mod -R i+1 .
In particular, if we view B i,i+1 in Rmod Z -R, then the left annihilator of B i,i+1 in R is the ideal of functions vanishing on V i and its right annihilator is the ideal of functions vanishing on V i+1 .

Proof. Thanks to the preceding lemma,

R i,i+1 ⊗ R s i+1 i+1 R i+1 is free as a left R s i i -module. Since R i = R s i i ⊕ R s i i f i , it follows that R i ⊗ R s i i R i,i+1 ⊗ R s i+1 i+1 R i+1 is free as a left R i -module.
We now study bimodules B i,j as defined in corollary 2.9 but for |i-j| > 1.

Notice that R i,j ⊗ R s j j R j is free as left R i,j -module since R j = R s j j ⊕ R s j j f j .
Lemma 2.10. Any function f ∈ R j which vanishes on V i ∩ V j acts on M := R i,j ⊗ R s j j R j on the right by zero. In other words, the right operation of R j on M gives rise to a right R i,j -module structure on M. Moreover, M is free as a right R i,j -module.

Proof. Decompose f as r + r ′ f j with r, r ′ ∈ R s j j . By assumption one has

r| V i ∩V j + r ′ | V i ∩V j f j | V i ∩V j = 0. Now since |i -j| > 1, V i ∩ V j is s j -stable,
giving rise to a natural operation of s j on R i,j . Applying s j to the above equation one gets

r| V i ∩V j -r ′ | V i ∩V j f j | V i ∩V j = 0, which implies that r| V i ∩V j = 0 and r ′ | V i ∩V j f j | V i ∩V j = 0. Since f j (v) = 0 for v ∈ V i ∩ V j -{0}, this forces r ′ | V i ∩V j = 0. Hence if v ⊗ w ∈ R i,j ⊗ R s j j R j , one gets (v ⊗ w) • f = vr| V i ∩V j ⊗ w + vr ′ | V i ∩V j ⊗ wf j = 0.
To see that M is free on the right over R i,j , one first uses lemma 2.3 to get an isomorphism M ∼ = R i,j ⊗ R s j j R i,j and then concludes by using the decomposition R i,j = R

s j i,j ⊕R s j i,j f j which holds since V i ∩V j is s j -invariant. Proposition 2.11. The bimodule B i,j := R i ⊗ R s i i R i,j ⊗ R s j j R j which lies in R i,j -mod Z -R i,j
thanks to the preceding lemma is free of rank 4 as left R i,j -module and as right R i,j -module. It particular the left annihilator of B i,j is equal to its right annihilator and is the ideal of functions vanishing on

V i ∩ V j .
Proof. As a left R i -module, B i,j is generated by t 1 := 1⊗1⊗1, t 2 := 1⊗1⊗f j , t 3 := 1⊗f i ⊗f j and t 4 := 1⊗f i ⊗1. Lets show that it is a basis of B i,j over R i,j . Consider elements a k ∈ R i , k = 1, 2, 3, 4 and write them as

a k = r k + r ′ k f i with r k , r ′ k ∈ R s i i , k = 1, . . . , 4 
, and suppose 4 i=1 a k • t k = 0. One gets

1 ⊗ (r 2 + r 3 f i )| V i ∩V j ⊗ f j + 1 ⊗ (r 1 + r 4 f i )| V i ∩V j ⊗ 1 +f i ⊗ (r ′ 2 + r ′ 3 f i )| V i ∩V j ⊗ f j + f i ⊗ (r ′ 1 + r ′ 4 f i )| V i ∩V j ⊗ 1 = 0. Now since N := R i ⊗ R s i i R i,j is free as a right R i,j -module and M := R i,j ⊗ R s j j R j is free as a left R i,j -module, B i,j = N ⊗ R i,j
M is free for the induced structure of R i,j -module (which is not the same than its left or right R i,j -module structure !), and a basis is given by 1

⊗ 1 ⊗ 1, f i ⊗ 1 ⊗ 1, 1 ⊗ 1 ⊗ f j and f i ⊗ 1 ⊗ f j . This implies that 0 = (r 1 + r 3 f i )| V i ∩V j = (r 2 + r 4 f i )| V i ∩V j = (r ′ 1 + r ′ 3 f i )| V i ∩V j = (r ′ 2 + r ′ 4 f i )| V i ∩V j .
Now the same argument as in the proof of the preceding lemma (applying

s i This forces r| V M ∩V i = 0 = r ′ | V M ∩V i (because O(V M ∩ V i ) ⊗ R s i i R
i is free as a module over O(V M ∩V i ) for the obvious operation). Since r, r ′ are s i -invariant, this forces them to be zero on V i ∩ (V M ∪ s i V M ), and the same holds for f .

Conversely if f ∈ R i is zero on V i ∩ (V M ∪ s i V M ), then write f = r + r ′ f i with r, r ′ invariant under s i . This forces r, r ′ to be zero on V i ∩ (V M ∪ s i V M ). Now show it is free ; first suppose V M ∩ V i is s i -invariant ; hence O(V M ∩ V i ) = O(V M ∩ V i ) s i ⊕ O(V M ∩ V i ) s i f i . It follows that O(V M ∩ V i ) ⊗ R s i i R i is generated as a right R-module by 1 ⊗ 1 and f i ⊗ 1. Let r, r ′ ∈ R i be such that 1 ⊗ r + f i ⊗ r ′ = 0. Write r = r 1 + r 2 f i and r ′ = r ′ 1 + r ′ 2 f i with r j , r ′ j ∈ R s i i and get (r 1 + r ′ 1 f i )| V M ∩V i ⊗ 1 + (r 2 + r ′ 2 f i )| V M ∩V i ⊗ f i = 0.
This implies that (r

1 + r ′ 1 f i )| V M ∩V i = 0 = (r 2 + r ′ 2 f i )| V M ∩V i and by invariance one gets r ′ j | V M ∩V i = 0 = r j | V M ∩V i for j = 1, 2. Hence M * B i is free on the right over O(V M ∩ V i ), of rank 2. Now suppose V i ∩ V M is not s i -invariant. Remark 2.1 implies that R s i i ։ O(V M ∩V i ). Hence as a right O(V i ∩(V M ∪s i V M ))-module, O(V M ∩V i )⊗ R s i i R i is generated by 1 ⊗ 1. We have to show that if f ∈ R i , 1 ⊗ f = 0 implies that f | V i ∩(V M ∪s i V M ) = 0. Write f = r + r ′ f i with r, r ′ ∈ R s i i . This implies that r ′ | V M ∩V i = 0 = r| V M ∩V i . Now since r ′ ,
r are s i -invariant one concludes that they also vanish on V i ∩ (V M ∪ s i V M ) and the same holds for f . In particular, if a module M has as right annihilator I(W ) with W ∈ V n , then M * B i has as right annihilator I(s i • W ) and by definition s i • W ∈ V n . The above lemma will allow us to use induction.

Associativity

Unfortunately, the product defined in the previous section is not associative for arbitrary bimodules B, B ′ . However, as we will see in this section, it will be associative when restricted to a suitable family of bimodules, exactly the bimodules occuring by considering successive * -products of the bimodules B i , i ∈ {1, . . . , n}.

A first step in proving the associativity of the product * is to prove the following : If M, N ∈ R-mod Z -R with M having I(V M ) as right annihilator and N having I(V N ) as left annihilator, then

(M * B i ) * N ∼ = M * (B i * N) (1) 
provided V N , V M lie in a certain family of subvarieties of Z ; thanks to lemma 2.13 the good family to choose is V n . The idea will be then to show associativity of the * product for products of three of the bimodules B i and then use this previous result to generalise to arbitrary products of the B i . Let's rewrite equation 1. We suppose that M is free on the right over O(V M ) and that N is free on the left over

O(V N ). Set W i,M := V i ∩ (V M ∪ s i V M ), W i,N := V i ∩ (V N ∪ s i V N )
. By definition of the * product together with lemma 2.13 the left hand side of 1 can be rewritten as

(M ⊗ O(V M ) O(V M ∩ V i ) ⊗ R i (R i ⊗ R s i i R i )) ⊗ O(W i,M ) O(W i,M ∩ V N ) ⊗ O(V N ) N, or shorter (M ⊗ O(V M ) O(V M ∩ V i ) ⊗ R s i i R i ) ⊗ O(W i,M ) O(W i,M ∩ V N ) ⊗ O(V N )
N. Now using lemmas 2.13 and 2.3 we can rewrite this as

(M ⊗ O(V M ) O(V M ∩ V i ) ⊗ R s i i O(W i,M )) ⊗ O(W i,M ) O(W i,M ∩ V N ) ⊗ O(V N ) N. or shorter M ⊗ O(V M ) O(V M ∩ V i ) ⊗ R s i i O(W i,M ∩ V N ) ⊗ O(V N )
N. Doing the same reductions for the right hand side one gets

M ⊗ O(V M ) O(V M ∩ W i,N ) ⊗ R s i i O(V i ∩ V N ) ⊗ O(V N ) N.
Now our job is to show that these two bimodules are isomorphic in Rmod Z -R. It is therefore enough to show that

O(V M ∩ V i ) ⊗ R s i i O(W i,M ∩ V N ) ∼ = O(V M ∩ W i,N ) ⊗ R s i i O(V i ∩ V N ), where the isomorphism holds in O(V M ) -mod Z -O(V N ). Proposition 2.14. One has O(V M ∩ V i ) ⊗ R s i i O(W i,M ∩ V N ) ∼ = O(V M ∩ W i,N ) ⊗ R s i i O(V i ∩ V N ), as graded (O(V M ), O(V N ))-bimodules.
Proof. The strategy is to find the left and right annihilators and then use lemma 2.3. We first suppose

V N ∩ V i is s i -invariant. Hence W i,M ∩ V N is s i -invariant. Let g ∈ O(V N ∩ V i ) be such that g| V N ∩W i,M = 0. Chose h ∈ R i , h = r + r ′ f i with r, r ′ ∈ R s i i such that h| V N ∩V i = g. Since V N ∩ W i,M is s i - invariant one has that r ′ | V N ∩W i,M = 0 = r| V N ∩W i,M , hence also r ′ | V M ∩W i,M = 0 = r| V M ∩W i,M since in our case V M ∩ W i,N ֒→ V N ∩ W i,M (because of s i - invariance of V N ∩ V i ). We have shown that an element g ∈ O(V N ∩ V i ) which vanishes on V N ∩ W i,M kills O(V M ∩ W i,N ) ⊗ R s i i O(V i ∩ V N )
on the right, hence by lemma 2.3, the right hand side is isomorphic to

O(V M ∩ W i,N ) ⊗ R s i i O(V N ∩ W i,M ). Now if V M ∩ V i is s i -invariant
one uses the same argument for the left hand side for the left operation and this left hand side is isomorphic to

O(V M ∩ W i,N ) ⊗ R s i i O(V N ∩ W i,M ), which concludes. Now suppose V M ∩ V i is not s i -invariant. Consider g ∈ O(V M ∩ V i ) vanishing on X := V M ∩ W i,N . By assumption V M lies in V n and thanks to remark 2.1, one can choose h ∈ R s i i such that h| V M ∩V i = g. In particular h| X = 0. Now since h is s i -invariant it has to vanish on X ∪ s i X. But V N ∩W i,M ֒→ X ∪s i X. Hence h, whence g kills O(V M ∩V i )⊗ R s i i O(W i,M
∩V N ) on the left, and this bimodule is hence isomorphic to

O(V M ∩ W i,N ) ⊗ R s i i O(V N ∩ W i,M
) thanks to lemma 2.3. The case where V N ∩ V i is not s i -invariant but V M ∩ V i is is symmetric ; in case none of them is s i -invariant, the argument given above (choose a preimage h which is invariant and then restrict) can still be given, for the left as well as for the right operation, since it makes no use of the fact that the variety on the other side is s i -invariant or not.

We define bimodules associated to finite sequences of integers in [1, n].

If the sequence has length 1, containing a single index j, the corresponding bimodule is B j . Let i 1 , . . . , i k ∈ [1, n]. Define the bimodule associated to this sequence by setting

B i k •••i 1 = B i k * B i k-1 •••i 1 .
A bimodule B will be said to be associated to such a sequence if it is obtained from B i k , . . . , B i 1 by doing a product in this order but with a possibly different choice of brackets from the one we made for

B i k •••i 1 . For example, (B i 4 * B i 3 ) * (B i 2 * B i 1 ) and B i 4 * ((B i 3 * B i 2 ) * B i 1 ) are associated to the same sequence i 4 • • • i 1 . Theorem 2.15. Let i k • • • i 1 be a sequence of indices in {1, . . . , n}.
1. Two bimodules associated to this sequence are isomorphic in R-mod Z -R.

The bimodule

B i k •••i 1 is free on the left on O(W i k •••i 1 ) and free on the right on O(W i 1 •••i k )
Proof. Both properties are proved simultaneously by using induction on the number of elementary bimodules B i occuring in a product. If our bimodule is a product of three of the B i , say (B i * B j ) * B k , then associativity is immediate by proposition 2.14 and the arguments above it : one has

(B i * B j ) * B k ∼ = B i * (B j * B k ),
and both of theses bimodules are free as left O(W ijk )-modules and as right O(W kji )-modules thanks to corollary 2.9, proposition 2.11 and lemma 2.13. Now suppose the result holds for any product of at most m -1 of the B i 's. Consider a sequence i 1 , . . . , i m ∈ {1, . . . , n}. By induction it is enough to show that

(B i 1 * • • • * B i j ) * (B i j+1 * • • • B im ) ∼ = (B i 1 * • • • * B i k ) * (B i k+1 * • • • B im ),
with k = j, where by induction the products

B i 1 * • • • * B i j , B i j+1 * • • • B im , B i 1 * • • • * B i k and B i k+1 * • • • B im
are well defined up to isomorphism (they can be written without brackets) and free over the varieties associated to their sequences (on the left over O(W i 1 •••i j ) and on the right over O(W i j •••i 1 ) for the first one, ...). One just has to apply successively proposition 2.14 to move B j 's from one bracket to the other one. In particular both our bimodules are isomorphic to

B i 1 * (B i 2 * • • • * B i k ) and (B i 1 * • • • * B i k-1 ) * B i k ,
which are free by induction together with lemma 2.13. In particular this lemma tells us that the left annihilator is

I(W i 1 •••i k ) and the right one is I(W i k •••i 1 ).
3 Realization of the Temperley-Lieb algebra

The Temperley-Lieb algebra

Let τ be a formal parameter. The Temperley-Lieb algebra TL n is the Z[τ, τ -1 ]algebra generated by elements b s i = b i for i = 1, . . . , n with relations

b j b i b j = b j if |i -j| = 1, b i b j = b j b i if |i -j| > 1, b 2 i = (1 + τ -2 )b i .
Remark 3.1. Usually TL n is defined with a formal parameter v instead of τ , the last relation being replaced by b 2 i = (v + v -1 )b i , which allows TL n to be realized as a quotient of the Hecke algebra of type A n . The reason for choosing another parameter τ is that the bimodules B i defined before will satisfy the above relations where the multiplication in TL n corresponds to the * product, the sum to direct sums of bimodules and the parameter τ to a shift. In the case of Soergel bimodules categorifying the Hecke algebra, one defines the analog of our bimodule B i by

S ′ i := R ⊗ R s i R ; it turns out that the relation S ′ i ⊗ R S ′ i ∼ = S ′ i ⊕ S ′ i [-2
] is satisfied but one then sets S i := S ′ i [1] and the relation becomes

S i ⊗ R S i ∼ = S i [1] ⊕ S i [-1]
. The parameter v is then interpreted as a shift and such a relation corresponds to the relation C ′2

s i = (v + v -1 )C ′ s i which holds in the Hecke algebra, C ′ s i being the element of the Kazhdan-Lusztig basis (defined in [START_REF] Kazhdan | Representations of Coxeter Groups and Hecke Algebras[END_REF]) indexed by the simple reflection s i . In our case shifting the bimodules B i as in Soergel's work is a priori not possible since the first relation defining TL n is not homogeneous. Definition 3.2. Let (W, S) be an arbitrary Coxeter system with S finite. An element w ∈ W is fully commutative or braid avoiding if one can pass from any reduced expression for w to any other only by applying relations of the form st = ts for s, t ∈ S. Remark 3.4. This vocabulary is due to the fact that if we define TL n algebra with a parameter v instead of τ as mentioned in remark 3.1 it is a quotient of H n , the Hecke algebra of type A n , and if w ∈ W c , the image in the quotient of the element C ′ w of the Kazhdan-Lusztig basis of H n is b w and any element C ′

The set of fully commutative elements is denoted by W

c . Now if (W, S) is of type A and w ∈ W c and t 1 • • • t k is a reduced expression for w, one can show that the element b w := b t 1 • • • b t k ∈ TL n is
x for x / ∈ W c is sent to zero (see [START_REF] Fan | Monomials and Temperley-Lieb algebras[END_REF], Theorem 3.8.2 for type A or [START_REF] Green | Canonical bases for Hecke algebra quotients[END_REF] for other types).

The basis {b w } w∈Wc has a well-known interpretation by planar diagrams. Draw a sequence of n+1 points on a line and another one under the first one. Draw arcs between any two points of the two sequences (the two points of an arc can be on the same sequence) such that each point occurs in exactly one arc and such that two distinct arcs never cross to obtain a diagram like the one given in figure 2 ; we always consider such diagrams up to isotopy. Elements of the Temperley-Lieb algebra are Z[τ, τ -1 ]-linear combinations of such diagrams, where the element b i = b s i is given by the diagram in figure 3. Multiplication of two planar diagrams is then given by concatenating the diagrams ; if circles occur in the resulting diagram, we remove them and multiply the diagram by (1 + τ -2 ) k where k is the number of circles. The diagram algebra over Z[τ, τ -1 ] obtained in this way turns out to be isomorphic to TL n .

Temperley-Lieb relations

The aim of this section is to prove that the bimodules B i together with the * product from the previous section satisfy the Temperley-Lieb relations, i.e.,

B j * B i * B j ∼ = B j if |i -j| = 1, B i * B j ∼ = B j * B i if |i -j| > 1, B i * B i ∼ = B i ⊕ B i [-2],
where all the isomorphisms hold in Rmod Z -R.

Theorem 3.5. The bimodules B i satisfy the Temperley-Lieb relations.

Proof. For short we write

R i := O(V i ), R i,j = O(V i ∩ V j ).
For the first relation, suppose j = i + 1, the other case being similar. The left hand side of the first relation which is isomorphic to (B j * B i ) * B j can be rewritten thanks to corollary 2.9

(R i+1 ⊗ R s i+1 i+1 R i+1 ⊗ R i+1 R i,i+1 ⊗ R i R i ⊗ R s i i R i )⊗ R i R i,i+1 ⊗ R i+1 (R i+1 ⊗ R s i+1 i+1 R i+1 ),
which is isomorphic to

R i+1 ⊗ R s i+1 i+1 R i,i+1 ⊗ R s i i R i,i+1 ⊗ R s i+1 i+1 R i+1 .
Hence it suffices to show that

R i,i+1 ⊗ R s i i R i,i+1 ∼ = R s i+1
i+1 as graded (R

s i+1 i+1 , R s i+1 i+1 )- bimodule. But R s i+1
i+1 is known to be isomorphic to R i,i+1 thanks to lemma 2.7 (the left and right operations are the same hence this is a bimodule isomorphism). Define a map

ϕ : R i,i+1 ⊗ R s i i R i,i+1 → R i,i+1 a ⊗ b → ab.
This clearly defines a morphism of bimodules. Define a map

ψ : R i,i+1 → R i,i+1 ⊗ R s i i R i,i+1 c → c ⊗ 1.
One checks using lemma 2.7 that this defines a morphism of bimodules which is an inverse to ϕ. Hence the first Temperley-Lieb relation holds.

For the second relation, using proposition 2.11 and 2.3, it is enough to show that

R i,j ⊗ R s i i R i,j ⊗ R s j j R i,j ∼ = R i,j ⊗ R s j j R i,j ⊗ R s i i R i,j as graded (R i,j , R i,j )-bimodules. Let m, n, q ∈ R i,j . Since V i ∩ V j is s i - invariant one has that R i,j = R s i i,j ⊗ R s i i,j f i ; write n = r + r ′ f i with r, r ′ ∈ R s i i,j . Define a map ϕ : R i,j ⊗ R s i i R i,j ⊗ R s j j R i,j → R i,j ⊗ R s j j R i,j ⊗ R s i i ⊗R i,j m ⊗ n ⊗ q → mr ⊗ 1 ⊗ q + mr ′ ⊗ 1 ⊗ f i q.
It is routine to check that such a map is well-defined and that it is a morphism of graded bimodules. By permuting the indices i and j one also gets a map ψ in the other direction and one shows that ψ is an inverse of ϕ.

For the third relation one has to show that

R i ⊗ R s i i R i ⊗ R s i i R i ∼ = (R i ⊗ R s i i R i ) ⊕ (R i ⊗ R s i i R i )[-2]. Now R i = R s i i ⊕ R s i i f i and since no irreducible component of V i is included in H s i one has an R s i i -(bi)module isomorphism R s i i f i ∼ = R s i i [-2]
given by the restriction of the Demazure operator ∂ s i (which has in this case multiplication by f i as inverse). Hence

R i ∼ = R s i i ⊕ R s i i [-2] as graded (R s i i , R s i i
)-bimodule and one gets the claim by decomposing in such a way the R i in the middle of the above tensor product on the left hand side. Definition 3.6. Let w ∈ W c . Let s i 1 • • • s i k be a reduced expression for w. We consider the bimodule

B i 1 * • • • * B i k ∈ R -mod Z -R.
Since bimodules B i satisfy the Temperley-Lieb relations, this bimodule is independent up to isomorphism of the choice of a reduced expression for w and we label by B w any bimodule isomorphic to it in Rmod Z -R. Such a bimodule B w will be called fully commutative.

Link with dense sets of reflections

For each fully commutative element w ∈ W c , one can consider the dense sets 

T (i 1 • • • i k ) and T (i k • • • i 1 ) where s i 1 • • • s i k is
s 3 s 4 s 1 s 2 s 2 s 1 s 1 s 3 s 1 s 4 s 2 s 4 s 2 s 3 s 3 s 2 s 3 s 4 s 4 s 3 s 1 s 2 s 3 s 2 s 1 s 3 s 3 s 1 s 2 s 3 s 2 s 1 s 2 s 3 s 4 s 3 s 2 s 4 s 4 s 2 s 3 s 4 s 3 s 2 s 1 s 2 s 4 s 2 s 1 s 4 s 1 s 3 s 4 s 1 s 4 s 3 s 1 s 2 s 3 s 4 s 2 s 1 s 3 s 4 s 1 s 3 s 2 s 4 s 1 s 2 s 4 s 3 s 1 s 4 s 3 s 2 s 2 s 1 s 4 s 3 s 3 s 4 s 2 s 1 s 4 s 3 s 2 s 1 s 2 s 1 s 3 s 2 s 3 s 2 s 4 s 3 s 4 s 2 s 3 s 1 s 2 s 3 s 4 s 2 s 3 s 1 s 2 s 1 s 3 s 2 s 4 s 1 s 3 s 2 s 4 s 3 s 2 s 1 s 3 s 2 s 4 s 3 s 3 s 4 s 2 s 3 s 1 s 2
= s i 1 • • • s i k is a reduced expression. Then T (i 1 • • • i k ) = Q(i 1 • • • i k ).
Proof. We use induction on k ; if k = 1, then T (i 1 ) = {s i 1 } and the dense set at the top of the diagram corresponding to b i 1 contains only the reflection s i 1 . We suppose that the result holds for a sequence of length at most k -

1. By induction, T (i 2 • • • i k ) = Q(i 2 • • • i k )
and it suffices to show that the same three rules given in lemma 1.11 hold when passing from

Q(i 2 • • • i k ) to Q(i 1 • • • i k ). If s i 1 commutes with any reflection in Q(i 2 • • • i k ), then the dense set at the top of b w is Q(i 2 • • • i k ) ∪ {s i 1 }. If s i 1 commutes with exactly one reflection t in Q(i 2 • • • i k )
then t will become a line from the top to the bottom of the diagram associated to b w when collapsing the diagrams for b i 1 and b s i 1 w and hence t disappears from

Q(i 2 • • • i k ), s i 1 is added and all other reflections become unchanged, hence Q(i 1 • • • i k ) = (Q(i 2 • • • i k )\t) ∪ {s i 1 }. If s i 1 commutes with two distinct reflections (j 1 , i 1 ), (i 1 + 1, j 2 ) ∈ Q(i 2 • • • i k ) with j 1 < i 1 , i 1 + 1 < j 2
, one sees by drawing the situation that when concatenating the diagram associated to b i 1 to the one associated to b

s i 2 •••s i k ,
no line from the top to the bottom of the diagram corresponding to b w is added, that the simple reflection s i 1 which lies at the bottom of the diagram corresponding to b i 1 will joint the index i 1 to the index i 1 + 1, removing the above two reflections (j 1 , i 1 ), (i 1 + 1, j 2 ) to replace them by (j 1 , j 2 ), that of course the simple reflection s i 1 coming from the top of the diagram of b i 1 is added and that all other reflections in

Q(i 2 • • • i k ) stay unchanged, hence Q(i 1 • • • i k ) = Q(i 2 • • • i k )\{(j 1 , i 1 ), (i 1 + 1, j 2 )} ∪ {s i 1 , (j 1 , j 2 )}.
We deduce from lemma 1.11 that

T (i 1 • • • i k ) = Q(i 1 • • • i k ). Corollary 3.8. The bimodules B w for w ∈ W c are pairwise non-isomorphic in R -mod -R (hence in R -mod Z-R). Proof. If w ∈ W c with s i 1 • • • s i k a reduced
expression, then the planar diagram corresponding to the element b w ∈ TL n is entirely determined by the two dense sets obtained by removing the lines going from the top to the bottom of the diagram, that is the pair

(Q(i 1 • • • i k ), Q(i k • • • i 1 )
), since the lines in the diagram must be noncrossing. Hence two distinct fully commutative elements w, w ′ ∈ W will have distincts such pairs. Using proposition 3.7, the corresponding fully commutative bimodules B w and B w ′ will then have distinct left annihilators or distinct right annihilators, hence will be non-isomorphic as ( R, R)-bimodules.

Indecomposability of fully commutative bimodules

The next step is to prove indecomposability of * -products of B i bimodules corresponding to elements of the Kazhdan-Lusztig basis of the Temperley-Lieb algebra, that is, fully commutative bimodules B w . Any element b w ∈ TL n with w ∈ W c can be written as a product

(b i k b i k -1 • • • b j k )(b i k-1 b i k-1 -1 • • • b j k-1 ) • • • (b i 1 b i 1 -1 • • • b j 1 )
with all indices in {1, . . . , n} and

i k < i k-1 < • • • < i 1 , j k < j k-1 < • • • < j 1
and j m ≤ i m for each m = 1, . . . , k (see [START_REF] Kassel | Braid groups[END_REF], §5.7; we have reversed the indices 1, . . . , k since it will be more convenient for the inductions we will use later).

Since the bimodules B i satisfy the Temperley-Lieb relations any fully commutative bimodule can written in the form

(B i k B i k -1 • • • B j k )(B i k-1 B i k-1 -1 • • • B j k-1 ) • • • (B i 1 B i 1 -1 • • • B j 1 ).
Definition 3.9. We say that such a fully commutative bimodule is associated to the corresponding sequence

i k • • • j k i k-1 • • • j k-1 • • • i 1 • • • j 1 .
The integer k is the rank of the sequence. A fully commutative bimodule is intertwined if for each 1 < m ≤ k, the set [i m , j m ] contains both the indices i 1 -2(m -1) and i 1 -2(m -1) + 1.

Example 3.10 In case n ≥ 9, the bimodule associated to the sequence

(1)(432)(654)(7)(98)
is not intertwined. Bimodules associated to the sequences (321)(43)(7654)(876)( 9), (21)(43)(65)(87)(98), (54321)(6543)(765)(87) [START_REF] Stroppel | Category O : gradings and translation functors[END_REF] are intertwined ; here i 1 = 9 and the indices of the form i 1 -2(ℓ -1) and i 1 -2(ℓ -1) + 1 from the definition are drawn in red. As an exercise the reader can compute the dense sets of reflections characterizing the varieties of the left and right annihilators. Lemma 3.11. Let B be a fully commutative bimodule. If B is associated to a sequence of rank 1, then B is indecomposable (as graded bimodule).

Proof. We write i(i -1) • • • j for the sequence associated to our bimodule, i -j ≥ 0. One has

B = B i * B i-1 * • • • * B j . One has W m(m-1)•••j = V m and W m(m+1)•••i = V m for each m ∈ [j, i]
thanks to lemma 1.10. As a consequence with any choice of brackets for computing the above product one gets that B is isomorphic to

B i ⊗ R i R i,i-1 ⊗ R i-1 B i-1 ⊗ R i-1 R i-1,i-2 ⊗ R i-2 B i-2 ⊗ • • • ⊗ R j+1,j ⊗ R j B j , with R m,m-1 = O(V m ∩ V m-1 ) for each m ∈ [j + 1, i] ; if i = j we get B i = B j .
After reduction B is isomorphic to

R i ⊗ i R i,i-1 ⊗ i-1 R i-1,i-2 ⊗ i-2 • • • ⊗ j+1 R j+1,j ⊗ j R j ,
where

⊗ m means ⊗ Rsm ; if i = j we get R i ⊗ i R i . Thanks to remark 2.1 one then has Rsm m ։ O(V m ∩ V m-1 ) as well as Rs m-1 m-1 ։ O(V m ∩ V m-1 ) for each m ∈ [j + 1, i]. Hence any tensor a i ⊗ i a i,i-1 ⊗ i-1 • • • ⊗ j+1 a j+1,j ⊗ j a j ∈ B is equal to a tensor a ⊗ i 1 ⊗ i-1 • • • ⊗ j+1 1 ⊗ j a ′ ∈ B.
As a consequence B is generated as ( R, R)-bimodule by the degree zero element 1 ⊗ i 1 ⊗ i-1 • • • ⊗ j+1 1 ⊗ j 1 which forces indecomposability since the zero degree component of B has dimension 1. Lemma 3.12. Consider the bimodule B from the proof of lemma 3.11 written in the form

R i ⊗ i R i,i-1 ⊗ i-1 R i-1,i-2 ⊗ i-2 • • • ⊗ j+1 R j+1,j ⊗ j R j . Any tensor a ⊗ i 1 ⊗ i-1 • • • ⊗ j+1 1 ⊗ j a ′ ∈ B where a ∈ R i , a ′ ∈ R j can be written in the form (b ⊗ i 1 ⊗ i-1 • • • ⊗ j+1 1 ⊗ j 1) + (b ′ ⊗ i 1 ⊗ i-1 • • • ⊗ j+1 1 ⊗ j f j ), where b, b ′ ∈ R i .
Proof. It suffices to decompose a ′ = r + r ′ f j with r, r ′ ∈ R s j j and move r, r ′ to the left using the fact that Rsm 

m ։ O(V m ∩ V m-1 ) as well as Rs m-1 m-1 ։ O(V m ∩ V m-1 ) for each m ∈ [j + 1, i]. Notation. Let i k • • • j k • • • i 1 • • • j 1 be
= i k • • • j k i k-1 • • • j k-1 • • • i 1 • • • j 1 .
1. One has the equality supp(T (seq 

)) = [i 1 -2(k -1), i 1 + 1].
. If W = W i k-1 •••j 1 , then by induction supp(T W ) = [i 1 -2(k -2), i 1 + 1] and T W contains the reflection (i 1 -2(k -2), i 1 + 1). Now consider the subsequence i k • • • j k of seq, which is equal to the concatenation of the decreasing sequences seq 1 = i k • • • (i 1 -2(k -1) + 1) and seq 2 = (i 1 -2(k -1)) • • • j k (since
the bimodule is intertwined). Any reflection s j with j in seq 2 commutes with any reflection in T W hence one gets using lemma 1.11 that T seq 2 •W = T W ∪ {s i 1 -2(k-1) }. We now study the effect of applying seq 1 to seq 2 • W . Using again lemma 1.11, applying the first index on the right of seq 1 , that is (i 1 -2(k -1) + 1), replaces the reflexions s i 1 -2(k-1) and (i 1 -2(k -2), i 1 + 1) in T W ∪ {s i 1 -2(k-1) } by s i 1 -2(k-1)+1 and (i 1 -2(k-1), i 1 +1) and applying the following indices only removes and adds reflexions supported in [i 1 -2(k -1) + 1, i 1 ], showing that T seq•W has support equal to [i 1 -2(k -1), i 1 + 1] and contains the reflection (i 1 -2(k -1), i 1 + 1).

To show indecomposability of B, we first compute the * -product occuring in the bimodules B(m) associated to each decreasing subsequence seq m = i m • • • j m of our sequence. These ones occur to be indecomposable thanks to lemma 3.11 and we will write them as in the proof of this lemma in the form

R im ⊗ im R im,im-1 ⊗ im-1 R im-1,im-2 ⊗ • • • ⊗ R jm+1,jm ⊗ jm R jm .
We will abuse notation and write B(m) for the above isomorphic bimodule. It remains to make a choice of brackets for computing the product B(k) * B(k -1) * • • • * B(2) * B(1). We will compute the product "from the right", i.e.,

B(k) * (B(k -1) * (• • • * (B(3) * (B(2) * B(1))) • • • )).
Thanks to theorem 2.15 together with the first part of the proposition, one has that for ℓ ≤ k, the left annihilator of the intertwined bimodule

B(ℓ -1) * (B(ℓ -2) * (• • • * (B(3) * (B(2) * B(1))) • • • ))
is equal to the ideal of functions vanishing on t∈Q ℓ V t where Q ℓ ⊂ T is a dense subset satisfying supp(Q ℓ ) = [i 1 -2(ℓ -2), i 1 + 1] and containing the reflection (i 1 -2(ℓ -2), i 1 + 1). The right annihilator of B(ℓ) is equal to I(V j ℓ ). Since the bimodule B is intertwined one has that j ℓ ≤ i 1 -2(ℓ -1) = i 1 -2(ℓ -2) -2 and in particular, s j ℓ commutes with any reflection in

Q ℓ . Set X ℓ = t∈Q ℓ V t , W ℓ := V s j ℓ ∩ X ℓ for ℓ > 1 and W 1 = V j 1 .
One has that W ℓ is s j ℓ -invariant and hence we can decompose

O(W ℓ ) = O(W ℓ ) s j ℓ ⊕ O(W ℓ ) s j ℓ f j ℓ | W ℓ . (2) 
We will abuse notation and write f i instead of f i | X for the image of f i in O(X) where X ⊂ Z is an algebraic set to avoid using two much indices and since this will make no possible confusion in the next computations.

Computing recursively our product with the above choice of brackets we get that our bimodule B is isomorphic to

B(k) ⊗ R j k O(W k ) ⊗ O(X k ) B(k -1) ⊗ • • • ⊗ B(2) ⊗ R j 2 O(W 2 ) ⊗ R i 1 B(1).
Again we abuse notation and write B for this isomorphic bimodule. We have seen in the proof of lemma 3.11 that the bimodule B(ℓ) is indecomposable and generated by the element

1 ℓ := 1 ⊗ i ℓ 1 ⊗ i ℓ -1 1 ⊗ • • • ⊗ j ℓ 1 ∈ B(ℓ)
for each ℓ. Hence using lemma 3.12 any tensor in the above tensor product can be written as a sum of two elements of the form

a • 1 k ⊗ R j k a k ⊗ R j k-1 1 k-1 ⊗ • • • ⊗ 1 2 ⊗ R j 2 a 2 ⊗ R j 1 1 1 • a ′ ,
the first one with a ′ = 1, a ∈ R, a ℓ ∈ O(W ℓ ) and the second one having the same properties but with a ′ = f j 1 . Our strategy is the same as in lemma 3.11: we will show that our bimodule can be generated by the element

1 k ⊗ R j k 1 ⊗ R j k-1 1 k-1 ⊗ • • • ⊗ 1 2 ⊗ R j 2 1 ⊗ R j 1 1 1 .
In that case, because of the s j ℓ -invariance of the variety W ℓ , we use relation 2 to move the invariant parts of each a k to the left in the same way as at the end of the proof of lemma 3.11: we begin with a 2 , writing

a 2 = r 2 + r ′ 2 f j 2
where r 2 and r ′ 2 are s j 2 -invariant. But then one has that in

O(W 3 ) ⊗ O(X 3 ) B(2) ⊗ R j 2 O(W 2 ), a 3 ⊗ 1 2 ⊗ r 2 = q ⊗ 1 2 ⊗ 1 and a 3 ⊗ 1 2 ⊗ r ′ 2 f j 2 = q ′ ⊗ 1 2 ⊗ f j 2 with q, q ′ ∈ O(W 3 ).
In other words a tensor in B of the form

a • 1 k ⊗ R j k a k ⊗ O(X k ) 1 k-1 ⊗ • • • ⊗ a 3 ⊗ O(X 3 ) 1 2 ⊗ R j 2 a 2 ⊗ R i 1 1 1 • a ′ is equal to a tensor of the form a•1 k ⊗ R j k a k ⊗ O(X k ) 1 k-1 ⊗• • •⊗(q⊗ O(X 3 ) 1 2 ⊗ R j 2 1+q ′ ⊗ O(X 3 ) 1 2 ⊗ R j 2 f j 2 )⊗ R i 1 1 1 •a ′ .
Now one can decompose q, q ′ and again "move" the s j 3 -invariant parts to the left, and so on. At the end of the process we get a sum of elements i a i • t i where t i are tensors in B with f ℓ or 1 in the O(W ℓ )-component of B and 1 in any other component. It remains to show that each of these t i can be written as a sum of elements of the form b

• 1 ⊗ 1 ⊗ • • • ⊗ 1 ⊗ 1 • b ′ with b, b ′ ∈
R to show that the arbitrary tensor in B we began with can be obtained from the tensor

1 ⊗ 1 ⊗ • • • 1 ⊗ 1 ∈ B.
In fact we will show that we can write any of the t i as a single tensor of the form b•1⊗1⊗• • •⊗1⊗1•b ′ with b = 1 (in other words, all the remaining f ℓ in our tensors will be "moved" to the right) and b ′ beeing equal to a polynomial in f i for i ≤ i 1 . For this we need the following technical lemma : Lemma 3.14. Let B(i), W i , X i be as above for each 2 ≤ i ≤ k and set

W 1 = V j 1 . Let ℓ ∈ [2, k] and suppose m ≤ i 1 -2(ℓ -1). Then the tensor f m ⊗ 1 ℓ-1 ⊗ 1 in O(W ℓ ) ⊗ O(X ℓ ) B(ℓ -1) ⊗ R j ℓ-1 O(W ℓ-1
) is equal to a tensor of the form 1 ⊗ 1 ℓ-1 ⊗ j f j in the same tensor product with all indices j ≤ i 1 -2(ℓ -2).

Proof. The first case is the case where m < j ℓ-1 -1. In that case f m is invariant by any reflection s m ′ with m ′ an index occuring in the sequence i

ℓ-1 • • • j ℓ-1 and hence f m ⊗ 1 ℓ-1 ⊗ 1 = 1 ⊗ 1 ℓ-1 ⊗ f m since all the tensor products in B(ℓ -1) are over various Rs m ′ for m ′ occuring in the sequence i ℓ-1 • • • j ℓ-1 .
The second case is the case where m = j ℓ-1 -1 < i 1 -2(ℓ -2) -1, then m and i ℓ-1 are distant: since our bimodule is intertwined i ℓ-1 • • • j ℓ-1 has to contain the index i 1 -2(ℓ -2) + 1 if ℓ > 2, which forces j ℓ-1 < i ℓ-1 and if ℓ = 2, the condition m = j 1 -1 forces i 1 > j 1 since otherwise one would have m = i 1 -1 contradicting our assumption that m ≤ i 1 -2(ℓ -1). Hence our tensor is equal to the tensor

1 ⊗ O(X k ) 1 ⊗ i ℓ-1 1 ⊗ • • • f m ⊗ j ℓ-1 1 ⊗ R j ℓ-1 1 with f m lying in O(V j ℓ-1 +1 ∩ V j ℓ-1 ). But in this ring we have f j ℓ-1 +1 + f j ℓ-1 = 0 since V j ℓ-1 +1 ∩ V j ℓ-1 ⊂ H where H is the reflecting hyperplane of s j ℓ-1 +1 s j ℓ-1 s j ℓ-1 +1 (see lemma 1.4), hence in O(V j ℓ-1 +1 ∩ V j ℓ-1 ) we get f m = f j ℓ-1 -1 = f j ℓ-1 +1 + f j ℓ-1 + f j ℓ-1 -1 ,
which is s j ℓ-1 -invariant, hence the sum in the right hand side can be moved to the last component of the tensor product ; but this is a sum of f j for j

≤ j ℓ-1 + 1 = m + 2 ≤ i 1 -2(ℓ -2).
The last case is the case where m ≥ j ℓ-1 . This forces m to occur as an index of the sequence i ℓ-1 • • • j ℓ-1 and m + 1, m + 2 also occur since the bimodule is intertwined and m ≤ i 1 -2(ℓ -1). In that case our tensor

f m ⊗ 1 ℓ-1 ⊗ 1 is equal to a tensor 1 ⊗ O(X ℓ ) 1 ⊗ i ℓ-1 1 ⊗ • • • ⊗ m+2 f m ⊗ m+1 ⊗1 ⊗ m 1 ⊗ • • • ⊗ 1, with f m lying in O(V m+1 ∩V m+2 ).
In that ring one has f m = f m +f m+1 +f m+2 which is s m+1 -invariant, hence the sum can be moved to the next factor which is O(V m ∩ V m+1 ). But in that ring, one has f m + f m+1 = 0, hence our tensor is equal to the tensor

1 ⊗ O(X ℓ ) 1 ⊗ i ℓ-1 1 ⊗ • • • ⊗ 1 ⊗ m+1 ⊗f m+2 ⊗ m 1 ⊗ m-1 1 ⊗ • • • ⊗ 1,
and the f m+2 can be moved to the right since it is invariant under the operation of all s j for j ≤ m. Hence the tensor is equal to

1 ⊗ O(X ℓ ) 1 ⊗ i ℓ-1 1 ⊗ • • • ⊗ 1 ⊗ m+1 ⊗1 ⊗ m 1 ⊗ m-1 1 ⊗ • • • ⊗ 1 ⊗ f m+2 , and m + 2 ≤ i 1 -2(ℓ -2), which concludes.
End of the proof of the proposition. Using the above lemma we can move our f ℓ 's in the O(W ℓ ) components of our bimodule B to the right inductively, begining from the left with ℓ = k by moving f ℓ to the right in the O(W ℓ-1 ) component and so on.

We now consider the indecomposibility of a slightly more general family of bimodules. Definition 3.15. A fully commutative bimodule associated to a sequence

i k • • • j k • • • i 1 • • • j 1
will be called a generalized intertwined bimodule if the following condition holds : each set {i ℓ , . . . , j ℓ } contains a nonempty subset S ℓ of cardinal at most two such that the following inductive condition is satisfied : S 1 = {i 1 }, and if n(ℓ) is the lowest index in S ℓ , then the set {i ℓ+1 , . . . , j ℓ+1 } contains the index n(ℓ) -1 and we put

S ℓ+1 = {n(ℓ) -1} if n(ℓ) -1 = j ℓ+1 {n(ℓ) -2, n(ℓ) -1} otherwise.
The union of the sets S ℓ for ℓ = 1, . . . , k is called the set of intertwining indices of the corresponding sequence or bimodule. The following technical result will allow us to use the same kind of arguments as for intertwined bimodules to show indecomposability ; for this, we order the set of simple reflections by setting s i < s j if and only if i < j, for i Proof. We use induction on k ; if k = 1, the result is trivially true since T W = {s i 1 } and n(1) = i 1 . Now suppose k > 1. By induction the smallest index occuring in T W ′ where W ′ is associated to the sequence i

, j ∈ [1, n]. Lemma 3.17. Let i k • • • j k • • • i 1 • • • j 1 be
k-1 • • • j k-1 • • • i 1 • • • j 1 is n(k-1) (in
particular there exists j > n(k-1) such that (n(k-1), j) ∈ T W ′ ) and the lowest simple reflection occuring in T W ′ is s i k-1 .

First consider the case |S

k | = 1, we then have n(k) = j k = n(k -1) -1. We get T j k •W ′ = (T W ′ \{(n(k -1), j)}) ∪ {s n(k) }. If (n(k -1), j) is simple, then n(k -1) = i k-1 and i k = j k since j k = i k-1 -1 and j k ≤ i k < i k-1 ;
in that case we are done. Otherwise, the two first blocks (from the left) of the set T j k •W ′ have the form given by figure 5, where all reflections having ... ...

j k i k-1
Fig. 5: The two first blocks of the set T j k •W .

in their supports an index in [j k + 2, i k-1 -1] must have the other index of their support bigger than or equal to i k-1 + 2 (otherwise s i k-1 would not be the lowest simple reflection in T W ′ ). Thanks to this property together with lemma 1.11 and the fact that

i k < i k-1 , applying i k • • • (j k + 1) to j k • W ′
does not change the support of the corresponding dense set and gives a set whose lowest simple reflection is s i k (see figure 6 for an illustration: in that case n(k) = j k ).

n(k) i k i k-1 (n(k) • • • j k ) • W ′ -→ n(k) i k i k-1 ↓ n(k) i k i k-1 (i k • • • j k ) • W ′ ←- n(k) i k i k-1
Fig. 6: Example of the process of applying the sequence

i k • • • (n(k) + 1) to (n(k) • • • j k ) • W ′ ; in case |S k | = 1 we have n(k) = j k . Now suppose |S k | = 2 ; applying the sequence n(k) • • • (j k + 1)j k to W ′ we get a variety W ′′ with corresponding set equal to T W ′ ∪ {s n(k) } since n(k -1) = n(k) + 2 is the lowest index in T W ′ .
We can then argue exactly as in the first case to get the conclusion (see figure 6). Proposition 3.18. Let B be a generalized intertwined bimodule with associ-

ated sequence i k • • • j k • • • i 1 • • • j 1 . Then B is indecomposable. More precisely, when writing B in the form B(k) ⊗ R j k O(W k ) ⊗ O(X k ) B(k -1) ⊗ • • • ⊗ B(2) ⊗ R j 2 O(W 2 ) ⊗ R i 1 B(1)
where we made the same choice of brackets as in proposition 3.13, with X ℓ the variety associated to the subsequence i

ℓ-1 • • • j ℓ-1 • • • i 1 • • • j 1 and W ℓ = X ℓ ∩ V j ℓ ,
any tensor in B can be written as a sum of elements of the form

a • 1 ⊗ 1 ⊗ • • • ⊗ 1 ⊗ 1 • p(f 1 , . . . , f i 1 )
where the • holds for the operation of R on both sides and p(f 1 , . . . , f i 1 ) is a polynomial in f 1 , f 2 , . . . , f i 1 .

Moreover if j + 2 is smaller than or equal to the smallest index in S k , then there exists a polynomial p(f 1 , . . . , f i 1 ) such that

f j • 1 ⊗ 1 ⊗ • • • 1 ⊗ 1 = 1 ⊗ 1 ⊗ • • • 1 ⊗ 1 • p(f 1 , • • • f i 1 ).
Proof. We first consider in which case the variety X ℓ is s j ℓ -invariant ; if |S ℓ | = 2, we have that j ℓ ≤ n(ℓ -1) -2 by definition 3.15 hence X ℓ is s j ℓ -invariant by the first assertion of lemma 3.17 together with proposition 1.12. If |S ℓ | = 1, then j ℓ = n(ℓ -1) -1 by definition 3.15 hence X ℓ is not s j ℓ -invariant by the first assertion of lemma 3.17 together with proposition 1.12. Therefore in case |S ℓ | = 2 one can decompose O(W ℓ ) = O(W ℓ ) s j ℓ ⊕ O(W ℓ ) s j ℓ f j ℓ | W ℓ , hence for each ℓ such that |S ℓ | = 2 we can decompose the O(W ℓ )-component of any tensor in B and move the invariant parts to the left in B(ℓ) and then in O(W ℓ+1 ) as we did in 3.13 for the interwtined case. In the case where |S ℓ | = 1, we have seen that X ℓ is not s j ℓ -invariant. Thanks to corollary 1.15 together with remark 2.1, R It remains to show that if |S ℓ | = 2, the f j ℓ in the O(W ℓ )-components can be "moved to the right". Now we consider an element f j in the O(W ℓ )-component of one of the t i , with j ≤ n(ℓ) as we did at the end of the proof of 3.14. If |S ℓ-1 | = 1, then the only index in S ℓ-1 is j ℓ-1 and one has j ℓ-1 ≥ j + 2 since |S ℓ | = 2. In that case, any index occuring in the sequence i ℓ-1 • • • j ℓ-1 • • • i 1 • • • j 1 is distant from j and hence f j can be moved in the very first component on the right of our tensor product (that is O(W 1 ) = R j 1 ). The other case is the case where |S ℓ-1 | = 2. Since i ℓ-1 > n(ℓ) + 1, f j is s i ℓ-1 -invariant and hence can be moved to the right in B(ℓ -1). We then argue exactly as in lemma 3.14, distinguishing the three cases: j < j ℓ-1 -1, j = j ℓ-1 -1 and j ≥ j ℓ-1 , to conclude that we can "move" our f j to the right in the O(W ℓ-1 )-component where we obtain a sum of f j ′ for j ′ ≤ j + 2. But since |S ℓ | = 2, j ′ ≤ n(ℓ -1). Hence we can inductively "move" the f j 's to the O(W m )-component with m < ℓ as far as |S i | = 2 for each i ∈ [m, ℓ -1] obtaining in that component a polynomial in p(f 1 , • • • , f n(m) ) and if then |S(m -1)| = 1, we apply the first case to move our polynomial in the very first component on the right of the tensor product (that is O(W 1 ) = R j 1 ). Hence we can inductively move any f j to the right and one obtains in that component polynomials in the f i 's for i smaller than or equal to n(1) = i 1 . This also shows the last statement since if j + 2 is less than or equal to n(k), then arguing as above our f j lying in the very first component on the left of the tensor product can be moved in the O(W k )-component and one obtains a sum of f j ′ for j ′ less than or equal to j + 2 ≤ n(k).

We have all the required tools to prove : Theorem 3.19. Let B be a fully commutative bimodule. Then B is indecomposable in Rmod Z -R.

Proof. We consider the sequence i k • • • j k • • • i 1 • • • j 1 our bimodule is associated to. We consider the biggest index ℓ such that the bimodule associated to the subsequence seq By maximality of the rank of the subsequence i ℓ • • • j ℓ • • • i 1 • • • j 1 defining G(1), j ℓ+1 ≤ i ℓ+1 < n(ℓ) -1. But we know from lemma 3.17 that the lowest index in the support of T U 2 where U 2 is the variety associated to seq 1 is precisely n(ℓ). The variety Z 2 occuring when computing the * product between G(1) and G(2), which is equal to U 2 ∩ V j ℓ+1 , is then s j ℓ+1 -invariant. Moreover, since i ℓ+1 is the biggest index occuring in seq 2 , one has that T Wseq 2 seq 1 = T Wseq 1 ∪ T Wseq 2 and the same holds using induction when replacing 1 by i for 1 < i < m. Hence our bimodule is isomorphic to

1 = i ℓ • • • j ℓ • • • i 1 • • • j 1 is
G(m) ⊗ R km O(Z m ) ⊗ O(Um) G(m -1) ⊗ • • • ⊗ R k 2 O(Z 2 ) ⊗ O(U 2 ) G(1)
where U j is the variety associated to the sequence seq j-1 • • • seq 2 seq 1 , k j is the last index of the sequence seq j and Z j = U j ∩ V k j is s k j -invariant. Now consider any tensor

a m ⊗ R km b m ⊗ O(Um) a m-1 ⊗ • • • ⊗ R k 2 b 2 ⊗ O(U 2 ) a 1
in the above tensor product with a j ∈ G(j), b j ∈ O(Z j ). Since R k j ։ O(Z j ) we can suppose that each b i equals 1. Now using proposition 3.18 inductively, beginning with a 1 , we can rewrite our tensor as a sum of tensors of the form

a•1⊗ R km p(f 1 , . . . , f nm )⊗ O(Um) 1⊗• • •⊗ R k 2 p(f 1 , . . . , f n 2 )⊗ O(U 2 ) 1•p(f 1 , • • • , f n 1 ),
where n j is the biggest index in the sequence seq j (in particular n 1 = i 1 and n 2 = i ℓ+1 . Now each n j + 2 is less than or equal to the smallest index in the set of intertwining indices of seq j-1 because this sequence was chosen to be maximal such that the corresponding bimodule is a generelized intertwining bimodule. Hence we can apply the last statement of proposition 3.18 inductively, beginning from the left. This concludes

Categorification of the Kazhdan-Lusztig basis

Notice that the category of finitely generated graded R-bimodules has the Krull-Schmidt property (see [START_REF] Soergel | Kazhdan-Lusztig polynomials and indecomposable bimodules over polynomial rings[END_REF], remark 1.3). Thanks to theorem 3.19, we can extend the * product to direct sums of fully commutative bimodules and their graded shifts by bilinearity.

Notation. We write B TLn for the additive monoidal category generated by * -products of fully commutative bimodules and their shifts and stable by direct sums (and direct summands, but an indecomposable direct summand

Lemma 2 . 3 .

 23 Let A, B, C be (graded) rings, f : C → A a morphism of (graded) rings, π : A ։ A ′ a quotient of A (by an homogeneous ideal), M a (graded) module in Bmod -C. Let I ⊂ A be an (homogeneous) ideal which annihilates M ⊗ C A ′ on the right. Then one has an isomorphism in B

Definition 3 . 3 .

 33 independent of the choice of the reduced expression for w and that the set {b w } w∈Wc spans TL n as a Z[τ, τ -1 ]-module. The basis {b w } w∈Wc of TL n is the Kazhdan-Lusztig basis of TL n .

Fig. 2 :

 2 Fig. 2: A diagram representing an element of the Temperley-Lieb algebra ... ...

Fig. 3 :

 3 Fig. 3: Planar diagram corresponding to the element b i , where the two arcs go from index i to index i + 1.

  a reduced expression for w ; such sets characterize the varieties whose ideals are the left and right annihilators in R of the bimodule B i 1 * • • • * B i k . We have another way of associating a pair of dense sets to w: Notation. Let w ∈ W c and consider the planar diagram corresponding to the element b w ∈ TL n ; if we remove the lines joining a point in the sequence at the top of the diagram to a point in the sequence at the bottom, we obtain a dense set at the top of the diagram, which we write Q(i 1 • • • i k ), and a dense set at the bottom which we can write Q(i k • • • i 1 )since it is equal to the dense set obtained at the top of the diagram of b w -1 after applying the same process of removing lines going from the top to the bottom of the diagram (notice that w -1 lies in W c if and only if w does).

Fig. 4 :Proposition 3 . 7 .

 437 Fig. 4: Left and right dense sets of reflections for any fully commutative element in type A 4 .

  a sequence defining a fully commutative bimodule B. For each m ∈ [1, k], we write B(m) for the bimodule associated to the subsequence i m • • • j m . In particular we have B ∼ = B(k) * B(k -1) * • • • * B(1). Proposition 3.13. Let B be an intertwined bimodule associated to the sequence seq

Example 3 .

 3 16 In case n ≥ 9, the bimodules associated to the following sequences (1)(32)(4)(765)(87)(9), (1)(2)(43)(7654)(8765)(9876), (87)[START_REF] Stroppel | Category O : gradings and translation functors[END_REF] are generalized intertwined bimodules ; the indices belonging to the set S ℓ are written in red. The bimodules associated to the sequences (1)(32)(65)(87)(9), (7)(98) are not generalized intertwined bimodules.

  s j ℓ j ℓ ։ O(W ℓ ), hence the O(W ℓ ) component of any tensor in B can be moved to the left in B(ℓ) and then in the O(W ℓ+1 )component. As a consequence, any tensor b ∈ B can be written as a sum i a i • t i , where a i ∈ R and t i are tensors in B with f j ℓ or 1 in the O(W ℓ )component for ℓ such that |S ℓ | = 2, with 1 in O(W ℓ )-component for ℓ such that |S ℓ | = 1 and with 1 in the components coming from the bimodules B(ℓ).

  a generalized intertwined bimodule and write G(1) for the corresponding bimodule. Then one can do the same with the subsequencei k • • • j k • • • i ℓ+1 • • • j ℓ+1 to obtain a generalized intertwined bimodule G(2) associated to a subsequence seq 2 . At the end of the process we obtain a sequence G(1), . . . , G(m) of intertwined bimodules associated to subsequences seq 1 , . . . , seq m such thatB ∼ = G(m) * G(m -1) * • • • * G(2) * G(1)and seq = seq m • • • seq 2 seq 1 . We compute the various * products occuring in each of the bimodule G(i) with the same choice of brackets as in propositions 3.13 and 3.18; we then compute the above product "from the right", i.e. with the following choice of brackets : G(m) * (G(m -1) * (• • • (G(3) * (G(2) * G(1))) • • • )).

  Moreover, the set T (seq) contains the reflection (i 1 -2(k -1), i 1 + 1) (in other words, it has a single block).2. The bimodule B is indecomposable.Proof. The first claim is easily shown by induction on k.If k = 1, one has seq = i 1 • • • j 1 and T (seq) = {s i 1 } (see lemma 1.10) whose support is {i 1 , i 1 + 1}.Now suppose the result holds for any sequence of rank at most k -1 and consider the case where the sequence has rank k

  a sequence defining a generalized intertwined bimodule with corresponding variety W ∈ V n . Then 1. The smallest index in supp(T W ) is equal to n(k) as in definition 3.15, 2. The lowest simple reflection occuring in T W is s i k .
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this time) gives that r k | V i ∩V j = 0 = r ′ k | V i ∩V j , hence that a k | V i ∩V j = 0 for all k, which concludes.

A product of bimodules

Given two bimodules B, B ′ ∈ Rmod Z -R, one defines a bimodule B * B ′ in the following way : let I r B be the right annihilator of B and I ℓ B ′ the left annihilator of B ′ , and write V r B , V ℓ B ′ for the corresponding closed subvarieties of Z. Then set

We will often omit the exponents ℓ and r when no confusion is possible. Thanks to remark 2.5, such a bimodule lies in Rmod Z -R in case all the varieties occuring in its definition are union of Weyl lines. Note that if B, B ′ have trivial right, respectively left annihilators (for example if they are free as right, resp. left R-modules), this product is nothing but a tensor product over R.

Remark 2.12. In all the cases we will consider further, we will always have

). We will therefore often write the * -product as

. . , n} from lemma 2.6. Lemma 2.13. Let M be a right R-module which is free over O(V M ) for V M ∈ V n . The right annihilator of M * B i is the ideal of the variety

The same statement holds for the left operation on a bimodule

of a product of shifts of fully commutative bimodules is again a shift of a fully commutative bimodule). Recall that for w ∈ W c a fully commutative element, we write b w for the corresponding element of the Temperley-Lieb algebra and B w for the corresponding fully commutative bimodule.

Combining our efforts from the previous sections we get Proof. We know from theorem 3.5 that the bimodules B w satisfy the Temperley-Lieb relations. This shows that we have a surjective morphism of Z[τ, τ -1 ]algebras. In order to see that this morphism is injective, it suffices to show that if w = w ′ are two fully commutative elements in W, then the corresponding bimodules B w and B w ′ are nonisomorphic. This has already been proven in 3.8.