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Blind Multilinear Identification
Lek-Heng Lim∗ and Pierre Comon‡, Fellow, IEEE

Abstract—We discuss a technique that allows blind recovery
of signals or blind identification of mixtures in instances where
such recovery or identification were previously thought to be
impossible: (i) closely located or highly correlated sources in
antenna array processing, (ii) highly correlated spreading codes
in CDMA radio communication, (iii) nearly dependent spectra
in fluorescent spectroscopy. This has important implications —
in the case of antenna array processing, it allows for joint local-
ization and extraction of multiple sources from the measurement
of a noisy mixture recorded on multiple sensors in an entirely
deterministic manner. In the case of CDMA, it allows the possi-
bility of having a number of users larger than the spreading gain.
In the case of fluorescent spectroscopy, it allows for detection of
nearly identical chemical constituents. The proposed technique
involves the solution of a bounded coherence low-rank tensor
approximation problem. We show that bounded coherence allows
us to establish existence and uniqueness of the recovered solution.
We will provide some statistical motivation for the approximation
problem and discuss greedy approximation bounds. To provide
the theoretical underpinnings for this technique, we develop
a corresponding theory of sparse separable decompositionsof
functions, including notions of rank and Schatten norms that
specialize to the usual one for matrices and operators but applies
to also hypermatrices and tensors.

I. I NTRODUCTION

T HERE are two simple ideas for reducing the complexity
or dimension of a problem that are widely applicable

because of their simplicity and generality:

• Sparsity: resolving a complicated entity, represented by
a functionf , into a sum of a small number of simple or
elemental constituents:

f =

r∑

p=1

αpgp.

• Separability: decoupling a complicated entity, repre-
sented by a functiong, that depends on multiple factors
into a product of simpler constituents, each depending
only on one factor:

g(x1, . . . ,xd) =

d∏

k=1

ϕk(xk).

The two ideas underlie some of the most useful techniques
in engineering and science — Fourier, wavelets, and other
orthogonal or sparse representations of signals and images,
singular value and eigenvalue decompositions of matrices,
separation-of-variables, Fast Fourier Transform, mean field
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approximation, etc. This article examines the model that
combines these two simple ideas:

f(x1, . . . ,xd) =

r∑

p=1

αp

d∏

k=1

ϕkp(xk), (1)

and we are primarily interested in itsinverse problem, i.e.
identification of the factorsϕkp based on noisy measurements
of f . We shall see that this is a surprisingly effective method
for a wide range of identification problems.

Here f is approximately encoded byr scalars,α =
(α1, . . . , αr) ∈ Cr, and dr functions,ϕkp, k = 1, . . . , d;
p = 1, . . . , r. Sinced and r are both assumed to be small,
we expect (1) to be a very compact, possibly approximate,
representation off . We will assume that all these functions
live in some Hilbert spaces and thatϕkp are of unit norm
(clearly possible since the norm ofϕkp can be ‘absorbed into’
the coefficientαp in (1)).

Let µk = maxp6=q|〈ϕkp, ϕkq〉| and define therelative
incoherenceωk = (1 − µk)/µk for k = 1, . . . , d. Note that
µk ∈ [0, 1] andωk ∈ [0,∞]. We will show in this article that
if d ≥ 3, and

d∑

k=1

ωk ≥ 2r − 1, (2)

then the decomposition in (1) is essentiallyuniqueandsparsest
possible, i.e.r is minimal. Hence we may in principle identify
ϕkp based only on measurements of the mixturef .

One of the keys in the identifiability requirement is that
d ≥ 3 or otherwise (whend = 1 or 2) the result would not
hold. We will show that the conditiond ≥ 3 however leads to
a difficulty (that does not happen whend = 1 or 2). Since it is
rarely, if not never, the case that one has the exact values off ,
the decomposition (1) is only useful in an idealized scenario.
In reality, one hasf̂ = f + ε, an estimate off corrupted
by noiseε. Solving the inverse problem to (1) would require
that we solve a best approximation problem. For example,
with the appropriate noise models (see Section V), the best
approximation problem often takes the form

argmin
α∈Cr, ‖ϕkp‖=1

∥∥∥∥∥f̂ −
r∑

p=1

αp

d∏

k=1

ϕkp

∥∥∥∥∥ , (3)

with ‖ · ‖ an L2-norm. Now the trouble is that whend ≥ 3,
this best approximation problem may not have a solution —
because the infimum of the loss function is unattainable in
general, as we will discuss in Section VIII-A. In view of this,
our next result is that when

d∏

k=1

(1 + ωk) > r, (4)
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the infimum in (3) is always attainable, thereby alleviatingthe
aforementioned difficulty. A condition that meets both (2) and
(4) is easy to obtain because of the arithmetic-geometric mean
inequality

[
d∏

k=1

(1 + ωk)

]1/d
≤ 1 +

1

d

d∑

k=1

ωk.

II. SPARSE SEPARABLE DECOMPOSITIONS

The notion of sparsity dates back to harmonic analysis
[64], [71], [50] and approximation theory [65], and has re-
ceived a lot of recent attention in compressive sensing [25],
[10], [28], [15]. The notion ofseparability is also classical
— the basis behind the separation-of-variables technique in
partial differential equations [6] and special functions [53],
fast Fourier transforms on arbitrary groups [51], mean field
approximations in statistical physics [44], and the naı̈veBayes
model in machine learning [5], [46]. We describe a simple
model that incorporates the two notions.

The functionf : X → C or R to be resolved into simpler
entities will be referred to as ourtarget function. We will treat
the discrete (X is finite or countably infinite) and continuous
(X is a continuum) cases on an equal footing. The discrete
cases are whenf is a vector (ifX = [n1] = {1, . . . , n1}),
a matrix (if X = [n1] × [n2]), a hypermatrix (ifX =
[n1] × [n2] × · · · × [nd]), while the usual continuous cases
are whenf is a function on some domainX = Ω ⊆ Rm

or Cm. In the discrete cases, the set of target functions under
consideration are identified withCn1 , Cn1×n2 , Cn1×n2×···×nd

respectively whereas in the continuous cases, we usually
impose some additional regularity structures such integrability
or differentability, so that the set of target functions under
consideration areL2(Ω) or C∞(Ω) or Hk(Ω) = W k,2(Ω),
etc. We will only assume that the space of target functions is
a Hilbert space. Note that the requirementd ≥ 3 implies that
f is at least a3-dimensional hypermatrix in discrete case or
a function of at least three continuous variables, i.e.m ≥ 3,
in the continuous case. The identifiability does not work for
(usual2-dimensional) matrices or bivariate functions. With (1)
in mind, we will call f a d-partite or multipartite function if
we wish to partition its arguments intod blocks of variables.

We will briefly examine the decompositions and approxima-
tions of our target function into a sum or integral of separable
functions, adopting a tripartite notation for simplicity.There
are three cases:

• Continuous:

f(x,y, z) =

∫

T

θ(x, t)ϕ(y, t)ψ(z, t) dν(t). (5)

Here we assume thatν is some given Borel measure and
thatT is compact.

• Semidiscrete:

f(x,y, z) =
r∑

p=1

θp(x)ϕp(y)ψp(z). (6)

This may be viewed as a discretization of the continuous
case in thet variable, i.e.θp(x) = θ(x, tp), ϕp(y) =
ϕ(y, tp), ψp(z) = ψ(z, tp).

• Discrete:

aijk =

r∑

p=1

uipvjpwkp. (7)

This may be viewed as a further discretization of the
semidiscrete case, i.e.aijk = f(xi,yj , zk), uip = θp(xi),
vjp = ϕp(yj), wkp = ψp(zk).

It is clear that wheni, j, k take finitely many values, the
discrete decomposition (7) is always possible with a finite
r since the space is of finite dimension. Ifi, j, k could
take infinitely many values, then the finiteness ofr requires
that equality be replaced by approximation to any arbitrary
precisionε > 0 in some suitable norm. This follows from the
following observation about the semidiscrete decomposition:
The space of functions with a semidiscrete representation as in
(6), with r finite, is dense inC0(Ω), the space of continuous
functions. This is just a consequence of the Stone-Weierstrass
theorem [21]. Discussion of the most general case (5) would
require us to go into integral operators, which we will not do
as in the present framework we are interested in applications
that rely on the inverse problems corresponding to (6) and
(7). Nonetheless (5) is expected to be useful and we state it
here for completeness. Henceforth, we will drop the adjective
‘semidiscrete’ or ‘discrete’ and simply refer to (6) or (7)
as adecomposition into a sum of separable functions(SS).
Note that SS decompositions have been already proposed in
the past and received many different names. In particular, in
finite dimension, the acronym CP is now widely used, and
stands either for Candecomp/Parafac or for Canonical Polyadic
decompositions.

We will also frame our discussions in terms of the semidis-
crete case (6), since this also includes the discrete case (7)
(whenx,y, z take only finite discrete values).

Example 1. SS decompositions arise in many contexts. For
example, in machine learning and nonparametric statistics, a
fact of note is that Gaussians are separable

exp(x2 + y2 + z2) = exp(x2) exp(y2) exp(z2).

More generally for symmetric positive-definiteA ∈ Rn×n with
eigenvaluesΛ = diag(λ1, . . . , λn),

exp(xTAx) = exp(zTΛz) =
n∏

i=1

exp(λiz
2
i ),

under a linear change of coordinatesz = QTx whereA =
QΛQT. Hence, Gaussian mixture models of the form

f(x) =

m∑

j=1

αj exp[(x− µj)
TAj(x− µj)],

whereAiAj = AjAi for all i 6= j (and thereforeA1, . . . , Am
have a common eigenbasis) may likewise be transformed with
a suitable linear change of coordinates into a SS decomposi-
tion as in (6).

We will later see several more examples from signal pro-
cessing and spectroscopy.
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A. Modeling

The SS decomposition — anadditive decomposition into
multiplicatively decomposable components — is extremely
simple but models a wide range of phenomena in signal
processing and spectroscopy. The main message of this arti-
cle is that the corresponding inverse problem — recovering
the factors θp, ϕp, ψp from noisy measurements off —
can be solved under mild assumptions and yields a class
of techniques for a range of applications (cf. Section IX)
that we shall collectively callmultilinear identification. We
wish to highlight in particular that multilinear identification
gives a determistic approach for solving the problem of joint
localization and estimation of radiating sources with short data
lengths. Previous approaches based on cumulants [18] require
not only longer data lengths but also sources to be statistically
independent.

The experienced reader would probably guess that such a
powerful technique must be fraught with difficulties and he
would be right. The inverse problem to (6), like most other
inverse problems, faces issues of existence, uniqueness, and
computability. The approximation problem involved can be ill-
posed in the worst possible way (cf. Section III). Fortunately,
prompted by study of therestricted isometry propertyin com-
pressed sensing (interpreted in a broad sense, encompassing
not only the ideas covered in [10], [9], [15], [25], [26], [32]
but also in [7], [8], [29], [33]), we will show here that mild
assumptions on coherence could allow one to overcome most
of these difficulties (cf. Section VIII)

III. F INITE RANK MULTIPARTITE FUNCTIONS

In this section, we will discuss the notion of rank, which
measures the sparsity of a SS decomposition, and the notion of
Kruskal rank, which measures the uniqueness of a SS decom-
position in a somewhat more restrictive sense. Why is unique-
ness important? It can be answered in one word: Identifiability.
More specifically, a unique decomposition means that we may
in principle identify the factors. To be completely precise, we
will first need to define the terms in the previous sentence,
namely, ‘unique’, ‘decomposition’, and ‘factor’. Before we do
that, we will introduce the tensor product notation. It is not
necessary to know anything about tensor product of Hilbert
spaces to follow what we present below. We shall assume that
all our Hilbert spaces are separable and so there is no loss of
generality in assuming at the outset that they are justL2(X)
for someσ-finite X .

Let X1, . . . , Xd be σ-finite measurable spaces. There is a
natural Hilbert space isomorphism

L2(X1 × · · · ×Xd) ∼= L2(X1)⊗ · · · ⊗ L2(Xd). (8)

In other words, everyd-partiteL2-function f : X1 × · · · ×
Xd → C may be expressed as1

f(x1, . . . ,xd) =

∞∑

p=1

ϕ1p(x1) · · ·ϕdp(xd), (9)

1Point values ofLp-functions are undefined in general. So equations like
these are taken to implicitly meanalmost everywhere. Anyway all functions
that arise in our applications will at least be continuous and so this is really
not a point of great concern.

with ϕkp ∈ L2(Xk). The tensor productof functionsϕ1 ∈
L2(X1), . . . , ϕd ∈ L2(Xd) is denoted byϕ1 ⊗ · · · ⊗ ϕd and
is the function inL2(X1 × · · · ×Xd) defined by

ϕ1 ⊗ · · · ⊗ ϕd(x1, . . . ,xd) = ϕ1(x1) · · ·ϕd(xd).

With this notation, we may rewrite (9) as

f =

∞∑

p=1

ϕ1p ⊗ · · · ⊗ ϕdp.

A point worth noting here is that:

“Multipartite functions are infinite-dimensional ten-
sors.”

Finite-dimensional tensors are simply the special case when
X1, . . . , Xd are all finite sets (see Example 6). In particular, a
multivariate function2 f ∈ L2(Rd) is a an infinite-dimensional
tensor that can expressed as an infinite sum of a tensor product
of ϕ1p, . . . , ϕdp ∈ L2(R) andL2(Rd) ∼= L2(R)⊗· · ·⊗L2(R).
We shall have more to say about this later in conjunction
with Kolmogorov’s superposition principle for multivariate
functions.

In this paper, functions having afinite decomposition will
play a central role; for these we define

rank(f) := min

{
r ∈ N : f =

r∑

p=1

ϕ1p ⊗ · · · ⊗ ϕdp

}
(10)

providedf 6= 0. The zero function is defined to have rank
0 and we sayrank(f) = ∞ if such a decomposition is not
possible.

We will call a function f with rank(f) ≤ r a rank-r
function. Such a function may be written as a sum ofr
separable functions but possibly fewer. A decomposition of
the form

f =

r∑

p=1

ϕ1p ⊗ · · · ⊗ ϕdp (11)

will be called an rank-r SS decomposition. Note that the
qualificative ‘rank-r’ will always mean ‘rank not more than
r’. If we wish to refer to a functionf with rank exactlyr, we
will just specify thatrank(f) = r. In this case, the rank-r SS
decomposition in (11) is of mininum length and we call it a
rank revealing SS decompositionof f .

A rank-1 function is both non-zero and decomposable, i.e.,
of the formϕ1 ⊗ · · · ⊗ ϕd whereϕk ∈ L2(Xk). This agrees
precisely with the notion of a separable function. Observe that
the inner product (and therefore the norm) onL2(X1 × · · · ×
Xd) of a rank-1 function splits into a product

〈ϕ1⊗· · ·⊗ϕd, ψ1⊗· · ·⊗ψd〉 = 〈ϕ1, ψ1〉1 · · · 〈ϕd, ψd〉d (12)

where〈·, ·〉p denotes the inner product ofL2(Xp). This inner
product extends linearly to finite-rank elements ofL2(X1 ×

2We clarify our terminologies: A multipartite function is one for which the
argumentsx1, . . . ,xd can come from anyX1, . . . ,Xd but a multivariate
function, in the usual sense of the word, is one whereX1, . . . , Xd are
(measurable) subsets ofR. So the former is a more general notion.
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· · ·×Xd): for f =
∑r
p=1 ϕ1p⊗· · ·⊗ϕdp andg =

∑s
q=1 ψ1q⊗

· · · ⊗ ψdq, we have

〈f, g〉 =
r,s∑

p,q=1

〈ϕ1p, ψ1q〉1 · · · 〈ϕdp, ψdq〉d.

In fact this is how a tensor product of Hilbert spaces (the right
hand side of (8)) is usually defined, namely, as the completion
of the set of finite-rank elements ofL2(X1× · · ·×Xd) under
this inner product.

When X1, . . . , Xd are finite sets, then all functions in
L2(X1 × · · · × Xd) are of finite rank (and may in fact be
viewed as hypermatrices or tensors as discussed in Section II).
Otherwise there will be functions inL2(X1×· · ·×Xd) of in-
finite rank. However, since we have assumed thatX1, . . . , Xd

areσ-finite measurable spaces, the set of all finite-rankf will
always be dense inL2(X1×· · ·×Xd) by the Stone-Weierstrass
theorem.

The next statement is a straightforward observation about
rank-revealing SS decompositions of finite-rank functionsbut
since it is central to this article we state it as a theorem. It
is also tempting to call the decomposition a ‘singular value
decomposition’ given its similarities with the usual matrix
singular value decomposition (cf. Example 4).

Theorem 2 (‘Singular value decomposition’ for multipartite
functions). Let f ∈ L2(X1×· · ·×Xd) be of finite rank. Then
there exists a rank-r SS decomposition

f =
r∑

p=1

σpϕ1p ⊗ · · · ⊗ ϕdp (13)

such that
r = rank(f), (14)

the functionsϕkp ∈ L2(Xp) are of unit norm,

‖ϕkp‖ = 1 for all k = 1, . . . , d, p = 1, . . . , r, (15)

the coefficientsσ1, . . . , σr are real positive, and

σ1 ≥ σ2 ≥ · · · ≥ σr > 0. (16)

Proof: This requires nothing more than rewriting the
sum in (11) as a linear combination with the positiveσp’s
accouning for the norms of the summands and then re-indexing
them in descending order of magnitudes.

While the usual singular value decomposition of a matrix
would also have properties (14), (15), and (16), the one crucial
difference here is that our ‘singular vectors’ϕk1, . . . , ϕkr in
(13) will only be of unit norms but will not in general be
orthonormal. Given this, we will not expect properties like
the Eckhart-Young theorem, or thatσ2

1+ · · ·+σ2
r = ‖f‖2, etc,

to hold for (13) (cf. Section VI for more details).
One may think of the SS decomposition (13) as being

similar in spirit, although not in substance, to Kolmogorov’s
superposition principle [39]; the main message of which is
that:

“There are no true multivariate functions.”

More precisely, the principle states that continuous functions
in multiple variables can be expressed as a composition of a

univariate function with other univariate functions. For readers
not familiar with this remarkable result, we state a versionof
it here due to Kahane [38]

Theorem 3 (Kolmogorov superposition). Let f : [0, 1]d → R

be continuous. Then there exists constantsλ1, . . . , λd ∈ R

and Lipschitz continuous functionsϕ1, . . . , ϕd : [0, 1] → [0, 1]
such that

f(x1, . . . , xd) =

2d+1∑

p=1

g(λ1ϕp(x1) + · · ·+ λdϕp(xd)).

It is in general not easy to determineg andϕ1, . . . , ϕ2d+1

given such a functionf . A SS decomposition of the form (13)
alleviates this by allowingg to be the simplest multivariate
function, namely, the product function,

g(t1, . . . , td) = t1t2 · · · td, (17)

and unlike the univariateg in Theorem 3, theg in (17)
works universally for any functionf — only theϕp’s need
to be constructed. Furthermore, (13) applies more generally
to functions on a product of general domainsX1, . . . , Xd

whereas Theorem 3 only applies if they are compact intervals
of R.

At this stage, it would be instructive to give a few examples
for concreteness.

Example 4. LetA ∈ Cm×n be a matrix of rankr. Then it can
be decomposed in infinitely many ways into a sum of rank-1
terms as

A =

r∑

p=1

σpupv
∗
p (18)

where up ∈ Cm and vp ∈ Cn are unit-norm vectors and
σ1 ≥ · · · ≥ σr > 0. Note that if we regardA as a complex-
valued function on its row and column indicesi and j as
described earlier in Section II, then(18) may be written as

a(i, j) =

r∑

p=1

σpup(i)vp(j),

which clearly is the same as(9). The singular value decom-
position (SVD) of A yields one such decomposition, where
{u1, . . . ,ur} and {v1, . . . ,vr} are both orthonormal. But in
general a rank-revealing decomposition of the form(13) will
not have such a property.

Example 5. The previous example can be generalized to
infinite dimensions. LetA : H1 → H2 be a compact operator
(also known as a completely continuous operator) between
two separable Hilbert spaces. Then the Schmidt decomposition
theorem says that there exist orthonormal basis{ϕp ∈ H2 :
p ∈ N} and {ψp ∈ H1 : p ∈ N} so that

Af =

∞∑

p=1

σp〈ψp, f〉ϕp (19)

for everyf ∈ H1. In tensor product notation,(19) becomes

A =

∞∑

p=1

σpϕp ⊗ ψ∗
p.
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whereψ∗
p denotes the dual form ofψp.

Examples 4 and 5 are well-known but they are bipartite
examples, i.e.d = 2 in (13). This article is primarily concerned
with the d-partite case whered ≥ 3, which has received far
less attention. As we have alluded to in the previous section,
the identification techniques in this article will rely crucially
on the fact thatd ≥ 3.

Example 6. Let A ∈ Cl×m×n be a 3-dimensional hyperma-
trix. The outer product of three vectorsu ∈ Cl, v ∈ Cm,
w ∈ Cn is defined by

u⊗ v ⊗w = (uivjwk)
l,m,n
i,j,k=1 ∈ C

l×m×n.

The rank ofA is defined to be the minimumr ∈ N such that
A can be written in the form

A =

r∑

p=1

σpup ⊗ vp ⊗wp, (20)

and ifA = 0, then its rank is set to be0. This agrees of course
with our use of the word rank in(10), the only difference is
notational, since(20) may be written in the form

a(i, j, k) =
r∑

p=1

σpup(i)vp(j)wp(k).

This definition of rank is invariant under the natural actionof
GL(l)×GL(m) ×GL(n) on Cl×m×n [22, Lemma 2.3], i.e.
for anyX ∈ GL(l), Y ∈ GL(m), Z ∈ GL(n),

rank((X,Y, Z) · A) = rank(A). (21)

The definition also extends easily tod-dimensional hyperma-
trices in C

n1×···×nd and whend = 2 reduces to the usual
definition in Example 4 for matrix rank. This definition is
due to F. L. Hitchcock [36] and is often called tensor rank.
The only difference here is that our observation in Theorem 2
allows us to impose the conditions

σ1 ≥ σ2 ≥ · · · ≥ σr

and
‖up‖ = ‖vp‖ = ‖wp‖ = 1, p = 1, . . . , r, (22)

while leavingrank(A) unchanged, thus bringing(20) closer
in form to its matrix cousin(18). What is lost here is that the
sets{u1, . . . ,ur}, {v1, . . . ,vr}, {w1, . . . ,wr} can no longer
be chosen to be orthonormal as in Example 4, the unit norm
condition (22) is as far as we may go. In fact for a generic
A ∈ Cl×m×n, we will always have

r > max(l,m, n),

and {u1, . . . ,ur}, {v1, . . . ,vr}, {w1, . . . ,wr} will be over-
complete sets inCl,Cm,Cn respectively.

Perhaps it is worthwhile saying a word concerning our use
of the words ‘tensor’ and ‘hypermatrix’: Ad-tensor or order-
d tensor is an element of a tensor product ofd vector spaces
V1 ⊗ · · · ⊗ Vd; a d-dimensional hypermatrix is an element
of Cn1×···×nd . If we choose bases onV1, . . . ,Vd, then any
d-tensorA ∈ V1⊗· · ·⊗Vd will have a unique coordinate rep-
resentation as ad-dimensional hypermatrixA ∈ Cn1×···×nd ,

wherenk = dim(Vk). A notion defined on a hypermatrix is
only defined on the tensor (that is represented in coordinates
by the hypermatrix) if that notion is independent of the choice
of bases. So the use of the word ‘tensor rank’ is in fact well
justified because of (21). For more details, we refer the reader
to [45].

IV. U NIQUENESS OFSSDECOMPOSITIONS

In Theorem 2, we chose the coefficients to be in descending
order of magnitude and require the factors in each separable
term to be of unit norm. This is largely to ensure as much
uniqueness in the SS decomposition as generally possible.
However there remain two obvious ways to obtain trivially
different SS decompositions: (i) one may scale the factors
ϕ1p, . . . , ϕdp by arbitrary unimodulus complex numbers as
long as their product is1; (ii) when two or more successive
coefficients are equal, their orders in the sum may be arbitrarily
permuted. We will call a SS decomposition off that meets
the conditions in Theorem 2essentially uniqueif the only
other such decompositions off differ in one or both of these
manners.

It is perhaps astonishing that whend > 2, a sufficient con-
dition for essential uniqueness can be derived with relatively
mild conditions on the factors. This relies on the notion of
Kruskal rank, which we will now define.

Definition 7. Let Φ = {ϕ1, . . . , ϕr} be a finite collection of
vectors of unit norm inL2(X1 × · · ·×Xd). The Kruskal rank
of Φ, denotedkrankΦ, is the largestk ∈ N so that every
k-element subset ofΦ contains linearly independent elements.

This notion was originally introduced in [40]. It is related
to the notion ofspark introduced in compressed sensing [26],
[32], defined as the smallestk ∈ N so that there is at least one
k-element subset ofΦ that is linearly dependent. The relation
is simple to describe,sparkΦ = krankΦ + 1, and it follows
immediately from the respective definitions. It is clear that
dim spanΦ ≥ krankΦ.

We now generalize Kruskal’s famous result [40], [59] to
tensor products of arbitrary Hilbert spaces, possibly of infinite
dimensions. But first let us be more specific about essential
uniqueness.

Definition 8. We shall say that a SS decomposition of the
form (13) (satisfying both(16) and (15)) is essentially unique
if given another such decomposition,

r∑

p=1

σpϕ1p ⊗ · · · ⊗ ϕdp = f =

r∑

p=1

λpψ1p ⊗ · · · ⊗ ψdp,

we must have (i) the coefficientsσp = λp for all p = 1, . . . , r;
and (ii) the factorsϕ1p, . . . , ϕdp and ψ1p, . . . , ψdp differ at
most via unimodulus scaling, i.e.

ϕ1p = eiθ1pψ1p, . . . , ϕdp = eiθdpψdp (23)

whereθ1p+ · · ·+ θdp ≡ 0mod 2π, for all p = 1, . . . , r. In the
event when successive coefficients are equal,σp−1 > σp =
σp+1 = · · · = σp+q > σp+q+1, the uniqueness of the factors
in (ii) is only up to relabelling of indices, i.e.p, . . . , p+ q.
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Lemma 9. Let f ∈ L2(X1 × · · · ×Xd). Then a SS decompo-
sition of the form

f =

r∑

p=1

σpϕ1p ⊗ · · · ⊗ ϕdp (24)

is both essentially unique and rank-revealing, i.e.r = rank f ,
if the following condition is satisfied:

2r + d− 1 ≤
d∑

k=1

krankΦk, (25)

whereΦk = {ϕk1, . . . , ϕkr} for k = 1, . . . , d.

Proof: Consider the subspacesVk = span(ϕk1, . . . , ϕkr)
in L2(Xk) for eachk = 1, . . . , d. Observe thatf ∈ V1⊗· · ·⊗
Vd. Clearly dim(Vk) ≤ r and sodim(V1 ⊗ · · · ⊗ Vd) ≤ rd.
Now if we could apply Kruskal’s result [40] to the finite-
dimensional spaceV1 ⊗ · · · ⊗ Vd, then we may immediately
deduce both the uniqueness and rank-revealing property of
(24). However there is one caveat: We need to show that
Kruskal rank does not change under restriction to a subspace,
i.e. the value ofkrank{ϕk1, . . . , ϕkr} in (25) is the same
whether we regardϕk1, . . . , ϕkr as elements ofL2(Xk) or
as elements of the subspaceVk. But this just follows from
the simple fact that linear independence has precisely this
property, i.e. ifv1, . . . , vn ∈ U ⊆ V are linearly independent
in the vector spaceV, then then they are linearly independent
in the subspaceU.

It follows immediately why we usually needd ≥ 3 for
identifiability.

Corollary 10. A necessary condition for Kruskal’s inequality
(25) to hold is thatd ≥ 3.

Proof: If d = 2, then2r+ d− 1 = 2r+1 > krankΦ1 +
krankΦ2 since the Kruskal rank of ofr vectors cannot exceed
r. Likewise ford = 1.

Lemma 9 shows that the condition in (25) is sufficient to
ensure uniqueness and it is known that the condition is not
necessary. In an appropriate sense, the condition is sharp [24].
We should note that the version of Lemma 9 that we state
here for generald ≥ 3 is due to Sidiropoulos and Bro [59].
Kruskal’s original version [40] is only ford = 3.

The main problem with Lemma 9 is that the condition (25)
is difficult to check since the right-hand side cannot be readily
computed. In fact Kruskal rank is known to be NP-complete
over a field of two elements [70]. We conjecture that it is
NP-hard overR andC.

Kruskal’s result also does not tell us how often are SS
decompositions unique. In the event when the setsX1, . . . , Xd

are finite,L2(X1 × · · · × Xd) ∼= Cn1×···×nd where n1 =
#X1, . . . , nd = #Xd, and there is a simple result on
uniqueness based simply on a dimension count. Note that
the dimension ofL2(X1 × · · · ×Xd) is the productn1 · · ·nd
and the number of parameters needed to describe a separable
element of the formλϕ1 ⊗ · · · ⊗ ϕd whereϕ1, . . . , ϕd are of
unit norm isn1 + · · ·+ nd − d+ 1 (eachϕk requiresnk − 1
parameters because of the unit norm constraint, the last ‘+1’

accounts for the coefficientλ). We call the number
⌈ ∏d

k=1 nk

1− d+
∑d

k=1 nk

⌉

theexpected rankof L2(X1×· · ·×Xd), since it is heuristically
the minimumr expected for a SS decomposition (13).

Proposition 11. Let the notations be as above. Iff ∈ L2(X1×
· · · ×Xd) has rank smaller than the expected rank, i.e.

rank(f) <

⌈ ∏d
k=1 nk

1− d+
∑d

k=1 nk

⌉
,

thenf admits at most a finite number of distinct rank revealing
decompositions.

This proposition has been proved in several cases, including
symmetric tensors [14], but the proof still remains incomplete
for tensors of most general form [13], [1].

V. ESTIMATION OF SSDECOMPOSITIONS

In practice we would only have at our disposal̂f , a
measurement off corrupted by noise. Recall that our model
for f takes the form

f(x1, . . . ,xd) =

r∑

p=1

αp

d∏

k=1

ϕkp(xk). (26)

Then we would often have to solve an approximation problem
corresponding to (26) of the form

argmin
α∈Cr, ‖ϕkp‖=1

∥∥∥∥∥f̂ −
r∑

p=1

αp

d∏

k=1

ϕkp

∥∥∥∥∥ , (27)

which we will call a best rank-r approximation problem.
A solution to (27), if exists, will be called a best rank-r
approximation off̂ .

In this section, we will give some motivations as to why
such an approximation is reasonable. Assuming that the norm
in (27) is theL2-norm and that the factorsϕkp, p = 1, . . . r
and k = 1, . . . d, have been determined in advance and we
are just trying to estimate the parametersα1, . . . , αr from
f̂ (1), . . . , f̂ (N) a finite sample of sizeN of measurements of
f corrupted by noise, then the solution of the approximation
problem in (27) is in fact (i) a maximum likelihood estimator
(MLE) if the noise is zero mean Gaussian, and (ii) a best linear
unbiased estimator (BLUE) if the noise has zero mean and
finite variance. Of course in our identification problems, the
factorsϕkp’s are not known and have to be estimated too.
A probabilistic model in this situation would take us too far
afield. Note that even for the cased = 2 and whereX1 and
X2 are finite sets, a case that essentially reduces to principal
components analysis (PCA), a probabilistic model along the
lines of [67] require several strong assumptions and was only
developed as late as 1999. The lack of a formal probabilistic
model has not stoppedPCA, proposed in 1901 [56], to be an
invaluable tool in the intervening century.
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VI. EXISTENCE OF BESTSSAPPROXIMATION

As we mentioned in the previous section, in realistic sit-
uation where measurements are corrupted by additive noise,
one has to extract the factorsϕkp’s andαp through solving an
approximation problem (27), that we now write in a slightly
different (but equivalent) form,

argmin
α∈[0,∞)r, ‖ϕkp‖=1

∥∥∥∥∥f̂ −
r∑

p=1

αp

d∏

k=1

ϕkp

∥∥∥∥∥ . (28)

Note that by Theorem 2, we may assume that the coefficients
α = (α1, . . . , αr) are real and nonnegative valued without any
loss of generality. Such a form is also natural in applications
given that αp usually captures the magnitude of whatever
quantity that is represented by thep summand.

We will see this problem, whether in the form (27) or
(28), has no solution in general. We will first observe a
somewhat unusual phenomenon in SS decomposition ofd-
partite functions whered ≥ 3, namely, a sequence of rank-
r functions (each with an rank-r SS decomposition) can
converge to a limit that is not rank-r (has no rank-r SS
decomposition).

Example 12 (SS approximation of functions). For linearly
independentϕ1, ψ1 : X1 → C, ϕ2, ψ2 : X2 → C, ϕ3, ψ3 :
X3 → C, let f̂ : X1 ×X2 ×X3 → C be

f̂(x1,x2,x3) := ψ1(x1)ϕ2(x2)ϕ3(x3)

+ ϕ1(x1)ψ2(x2)ϕ3(x3) + ϕ1(x1)ϕ2(x2)ψ3(x3).

For n ∈ N, define

fn(x1,x2,x3) :=

n

[

ϕ1(x1) +
1

n
ψ1(x1)

] [

ϕ2(x2) +
1

n
ψ2(x2)

] [

ϕ3(x3) +
1

n
ψ3(x3)

]

− nϕ1(x1)ϕ2(x2)ϕ3(x3).

Then

f̂(x1,x2,x3)− fn(x1,x2,x3) =
1

n
[ψ1(x1)ψ2(x2)ϕ3(x3)

+ ψ1(x1)ϕ2(x2)ψ3 + ϕ1(x1)ψ2(x2)ψ3(x3)].

Hence

‖f̂ − fn‖ = O

(
1

n

)
. (29)

Lemma 13. In Example 12,rank(f̂) = 3 iff ϕi, ψi are
linearly independent,i = 1, 2, 3. Furthermore, it is clear that
rank(fn) ≤ 2 and

lim
n→∞

fn = f̂ .

Note that our fundamental approximation problem may be
regarded as the approixmation problem

argmin{‖f̂ − f‖ : rank(f) ≤ r}, (30)

followed by a decomposition problem

f =

r∑

p=1

αp

d∏

k=1

ϕkp,

which always exists for anf with rank(f) ≤ r. The discussion
above shows that there aref for which

argmin{‖f̂ − f‖ : rank(f) ≤ r} = ∅,

and thus (28) or (30) does not need to have a solution in
general. This is such a crucial point that we are obliged to
formally state it.

Theorem 14. For d ≥ 3, the best approximation of ad-partite
function by a sum ofp products ofd separable functions does
not exist in general.

Proof: Take the tripartite function̂f ∈ L2(X1×X2×X3)
in Example 12. Suppose we seek a best rank-2 approximation,
in other words, we seek to solve the minimization problem

argmin
‖gk‖=‖hk‖=1, γ,η≥0

‖f̂ − γg1 ⊗ g2 ⊗ g3 − ηh1 ⊗ h2 ⊗ h3‖.

Now the infimum,

inf
‖gk‖=‖hk‖=1, γ,η≥0

‖f̂ − γg1 ⊗ g2 ⊗ g3 − ηh1 ⊗ h2 ⊗ h3‖ = 0

since we may choosen ∈ N sufficiently large,

gk =
ϕk + n−1ψk

‖ϕk + n−1ψk‖
, hk =

ϕk
‖ϕk‖

,

for k = 1, 2, 3,

γ = n‖ϕ1 + n−1ψ1‖‖ϕ2 + n−1ψ2‖‖ϕ3 + n−1ψ3‖,
η = n‖ϕ1‖‖ϕ2‖‖ϕ3‖,

so as make‖f̂ − γg1 ⊗ g2 ⊗ g3 − ηh1 ⊗ h2 ⊗ h3‖ as small
as we desired by virtue of (29). However there is no rank-2
function γg1 ⊗ g2 ⊗ g3 − ηh1 ⊗ h2 ⊗ h3 for which

‖f̂ − γg1 ⊗ g2 ⊗ g3 − ηh1 ⊗ h2 ⊗ h3‖ = 0.

In other words, the zero infimum can never be attained.
Our construction above is based on an earlier construction

in [22]. The first such example was given in [4], which also
contains the very first definiton of border rank. We will define
it here ford-partite functions. WhenX1, . . . , Xd are finite sets,
this reduces to the original definiton in [4] for hypermatrices.

Definition 15. Let f ∈ L2(X1 × · · · ×Xd). The border rank
of f is defined as

rank(f) = min{r ∈ N : inf‖f − g‖ = 0

over all g with rank(g) = r}.

Clearly we would always have that

rank(f) ≤ rank(f).

The discussions above show that strict inequality can occur. In
fact, for thef̂ in Example 12,rank(f̂) = 2 while rank(f̂) =
3.

We would like to mention here that this problem applies
to operators too. Approximation of an operator by a sum of
tensor/Kronecker products of lower-dimensional operators is
in general an ill-posed problem whose existence cannot be
guaranteed.
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Example 16 (SS approximation of operators). For linearly
independent operatorsΦi,Ψi : Vi → Wi, i = 1, 2, 3, let T̂ :
V1 ⊗ V2 ⊗ V3 →W1 ⊗W2 ⊗W3 be

T̂ := Ψ1 ⊗Φ2 ⊗Φ3 +Φ1 ⊗Φ2 ⊗Ψ3 +Φ1 ⊗Φ2 ⊗Ψ3. (31)

If Φi,Ψi’s are all finite-dimensional and represented in coor-
dinates as matrices, then ‘⊗’ may be taken to be Kronecker
product of matrices. Forn ∈ N,

Tn := n

[
Φ1 +

1

n
Ψ1

]
⊗
[
Φ2 +

1

n
Ψ2

]
⊗
[
Φ3 +

1

n
Ψ3

]

− nΦ1 ⊗ Φ2 ⊗ Φ3.

Then
lim
n→∞

Tn = T̂ .

An example of an operator that has the form in(31) is the
3m-dimensional Laplacian∆3m, which can be expressed in
terms of them-dimensional Laplacian∆m as

∆3m = ∆m ⊗ I ⊗ I + I ⊗∆m ⊗ I + I ⊗ I ⊗∆m.

There are several simple but artificial ways to alleviate
the issue of non-existent best approximant. Observe from the
proof of Theorem 14 that the coefficients in the approximant
γ, η becomes unbounded in the limit. Likewise we see this
happening in Example 16. In fact this mustalwayshappen —
in the event when a function or operator is approximated by
a rank-r function, i.e.
∥∥∥∥∥f̂ −

r∑

p=1

αp

d∏

k=1

ϕkp

∥∥∥∥∥ or

∥∥∥∥∥T̂ −
r∑

p=1

αp

d⊗

k=1

Φkp

∥∥∥∥∥ , (32)

and if a best approximation does not exist, then ther co-
efficientsα1, . . . , αr must all diverge in magnitude to+∞
as the approximant converges to the infimum of the norm
loss function in (32). This result was first established in [22,
Proposition 4.9].

So a simple but artificial way to prevent the nonexistence
issue is to simply limit the sizes of the coefficientsα1, . . . , αr
in the approximant. One way to achieve this is regularization
[55], [46] — adding a regularization term to our objective
function in (28) to penalize large coefficients. A common
choice is Tychonoff regularization, which uses a sum-of-
squares regularization term:

argmin
α∈[0,∞)r, ‖ϕkp‖=1

∥∥∥∥∥f̂ −
r∑

p=1

αp

d∏

k=1

ϕkp

∥∥∥∥∥+ λ

r∑

p=1

|αp|2. (33)

Here λ is an arbitrarily chosen regularization parameter. It
can be seen that this is equivalent to constraining the sizes
α1, . . . , αr to

∑r
p=1|αp|2 = ρ, with ρ being determined a

posteriori fromλ. The main drawback of such constraints is
that ρ and λ are arbitrary, and that they generally have no
physical meaning.

More generally, one may alleviate the nonexistence issue by
restricting the optimization problem (30) to a compact subset
of its non-compact feasible set

{f ∈ L2(X1 × · · · ×Xd) : rank(f) ≤ r}.

Limiting the sizes ofα1, . . . , αr is a special case but there
are several other simple (but also artificial) strategies. In [17],
the factorsϕk1, . . . , ϕkp are required to be orthogonalfor all
k ∈ {1, . . . , d}, i.e.

〈ϕkp, ϕkq〉k = δpq, p, q = 1, . . . , r, k = 1, . . . , d. (34)

This remedy is acceptable only in very restrictive conditions.
In fact a necessary condition for this to work is that

r ≤ min
k=1,...,d

dimL2(Xk).

It is also trivial to see that imposing orthogonality between
the separable factors removes this problem

〈ϕ1p ⊗ · · · ⊗ ϕdp, ϕ1q ⊗ · · · ⊗ ϕdq〉 = δpq, p, q = 1, . . . , r.
(35)

This constraint is slightly less restrictive — by (12), it is
equivalent to requiring (34)for somek ∈ {1, . . . , d}. Both
(34) and (35) are nonetheless so restrictive as to exclude the
most useful circumstances for the model (13), which usually
involves factors that have no reason to be orthogonal, as we
will see in Section IX. In fact, Kruskal’s uniqueness condition
is such a potent tool precisely because it does not require
orthogonality.

The conditions (34), (35), and (33) all limit the feasible
sets for the original approximation (28) to a much smaller
compact subset of the original feasible set. This is not the case
for nonnegative constraints. In [46] it was shown that the fol-
lowing best rank-r approximation problem for a nonnegative-
valuedf̂ and where the coefficientsαp and factorsϕkp of the
approximants are also nonnegative valued, i.e.

argmin
α∈[0,∞)r, ‖ϕkp‖=1, ϕkp≥0

∥∥∥∥∥f̂ −
r∑

p=1

αp

d∏

k=1

ϕkp

∥∥∥∥∥ ,

always has a solution. The feasible set in this case is non-
compact and has nonempty interior within the feasible set of
our original problem (28). The nonnegativity constraints are
natural in some applications, such as the fluorescence spec-
troscopy one described in Section IX-F, whereϕkp represent
intensities and concentrations, and are therefore nonnegative
valued.

There are two major problems with imposing artificial con-
straints simply to force a solution: How do we know a priori
that the solution that we seek would meet those constraints?
But more importantly, perhaps the model is ill-posed and a
solution indeed should not exist? To illustrate the case in point
with a more commonplace example, suppose we want to find a
maximum likelihood estimatorX ∈ Rn×n for the covariance
Σ of independent samplesy1, . . . ,ym ∼ N(0,Σ). This would
lead us to a semi-definite programming problem

argmin
X≻0

tr(X−1Y )− log det(X) (36)

where Y = 1
m

∑m
i=1 yiy

⊤
i . However the problem will not

have a solution when the number of samples is smaller than
the dimension, i.e.m < n, as the infimum of the loss function
in (36) cannot be attained by anyX in the feasible set. This
is an indication that we should seek more samples (so that
we could getm ≥ n, which will guarantee the attainment of
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the infimum) or use a different model (e.g. determine ifX−1

might perhaps have some a priori zero entries due to statistical
independence of the variables). It is usually unwise to impose
artificial constraints on the covariance matrixX just so that
the loss function in (36) would attain an infimum on a smaller
feasible set — the thereby obtained ‘solution’ may bear no
relation to the true solution that we want.

Our goal in Section VIII-A is to define a type of physically
meaningful constraints via the notion ofcoherence. It ensures
the existence of a unique minimum, but not via an artificial
limitation of the optimization problem to a convenient subset
of the feasible set. In the applications we discuss in Section IX,
we will see that it is natural to expect existence of a solution
when coherence is small enough, but not otherwise. So when
our model is ill-posed or ill-conditioned, we are warned by the
size of the coherence and could seek other remedies (collect
more measurements, use a different model, etc) instead of
forcing a ‘solution’ that bears no relation to reality. But before
we get to that we will examine another method based on an
approximation of rank by a ratio of Schatten1- and∞-norms.

VII. SCHATTEN AND KY FAN NORMS

We introduce the notion of Schatten norms and Ky Fan
norms for multipartite functions and see how a condition
involving the Schatten1-norm and Schatten∞-norm allows
us to alleviate the problem discussed in Section VI, namely,
that ad-partite function may not have a best approximation
by a sum ofr separable functions.

The definition of Schatten norm follows naturally from the
definition of rank in Section III, and from which the definiton
of Ky Fan norm is immediate.

Definition 17. For any 1 ≤ s < ∞, we define the Schatten
s-norm off ∈ L2(X1 × · · · ×Xd) as

‖f‖∗,s := inf





[ ∞∑

p=1

λsp

]1/s
:

f =
∞∑

p=1

λpϕ1p ⊗ · · · ⊗ ϕdp, ‖ϕkp‖ = 1, λp ≥ λp+1 > 0

}

(37)

with the usual modification (replace sum by supremum) for
the cases = ∞.

Definition 18. For any1 ≤ s <∞ and anyk ∈ N, we define
the Ky Fan(s, k)-norm off ∈ L2(X1 × · · · ×Xd) as

‖f‖∗,s,k := inf





[
k∑

p=1

λsp

]1/s
:

f =

∞∑

p=1

λpϕ1p ⊗ · · · ⊗ ϕdp, ‖ϕkp‖ = 1, λp ≥ λp+1 > 0

}

(38)

with again the usual modification for the cases = ∞.

The letterss and k are of course chosen to remind us of
the respective eponymous norms. The fact that (37) and (38)

define norms onL2(X1×· · ·×Xd) follows from the standard
Minkowski gauge argument [23]. The Ky Fan and Schatten
norms are related by‖f‖∗,s,∞ = ‖f‖∗,s. WhenX1, . . . , Xd

are finite sets of cardinalitiesn1, . . . , nd ∈ N, the Schatten
1-norm for the unipartite case (d = 1) is just the usualℓ1-
norm for vectors inCn1 = L2(X1); the Schattens-norm for
the bipartite case (d = 2) agrees with the usual Schattens-
norm for matrices inCn1×n2 = L2(X1 ×X2). In particular,
the bipartite Schatten1, 2, and∞-norms are respectively the
nuclear, Frobenius, andspectralnorms of a matrix. Ford ≥ 3,
Definitions 17 and 18 yield notions of Schatten and Ky Fan
norms for hypermatrices inCn1×···×nd = L2(X1 × · · · ×Xd)
whenXk are finite sets (withnk elements) for allk = 1, . . . , d.

Example 19 (Nuclear norm for 3-tensors). Let T ∈
Cn1×n2×n3 . Then by Definition 17, we have

‖T ‖∗,1 = inf

{
r∑

p=1

λp : T =

r∑

p=1

λpxp ⊗ yp ⊗ zp

}
,

where the infimum is taken over all linear combinations of
complex vectors of unit2-norm xp ∈ C

n1 , yp ∈ C
n2 , zp ∈

Cn3 , with real positive coefficientssλp ∈ [0,∞), and p =
1, . . . , r, with r ∈ N.

Note that we used the termtensors, as opposed to hyper-
matrices, in the above example. In fact, Definitions 17 and
18 define Schatten and Ky Fan norms for the tensors, not
just their coordinate representations as hypermatrices (see our
discussion after Example 6), because of the following invariant
properties.

Lemma 20. The Schatten and Ky Fan norms as defined in(37)
and (38) for Cn1×···×nd are unitarily invariant, i.e. invariant
under the natural action ofU(n1)× · · ·×U(nd) whereU(n)
denotes the group of unitary matrices inCn×n.

Proof: To avoid the clutter of indices, we will assume that
d = 3. It is easy, although notationally cumbersome, to extend
this to generald ≥ 3. Let (U, V,W ) ∈ U(n1)×U(n2)×U(n3)
andT ∈ Cn1×n2×n3 . The natural action, given in coordinates
by

(U, V,W ) · T =



n1,n2,n3∑

i,j,k=1

uaivbjwcktijk



n1,n2,n3

a,b,c=1

,

has the property that ifT has a SS decomposition of the form

T =

r∑

p=1

λpxp ⊗ yp ⊗ zp,

then

(U, V,W ) · T =
r∑

p=1

λp(Uxp)⊗ (V yp)⊗ (Wzp). (39)

(39) is obvious whenr = 1 and for generalr follows from the
linearity of the action (i.e.(U, V,W ) · (S + T ) = (U, V,W ) ·
S+(U, V,W ) ·T ). We also need the simple fact thatU(n1)×
U(n2)× U(n3) acts transitively on unit-norm rank-1 tensors,
i.e. take anyx ∈ C

n1 , y ∈ C
n2 , z ∈ C

n3 of unit norm,
then every other unit-norm rank-1 tensor may be written as
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Ux⊗V y⊗Wz for some(U, V,W ) ∈ U(n1)×U(n2)×U(n3).
With these, it follows immediately from Definition 17 that
Schatten norms satisfy

‖(U, V,W ) · T ‖∗,s = ‖T ‖∗,1
and likewise for Ky Fan norms.

If we allow 0 < s < 1, then (37) and (38) no longer define
norms although theSchattenandKy Fan quasinorms

‖f‖∗,s,k = inf
{∑k

p=1 λ
s
p :

f =
∑∞
p=1 λpϕ1p ⊗ · · · ⊗ ϕdp, ‖ϕkp‖ = 1, λp ≥ λp+1 > 0

}

are nonetheless still interesting measures of nearness. Observe
that we have dropped the1/s power here. In particular, the
limiting case ass→ 0 yields theSchatten0-quasinorm,

‖f‖∗,0 := inf
{∑∞

p=1 λ
0
p :

f =
∑∞
p=1 λpϕ1p ⊗ · · · ⊗ ϕdp, ‖ϕkp‖ = 1, λp ≥ λp+1 > 0

}
,

where we adopt the convention that00 = 0.

Lemma 21. For anyf ∈ L2(X1×· · ·×Xd), we have‖f‖∗,0 =
rank(f) and

‖f‖∗,1 ≤ rank(f)× ‖f‖∗,∞. (40)

In other words, the Schatten1-norm is a convex underestima-
tor of rank on the Schatten∞-norm unit ball{f : ‖f‖∗,∞ ≤
1}. In fact, (40) may be sharpened to have border rank in
place of rank

‖f‖∗,1 ≤ rank(f)× ‖f‖∗,∞. (41)

Proof: Let rank(f) = r and f =
∑r
p=1 λpϕ1p ⊗ · · · ⊗

ϕdp be a SS decomposition as in Theorem 2. Therefore
‖ϕ1p ⊗ · · · ⊗ ϕdp‖∗,1 = ‖ϕ1p‖ · · · ‖ϕdp‖ = 1 for all p =
1, . . . , r. The triangle inequality immediate yields‖f‖∗,1 ≤∑r

p=1|λp| ‖ϕ1p⊗· · ·⊗ϕdp‖∗,1 =
∑r
p=1|λp| ≤ r‖f‖∗,∞. For

the border rank version, letrank(f) = r, then there exists a
sequencefn where rank(fn) = r and limn→∞ fn = f . By
what we have just proved,

‖fn‖∗,1 ≤ rank(fn)× ‖fn‖∗,∞ = r‖fn‖∗,∞.

Taking limits and using the continuity of norms immediately
yields (41).

It is known that theℓ1-norm is thelargest convex under-
estimator3 of the 0-quasinorm on theℓ∞-norm unit ball [43]
and that the nuclear norm is thelargestconvex underestimator
of rank on spectral norm unit ball [29]. We suspect that a vast
generalization of this observation is true, namely, the Schatten
1-norm as defined in (37) is the largest convex underestimator
of the rank function as defined in (10). We are however unable
to prove nor disprove this stronger version of Lemma 21,
i.e., with ‘largestconvex underestimator’ in place of ‘convex
underestimator’.

The condition (40) in Lemma 21 provides a simple way for
alleviating the fact that by replacing the conditionrank(f) ≤ r

3Also called thegreatest convex minorant, in this case also equivalent to
the Legendre-Frenchel biconjugateor convex biconjugate.

by the condition‖f‖∗,1 ≤ r‖f‖∗,∞. Recall that the discussion
in Section VI shows that there arêf for which

argmin{‖f̂ − f‖ : rank(f) ≤ r} = ∅,

which really results from the fact that

{f ∈ L2(X1 × · · · ×Xd) : rank(f) ≤ r}

is not a closed set. The condition (40) we derived may then
be used as a work-around relaxation where we have the ratio
‖f‖∗,1/‖f‖∗,∞ as a ‘proxy’ in place ofrank(f).

Theorem 22. Let f̂ ∈ L2(X1 × · · · × Xd). For any r ∈ N,
the optimization problem

argmin{‖f̂ − f‖ : ‖f‖∗,1 ≤ r‖f‖∗,∞}

always has a solution.

Proof: The follows from the fact that the set

{f ∈ L2(X1 × · · · ×Xd) : ‖f‖∗,1 ≤ r‖f‖∗,∞}

is closed, which follows easily from the continuity of the real-
valued function‖ · ‖∗,1 − r‖ · ‖∗,∞ on L2(X1 × · · · × Xd),
which in turn follows easily from the fact that all norms are
continuous functions.

We would like to add a few words about the ratio

‖f‖∗,1
‖f‖∗,∞

.

Note that this gives a crude notion of ‘numerical rank’ for ad-
partite function. Recall that whend = 2 andX1, X2 are finite,
bipartite functions may be regarded as matrices, i.e.L2(X1 ×
X2) ∼= Cn1×n2 where#X1 = n1, #X2 = n2. In this case,
the ratio of the Frobenius norm to the spectral norm and the
ratio of the nuclear norm to the spectral norm are occasionally
used as proxies for matrix rank, often in scenarios where the
use of matrix rank would be computational intractable. These
ratios are used because of bounds that are the analogues of
(40),

‖A‖F ≤
√
rank(A)‖A‖2 and ‖A‖∗ ≤ rank(A)‖A‖2,

for A ∈ Cn1×n2 . In fact the inequality on the right is exactly
(40) applied to the case of bipartite functions, i.e. matrices.

Theorem 22 represents a simple, elegant solution to the non-
existence problem in Section VI but we do not find it useful
for the applications that we consider here. Instead another
workaround that uses the notion of coherence, discussed in the
next section, is more naturally applicable in our situtations.

VIII. C OHERENCE

We will show in this section that a simple measure of
angular constriant called coherence, or rather, the closely
related notion ofrelative incoherence, allows us to alleviate
two problems simultaneously: the computational intractability
of checking for uniqueness discussed in Section IV and the
non-existence of a best approximant in Section VI.
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Definition 23. Let H be a Hilbert space provided with scalar
product〈·, ·〉, and letΦ ⊆ H be a set of elements of unit norm
in H. The coherence ofΦ is defined as

µ(Φ) = sup
ϕ 6=ψ

|〈ϕ, ψ〉|

where the supremum is taken over all distinct pairsϕ, ψ ∈ H.
If Φ = {ϕ1, . . . , ϕr} is finite, we also writeµ(ϕ1, . . . , ϕr) :=
maxp6=q|〈ϕp, ϕq〉|.

We adopt the convention that whenever we writeµ(Φ)
(resp. µ(ϕ1, . . . , ϕr)) as in Definition 23, it is implicitly
implied that all elements ofΦ (resp.ϕ1, . . . , ϕr) are of unit
norm.

Th notion of coherence has received different names in
the literature: mutual incoherence of two dictionaries [26],
mutual coherence of two dictionaries [9], the coherence of
a subspace projection [8], etc. The version here follows that
of [32]. Usually, dictionaries are finite or countable, but we
have here a continuum of atoms. Clearly,0 ≤ µ(Φ) ≤ 1, and
µ(Φ) = 0 iff ϕ1, . . . , ϕr are orthonormal. Also,µ(Φ) = 1 iff
Φ contains at least a pair of collinear elements, i.e.ϕp = λϕq
for somep 6= q, λ 6= 0.

We find it useful to introduce a closely related notion that
we call relative incoherence. It allows us to formulate some
of our results slightly more elegantly.

Definition 24. Let Φ ⊆ H be a set of elements of unit norm.
The relative incoherence ofΦ is defined as

ω(Φ) =
1− µ(Φ)

µ(Φ)
.

For a finite set of unit vectorsΦ = {ϕ1, . . . , ϕr}, we will also
write ω(ϕ1, . . . , ϕr) occasionally.

It follows from our observation about coherence that0 ≤
ω(Φ) ≤ ∞, ω(Φ) = ∞ iff ϕ1, . . . , ϕr are orthonormal, and
ω(Φ) = 0 iff Φ contains at least a pair of collinear elements.

In the next few subsections, we will see respectively how
coherence can inform us about the existence (Section VIII-A),
uniqueness (Section VIII-B), as well as both existence and
uniqueness (Section VIII-C) of a solution to the best rank-r
SS approximation problem (28). We will also see how it can be
used for establishing exact recoverability (Section VIII-D) and
approximation bounds (Section VIII-E) in greedy algorithms.

A. Existence via coherence

The goal is to prevent the phenomenon we observed in Ex-
ample 12 to occur, by imposing natural and weak constraints;
we do not want to reduce the search to a compact set. It is
clear that the objective is not coercive, which explains why
the minimum may not exist. But with an additional condition
on thecoherence, we shall be able to prove existence thanks
to coercivity.

The following shows that a solution to the bounded coher-
ence best rank-r approximation problem always exists:

Proposition 25. Let f ∈ L2(X1 × · · · × Xd) be a d-partite
function. If

d∏

k=1

(1 + ωk) > r − 1 (42)

or equivalently if
d∏

k=1

µk <
1

r − 1
, (43)

then

η = inf

{∥∥∥∥f −
r∑

p=1

λpϕ1p ⊗ · · · ⊗ ϕdp

∥∥∥∥ :

λ ∈ C
r, µ(ϕk1, . . . , ϕkr) ≤ µk

}
(44)

= inf

{∥∥∥∥f −
r∑

p=1

λpϕ1p ⊗ · · · ⊗ ϕdp

∥∥∥∥ :

λ ∈ C
r, ω(ϕk1, . . . , ϕkr) ≥ ωk

}

is attained. Here‖ · ‖ denotes theL2-norm onL2(X1 × · · ·×
Xd) and λ = (λ1, . . . , λr). If desired, we may assume that
λ ∈ Rr andλ1 ≥ · · · ≥ λr > 0 by Theorem 2.

Proof: The equivalence between (42) and (43) follows
from Definition 24. We show that if either of these conditions
are met, then the loss function is coercive. We have the
following inequalities
∥∥∥∥∥

r∑

p=1

λpϕ1p ⊗ · · · ⊗ ϕdp

∥∥∥∥∥

2

=

r∑

p,q=1

λpλ̄q

d∏

k=1

〈ϕkp, ϕkq〉

≥
r∑

p=1

λpλ̄p

d∏

k=1

‖ϕkp‖2

−
r∑

p6=q

∣∣∣∣∣λpλ̄q
d∏

k=1

〈ϕkp, ϕkq〉
∣∣∣∣∣

≥
r∑

p=1

|λp|2 −
d∏

k=1

µk
∑

p6=q
|λpλ̄q|

≥ ‖λ‖22 − (r − 1)‖λ‖22
d∏

k=1

µk

where the last inequality follows from
∑

p6=q
|λpλ̄q| = 2

∑

p<q

|λpλ̄q| ≤
∑

p<q

(|λp|2+ |λ̄q|2) = (r−1)‖λ‖22.

This yields
∥∥∥∥∥

r∑

p=1

λpϕ1p ⊗ · · · ⊗ ϕdp

∥∥∥∥∥

2

≥
[
1− (r − 1)

d∏

k=1

µk

]
‖λ‖22

(45)
Since by assumption(r − 1)

∏d
k=1 µk < 1, it is clear that

the left hand side of (45) tends to infinity as‖λ‖2 → ∞.

And becausef is fixed,
∥∥∥f −∑r

p=1 λpϕ1p ⊗ · · · ⊗ ϕdp

∥∥∥ also

tends to infinity as‖λ‖2 → ∞. This proves coercivity of the
loss function and hence the existential statement.

The condition (42) or, equivalently, (43), in Proposition 25
is sharp in an appropriate sense. Proposition 25 shows that the
condition (43) is sufficient in the sense that it guarantees abest
rank-r approximation when the condition is met. We show that
it is also necessary in the sense that if (43) does not hold, then
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there are examples where a best rank-r approximation fails to
exist.

In fact, let f̂ be as in Example 12. As demonstrated in the
proof of Theorem 14, the infimum for the cased = 3 and
r = 2,

inf
‖gk‖=‖hk‖=1, λ,µ≥0

‖f̂ − λg1 ⊗ g2 ⊗ g3 − µh1 ⊗ h2 ⊗ h3‖

is not attained. Since

gk =
ϕk + n−1ψk
‖ϕk + n−1ψk‖

, hk =
ϕk

‖ϕk‖
,

for k = 1, 2, 3, the corresponding coherence

µ(gk, hk) ≥ |〈gk, hk〉| → 1

asn→ ∞. For any values ofµ1, µ2, µ3 ∈ [0, 1] such that (43)
holds, i.e.µ1µ2µ3 < 1/(r− 1) = 1, we cannot possibly have
µ(gk, hk) ≤ µk for all k = 1, 2, 3 since

µ(g1, h1)µ(g2, h2)µ(g3, h3) → 1

asn→ ∞.

B. Uniqueness via coherence

In order to prove uniqueness, we need a simple observation
and the notion of Kruskal rank introduced in Definition 7.

Lemma 26. Let Φ ⊆ L2(X1 × · · · ×Xd) be finite. Then

krankΦ ≥ 1

µ(Φ)
(46)

Proof: Let s = krankΦ+1. Then there exists a subset of
s distinct unit vectors inΦ, {Φ1, . . . ,Φs} such thatα1Φ1 +
· · ·+αsΦs = 0 with |α1| = max{|α1|, . . . , |αs|} > 0. Taking
inner product withΦ1 we getα1 = −α2〈Φ2,Φ1〉 − · · · −
αs〈Φs,Φ1〉 and so|α1| ≤ (|α2| + · · · + |αs|)µ(V ). Dividing
by |α1| then yields1 ≤ (s− 1)µ(Φ).

We now characterize the uniqueness of the rank revealing
decomposition in terms of coherence introduced in Defini-
tion 23.

Proposition 27. Let f ∈ L2(X1 × · · · × Xd) have a rank-r
SS decomposition

f =

r∑

p=1

λpϕ1p ⊗ · · · ⊗ ϕdp

whereΦk := {ϕk1, . . . , ϕkr} are elements inL2(Xk) of unit
norm for all k = 1, . . . , d. Let ωk = ω(Φk). If

d∑

k=1

ωk ≥ 2r − 1, (47)

thenr = rank(f) and the decomposition is essentially unique.

Proof: Inequality (47) implies that
∑d

k=1 µ
−1
k ≥ 2r +

d − 1, whereµk denotesµ(Φk). If it is satisfied, then so is
Kruskal’s condition (25) thanks to Lemma 26. The result hence
directly follows from Lemma 9.

Note that unlike thek-ranks in (25), the coherences in (47)
are trivial to compute. In addition to uniqueness, an easy but
important consequence of Proposition 27 is that it providesa
readily checkable sufficient condition for tensor rank, which
is NP-hard over any field [41], [42].

C. Existence and uniqueness via coherence

Now the following existence and uniqueness sufficient con-
dition can be deduced from Propositions 25 and 27.

Corollary 28. If d ≥ 3 and if coherencesµk satisfy
(

d∏

k=1

µk

)1/d

≤ d

2r + d− 1
(48)

then the bounded coherence best rank-r approximation prob-
lem has a unique solution up to unimodulus scaling.

Proof: The existence in the caser = 1 is ensured, because
the set of separable functions{ϕ1⊗ · · ·⊗ϕd : ϕk ∈ L2(Xk)}
is closed. Consider thus the caser ≥ 2. Since the function

f(x) = 1
x −

(
d

2x+d−1

)d
is strictly positive forx ≥ 2 and

d ≥ 3, condition (48) implies that
∏d
k=1 µk is smaller than

1/r, which permits to claim that the solution exists by calling
for Proposition 25. Next in order to prove uniqueness, we use
the inequality between harmonic and geometric means: if (48)

is verified, then we also necessarily haved
(∑d

k=1 µ
−1
k

)−1

≤
d

2r+d−1 . Hence
∑d

k=1 µ
−1
k ≥ 2r + d − 1 and we can apply

Proposition 27.
In practice, simpler expressions than (48) can be more

attractive for computational purposes. These can be derived
from the inequalities between means:
(
1

d

d∑

k=1

µ−1
k

)−1

≤
(

d∏

k=1

µk

)1/d

≤ 1

d

d∑

k=1

µk ≤
(
1

d

d∑

k=1

µ2
k

)1/2

.

Examples of weaker sufficient conditions that could be used
in place of (48) include

d∑

k=1

µk ≤ d2

2r + d− 1
, (49)

d∑

k=1

µ2
k ≤ d

(
d

2r + d− 1

)2

. (50)

Another simplification can be performed, which yields dif-
ferentiable expressions of the constraints if (50) is to be used.
In fact, noting that for any set of numbersx1, . . . , xn ∈ C,
maxi=1,...,n|xi| ≤

√∑n
i=1|xi|2, a sufficient condition ensur-

ing that (50) is satisfied, and hence (48), is

d∑

k=1

∑

p<q

|〈ϕkp, ϕkq〉|2 ≤ d

(
d

2r + d− 1

)2

.

D. Exact recoverability via coherence

We now describe a result that follows from the remarkable
work of Temlyakov. It allows us to in principle determine the
SS decomposition meeting the type of coherence conditions
in Section VIII-A.

Some additional notations would be useful. We letΦ ⊆
{f ∈ L2(X1 × · · · ×Xd : rank(f) = 1} be adictionary4 of

4A dictionary is any setΦ ⊆ H whose linear span is dense in the Hilbert
spaceH.
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separable functions (i.e. rank-1) in L2(X1 × · · · × Xd) that
meets a bounded coherence condition , i.e.

µ(Φ) < µ (51)

for someµ ∈ [0, 1) to be chosen later. Recall that the elements
of Φ are implictly assumed to be of unit norm (cf. remark
after Definition 23). Note that in Proposition 25, we hadµ =∏d
k=1 µk but we would not impose this here.
Let t ∈ (0, 1]. The weakly orthogonal greedy algorithm

(WOGA) is simple to describe: Setf0 = f . For eachm ∈ N,
we inductively define a sequence offm’s as follows:

1) gm ∈ Φ is any element satisfying

|〈fm−1, gm〉| ≥ t sup
g∈D

|〈fm−1, g〉|;

2) hm ∈ L2(X1 × · · · × Xd) is a projection off onto
span(g1, . . . , gm), i.e.

hm ∈ argmin{‖f − g‖ : g ∈ span(g1, . . . , gm)}; (52)

3) fm ∈ L2(X1 × · · · ×Xd) is a deflation off by hm, i.e.

fm = f − hm.

Note that by Proposition 25, the projection in (52) is well-
defined, i.e. a minimizerhm always exist. The following result,
adpated here for our purpose, was proved for any arbitrary
dictionary in [66]. Also note that deflation generally does not
work to compute SS decompositions, as pointed out in [63].

Theorem 29 (Temlyakov). Supposef ∈ L2(X1 × · · · ×Xd)
has a SS decomposition

f =
r∑

p=1

λpϕ1p ⊗ · · · ⊗ ϕdp

with ϕ1p ⊗ · · · ⊗ ϕdp ∈ Φ and the condition that

r <
t

1 + t

(
1 +

1

µ

)

for some t ∈ (0, 1] and µ =
∏d
k=1 µk. Then theWOGA

algorithm recovers the factors exactly, or more precisely,
fr = 0 and thusf = hr.

Sohr, by its definition in (52) and our choice ofΦ, is given
in the form of a linear combination of rank-1 functions, i.e.
an rank-r SS decomposition.

E. Greedy approximation bounds via coherence

This discussion in Section VIII-D pertains to exact recovery
of a rank-r SS decomposition although our main problem
really takes the form of a best rank-r approximation more
often than not. We will describe some greedy approximation
bounds for the approximation problem in this section.

We let

σr(f̂) := inf
α∈Cr, ‖ϕkp‖=1

∥∥∥∥∥f̂ −
r∑

p=1

αp

d∏

k=1

ϕkp

∥∥∥∥∥ .

By our definition of rank and border rank,

σr(f̂) = inf{‖f̂ − f‖ : rank(f) ≤ r}
= min{‖f̂ − f‖ : rank(f) ≤ r}.

It would be wonderful if greedy algorithms along the lines
of what we discussed in Section VIII-D could yield an
approximant within some provable bounds that is a factor of
σr(f̂). However this is too much to hope for mainly because
a dictionary comprising all separable functions, i.e.{f :
rank(f) = 1} is far too large to be amenable to such analysis.
This does not prevent us from considering somewhat more
restrictive dictionaries like what we did in the previous section.
So again, letΦ ⊆ {f ∈ L2(X1 × · · · ×Xd) : rank(f) = 1}
be such that

µ(Φ) < µ

for some givenµ ∈ [0, 1) to be chosen later. Let us instead
define

sr(f̂) = inf
α∈Cr, ϕp∈Φ

∥∥∥∥∥f̂ −
r∑

p=1

αpϕp

∥∥∥∥∥ .

Clearly

σr(f̂) ≤ sr(f̂) (53)

since the infimum is taken over a smaller dictionary.
The special case wheret = 1 in the WOGA described in

Section VIII-D is also called theorthogonal greedy algorithm
(OGA). The result we state next comes from the work of a
number of people done over the last decade: (54) is due to
Gilbert, Muthukrisnan, and Strauss in 2003 [31]; (55) is due
to Tropp in 2004 [68]; (56) is due to Dohono, Elad, and
Temlyakov in 2006 [27]; and (57) is due to Livshitz in 2012
[48]. We merely apply it to our approximation problem here.

Theorem 30. Let f̂ ∈ L2(X1 × · · · ×Xd) and fr be therth
iterate as defined inWOGA with t = 1 and inputf̂ .

1) If r < 1
32µ

−1, then

‖f̂ − fr‖ ≤ 8r1/2sr(f̂). (54)

2) If r < 1
3µ

−1, then

‖f̂ − fr‖ ≤ (1 + 6r)1/2sr(f̂). (55)

3) If r ≤ 1
20µ

−2/3, then

‖f̂ − fr log r‖ ≤ 24sr(f̂). (56)

4) If r ≤ 1
20µ

−1, then

‖f̂ − f2r‖ ≤ 3sr(f̂). (57)

It would be marvelous if one could instead establish bounds
in (54), (55), (56), and (57) withσr(f̂) in place ofsr(f̂) and
{f : rank(f) = 1} in place ofΦ, dropping the coherenceµ
altogether. In which case one may estimate how well therth
OGA iteratesfr approximates the best rank-r approximation.
This appears to be beyond present capabilites.
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IX. A PPLICATIONS

Various applications, many under the headings ofCANDE-
COMP [12] and PARAFAC [35], have appeared in psychomet-
rics and, more recently, also other data analytic applications.
We found that many of such applications suffer from a re-
gretable defect — there are no compelling reasons nor rigorous
arguments that support the use of a rank-r SS decomposition
model. The mere fact that a data set may be cast in the form
of a d-dimensional arrayA ∈ Cn1×···×nd does not mean that
(13) would be the right or even just a reasonable thing to do.
In particular, how would one even interpret the factorsϕkp ’s
whend > 2? Whend = 2, one could arguably interpret these
as principal or varimax components when orthonormality is
imposed but for generald > 2, a convincing application of a
model based on the rank-r SS decomposition (13) must rely
on careful arguments that follow from first principles.

The goal of this section is two-fold. First we would like
to provide a selection of applications where the rank-r SS
decomposition (13) arises naturally via considerations offirst
principles (in electrodynamics, quantum mechanics, wave
propagation, etc). Secondly we want to also demonstrate that
the coherence conditions discussed extensively in SectionVIII
invariably have reasonable interpretations in terms of physical
quantities.

The use of a rank-r SS decomposition model in signal
processing via the higher-order statistics has a long history
[57], [30], [16], [11], [58]. Our signal processing applications
here are of a different nature, they are based on geometrical
properties of sensor arrays instead of considerations of higher-
order statistics. This line of argument first appeared in the
work of Sidiropoulos and Bro [60], which is innovative and
well-motivated by first principles. However, like all other
applications considered thus far, whether in data analysis,
signal processing, psychometrics, or chemometrics, it does not
address the serious nonexistence problem that we discussedat
length in Section VIII-A. Without any guarantee that a solution
to (28) exists, one can never be sure when the model would
yield a solution. Another issue of concern is that the Kruskal
uniqueness condition in Lemma 9 has often been invoked to
provide evidence of a unique solution but as we have discussed
in Section IV, this condition is impossible to check since there
is no known way to efficiently computing the Kruskal rank.
The applications considered below would use the coherence
conditions developed in Section VIII to avoid these difficulties.
More precisely, Proposition 25, Proposition 27, and Corol-
lary 28 are invoked to guarantee the existence of a solution
to the approximation problem and provide readily checkable
conditions for uniqueness of the solution, all via the notion of
coherence.

In this section, applications are presented in finite dimen-
sion. In order to avoid any confusion,∗, H and T will denote
complex conjugation, hermitian transposition, and transposi-
tion, respectively.

A. Joint channel and source estimation

Consider a narrow band transmission problem in the far
field. We assume here that we are in the context of wireless

telecommunications, but the same principle could apply in
other fields. Letr signals impinge on an array, so that their
mixture is recorded. It is wished to recover the original signals,
and to estimate their directions of arrival and respective powers
at the receiver. If the channel is specular, some of these signals
can correspond to different propagation paths of the same
radiating source, and are hence correlated. In other words,r
does not denote the number of sources, but the total number
of distinct paths viewed from the receiver.

In the present framework, we assume that channels can be
time-varying, but that they can be assumed constant over a
sufficiently short observation length. The goal is hence to be
able to work with extremely short samples.

In order to face this challenge, we assume that the sensor
array is structured, as in [60]. More precisely, the sensor array
is composed of areference arraycontainingn1 sensors, whose
location is defined by a vectorbi ∈ R3, and n2 − 1 other
subarrays, deduced from the reference array by a translation
in space defined by a vector∆j ∈ R3, 1 < j ≤ n2. The
reference subarray is numbered withj = 1 in the remainder.

Under these assumptions, the signal received at discrete time
tk, k = 1, . . . , n3, on theith sensor of the reference subarray
can be written as:

si,1(k) =
r∑

p=1

σp(tk) exp(ψi,p)

with ψi,p =  ωC (b
T

i dp) where the dotless denotes
√
−1,

vectordp is unit norm and denotes the direction of arrival of
the pth path. Next, on thejth subarray,j > 1, we have

si,j(k) =

r∑

p=1

σp(tk) exp(ψi,j,p) (58)

with ψi,j,p =  ωC (b
⊤
i dp +∆⊤

j dp). If we let ∆1 be the null
vector, then (58) also applies for the reference subarray. The
interest of this structure is that variablesi and j decouple in
function exp(ψi,j,p), yielding a relation resembling the rank
revealing SS decomposition:

si,j(k) =

r∑

p=1

λpuipvjpwkp

where uip = exp
(
 ωCb

⊤
i dp

)
, vjp = exp

(
 ωC∆

⊤
j dp

)
and

wkp = σp(tk)/‖σp‖, λp = ‖σp‖.
Hence, by computing the rank revealing decomposition of

the tensorS = (si,j(k)) ∈ Cn1×n2×n3 , it is possible to jointly
estimate: (i) signal waveformsσp(k), and (ii) the directions of
arrival dp of each propagation path ifbi or ∆j are known.

However, the observation model (58) is not realistic, and
an additional error term should be added in order to stand for
modeling inaccuracies and background noise. It is customary
(and realistic thanks to the central limit theorem) to assume
that this additive error has a continuous probability distribu-
tion, so that tensorS has ageneric rank. Yet, the generic rank
takes values at least as large as⌈n1n2n3/(n1+n2+n3−2)⌉,
which is always larger than Kruskal’s bound [20]. Therefore,
we have to face the problem of approximating tensorS

by another of rankr. And we have seen that the angular
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constraint imposed in Section VIII permits to deal with a well-
posed problem. In order to see the physical meaning of this
constraint, it is convenient to define first the tensor product
between subarrays.

B. Tensor product between sensor subarrays

The sensor arrays we cope with are structured, in the sense
that the whole array is generated by one subarray, defined by
the collection of vector locations{bi ∈ R3 : 1 ≤ i ≤ n1}, and
a collection of translations in space,{∆j ∈ R3 : 1 ≤ j ≤ n2}.
If we define vectors

up =
1√
n1

[
exp

(

ω

C
b⊤
i dp

)]n1

i=1
,

vp =
1√
n2

[
exp

(

ω

C
∆⊤
j dp

)]n2

j=1
, (59)

wp =
σp

‖σp‖
,

then this means that we may see all measurements as the
superimposition of decomposable tensors:

λpup ⊗ vp ⊗wp.

The geometry of the sensor array is contained inup ⊗ vp,
whereasλp andwp contain energy and time information on
each pathp, respectively. Note that the reference subarray and
the set of translations play symmetric roles, in the sense that
up andvp could be interchanged without changing the whole
array. This will become clear with a few examples.

When we are given a structured sensor array, there can be
several ways of splitting it into a tensor product of two (or
more) subarrays, as now shown by simple examples.

Example 31. Define the matrix of sensor locations

[b1,b2,b3] =

[
0 0 1
0 1 1

]

This subarray is depicted in Figure 1.b. By translating it
according to the translation defined in Figure 1.c one obtains
another subarray. The union of the two subarrays yields the
array of Figure 1.a. The same array is obtained by interchang-
ing the roles of the two subarrays, i.e. three subarrays of two
sensors deduced from each other by two translations.

(a) (c)(b)

Fig. 1. Antenna array (a) is obtained as the tensor product between subarrays
(b) and (c)

Example 32. Define the array by

[b1,b2, . . . ,b6] =

[
0 1 2 0 1 2
0 0 0 1 1 1

]

This array, depicted in Figure 2.a, can be obtained either
by the union of subarray of Figure 2.b and its translation

defined by Figure 2.c, or by the array of Figure 2.c translated
three times according to Figure 2.b. We agree to express this
relationship by the equation:

= ⊗ = ⊗

Another decomposition may be obtained as

= ⊗ = ⊗

In fact, = ⊗ and = ⊗ . However,
it is important to stress that the various decompositions of
the whole array into tensor products of subarrays are not
equivalent from the point of view of performance. In particular,
the Kruskal’s bound can be different, as will be pointed out
next.

(b) (c)(a)

Fig. 2. Antenna array (a) is obtained as the tensor product between subarrays
(b) and (c)

Similar observations can be made for grid arrays in general.

Example 33. Take an array of9 sensors located at(x, y) ∈
{1, 2, 3} × {1, 2, 3}. We have the relations

= ⊗ = ⊗ = ⊗

among others.

Let’s now have a look at the maximal number of sources
rmax that can be extracted from an1 × n2 × n3. A sufficient
condition is that the total number of paths,r, is smaller than
Kruskal’s bound (25). We shall simplify the bound by making
two assumptions: (a) the loading matrices are generic, that
is, they are full rank, and (b) the number of paths is larger
than the sizesn1 and n2 of the two subarrays entering the
array tensor product, and smaller than the number of time
samples,n3. Under these simplifying assumptions, Kruskal’s
bound becomes2rmax ≤ n1 + n2 + rmax − 2, or:

rmax = n1 + n2 − 2 (60)

The table below illustrates the fact that the choice of subarrays
has an impact on this bound.
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Array Subarray n1 n2 rmax

product

⊗ 3 2 3

⊗ 4 2 4

⊗ 2 3 3

⊗ 3 3 4

⊗ 6 2 6

⊗ 4 4 6

C. Significance of the angular constraint

We are now in a position to interpret the meaning of
angular constraints proposed in Section VIII. According to
the notations given in (59), the first coherence

µ1 = max
p6=q

|uH
puq|

corresponds to the angular separation viewed from the refer-
ence subarray. In fact, vectorsbi anddp having a unit norm,
as well as vectorsup, the quantity|uH

puq| may be seen as a
measure of angular separation betweendp anddq, as we shall
now subsequently show in Proposition 35.

Definition 34. We shall say that a collection of vectors
{b1, . . . ,bn} is resolvent with respect to a directionv ∈ R

3

if there exist two indicesk and l such thatv = bk − bl and

0 < ‖v‖ < λ

2
(61)

whereλ = 2πC
ω denotes the wavelength.

Let bi, dp and uq be defined as in (59),1 ≤ i ≤ n1,
1 ≤ p, q ≤ n2. Then we have [19]:

Proposition 35. If {b1, . . . ,bn} is resolvent with respect to
three linearly independent directions, then

|uH

puq| = 1 ⇔ dp = dq.

Proof: Assume |uH

puq| = 1. Then because they are
unit norm, vectorsup and uq are collinear with a unit
modulus proportionality factor. Hence from (59), for allj, k,
1 ≤ j, k ≤ n1, (bj−bk)

⊤(dp−dq) ∈ λZ, whereλ is defined
in Definition 61. Since{b1, . . . ,bn} is resolvant, there exist
(k, l) such that0 < ‖bk−bl‖ < λ/2. Hence, because vectors
dp are unit norm,‖dp−dq‖ ≤ 2 so that we necessarily have
that(bk−bl)

⊤(dp−dq) = 0. Vector(dp−dq) is consequently
orthogonal to(bk − bl). The same reasoning can be carried
out with two other independent vectors. Eventually, vector
(dp − dq) is null because it is orthogonal to three linearly
independent vectors inR3. The converse is immediate, by the
definition ofuq.

Note that the condition of Definition 61 is not very restric-
tive, since sensor arrays usually contain sensors separated by
half a wavelength or less. Thanks to Proposition 35, we now

know that uniqueness of the matrix factorU = [u1, . . . ,ur]
and identifiability of the directions of arrivaldp are equivalent.
And from the results of Section VIII, they are ensured by a
constraint on coherence such as (48).

From Section IX-B, one can claim that a similar interpreta-
tion can be put forward for the second coherence, which mea-
sures the minimal angular separation between paths, viewed
from the subarray defining translations.

The third coherence is nothing else but the maximal corre-
lation coefficient between signals received from various paths
on the array:

µ3 = max
p6=q

|σH
pσq|

‖σp‖‖σq‖
As a conclusion, the tensor approximation exists and is

unique if either signals propagating through various pathsare
not too much correlated, or if their direction of arrival arenot
too close. By “not too” it should be understood that the product
of coherencies need to satisfy inequality (48) of Corollary28.
In other words, one can separate paths with high correlation
provided they are sufficiently well separated in space.

Hence, the decomposition of an array into a tensor product
of two (or more) subarrays should not only take into account
Kruskal’s bound, as elaborated in Section IX-B, but also the
ability of the latter subarrays to separate two distinct directions
of arrival (cf. Proposition 35).

D. CDMA communications

The application to antenna array processing we described
in Section IX-A is one among many others, including Sparse
Component Analysis and Compressed Sensing. Actually, the
present framework also applies to all Source Separation prob-
lems, as those reported in [18], provided an additional diversity
is available. For example, one can mention the case of Code
Division Multiple Access (CDMA) communications. In fact,
as already pointed out in [61], it is possible to distinguish
between symbol and chip diversities. In order to be more
explicit, let’s detail a little further the latter example.

Consider a downlink CDMA communication withr users,
each assigned a spreading sequenceCp(k), 1 ≤ p ≤ r, 1 ≤
k ≤ n. Next, denoteAip the complex gain between sensori,
i = 1, . . . ,m, and userp, Sjp the symbol sequence transmitted
by userp, j ∈ Z, andHp(k) the channel impulse response of
userp. Then, the signal received on sensori during thekth
chip of thejth symbol period takes the form:

Tijk =
r∑

p=1

AipSjpBkp

whereBkp =
∑

tHp(k − t)Cp(t) denotes the output of the
pth channel excited by thepth coding sequence, after removal
of the guard chips (which may be affected by two different
consecutive symbols) [61].

The columns of matrixB are often referred to as “effective
codes”, and coincide with spreading codes if the channel is
memoryless and noiseless. In practice, the receiver filter is
matched to the transmitter shaping filter combined with the
propagation channel, so that effective and spreading codesare
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ideally proportional. Under these conditions, the coherence
µC accounts for the angular separation between spreading
sequences:µC = 0 means that they are orthogonal. On the
other hand,µA = 0 means that symbol sequences are all
uncorrelated. Lastly, as seen in Proposition 35,µB = 1 means
directions of arrival are collinear.

Yet, in order to avoid multiple access interferences, spread-
ing sequences are usually chosen uncorrelated for all de-
lays, which implies among others that they are orthogonal.
Hence the results obtained in this paper show that spread-
ing sequences do not need to be orthogonal, nor symbol
sequences need to be uncorrelated, if directions of arrivalare
not collinear. In particular, shorter spreading sequencesmay
be used for the same number of users, which would increase
the throughput. Alternatively, one could increase the number
of users for a given spreading gain. This is made possible
because the constraint of having almost orthogonal spreading
sequences is relaxed. In addition, some directions of arrival
may be collinear if the corresponding spreading sequences are
sufficiently angularly separated. However, these conclusions
are essentially valid when users are synchronized, that is,for
downlink communications.

E. Polarization

The exploitation of polarization as an additional diversity
takes its roots in the paper by Nehorai and Paldi [54].
Several attempts to use this diversity in the frame of tensor-
based source localization and estimation can be found in the
literature. A good account of the existing approaches can be
found in [34].

In this framework, we consider again an array ofn1 sensors,
whose location is defined by a 3-dimensional real vectorbi,
and we assume a narrow-band transmission in the far field (i.e.
sources - or source paths - are all seen as plane waves at the
receiver sensor array). The difference with Section IX-B isthat
the translation diversity is not mandatory anymore, provided
impinging waves are polarized, and provided their polarization
is neither linear nor circular. One measures the electric and
magnetic fields at each sensor as a function of time, so that
n2 = 6. More precisely, vectorvp of Equation (59) is replaced
by:

vp = Bp gp (62)

whereBp is a 6 × 2 matrix depending only on the direction
of arrival dp (defined in Section IX-B), and a vectorgp
depending on the orientation and ellipticity of the polarization
of the pth wave.

Coherencesµ1 and µ3 are the same as in Section IX-B,
and represent respectively the angular separation betweendi-
rections of arrival, and correlation coefficient between arriving
sources. It is slightly more involved to capture the significance
of the coherence associated with polarization,µ2.

With this goal, we need to go into more details. Referring
to [54], and denotingαp andβp the orientation and ellipticity
angles of the polarization of thepth wave,αp ∈ (−π/2, π/2],

βp ∈ (−π/4, π/4)− {0}, we have:

Bp =
1√
2

[
ep fp
fp −ep

]

gp = Q(αp)hp

with

ep =




− sin θp
cos θp
0


 , fp =




− cos θp sinχp
− sin θp sinχp

cosχp




Q(α) =

[
cosα sinα

− sinα cosα

]
, hp =

(
cosβp
 sinβp

)

whereθp ∈ [0, 2π) andχp ∈ (−π/2, π/2] denote respectively
the azimuth and elevation of the direction of arrival of thepth
path. In particular, the unit vector defining thepth direction
of arrival is:

dp =




cos θp cosχp
sin θp cosχp

sinχp




so that the triplet(dp, ep, fp) forms a right orthonormal triad.

Lemma 36. |gH
pgq| = 1 if and only if αp = αq + kπ and

βp = βq, k ∈ Z.

Proposition 37. |vH
pvq| ≤ 1, with equality if and only ifαp =

αq + kπ, βp = βq, θp = θq + k′π andχp = χq, k, k′ ∈ Z.

Proofs are given in appendix. This proposition proves that
a constraint on coherenceµ2 imposes sources paths to have
either different directions of arrival or to have differentpo-
larizations. The constraintµ2 < 1 has hence a clear physical
meaning. It is also interesting to note thatµ2 < 1 contributes to
satisfyµ1 < 1, becauseµ1 also involves directions of arrival.

F. Fluorescence spectral analysis

Here an another application to fluorescence spectral analysis
[62]. We refer the reader to Example 6 for the notations
used here. Suppose we havel samples with an unknown
number of pure substances in different concentration that are
fluorescent. Ifaijk is the measured fluorescence emission
intensity at wavelengthλem

j of ith sample excited with light
at wavelengthλex

k . The measured data is a3-dimensional
hypermatrixA = (aijk) ∈ Rl×m×n. At low concentrations,
Beer’s law of spectroscopy (which in turn is a consequence
of fundamental principles in quantum mechanics) can be
linearized [49], and yields a rank-revealing decomposition:

A = x1 ⊗ y1 ⊗ z1 + · · ·+ xr ⊗ yr ⊗ zr.

This can reveal the true chemical factors responsible for the
data:r = rank(A) would be the number of pure substances
in the mixtures,xp = (x1p, . . . , xlp) would be the relative
concentrations ofpth substance in specimens1, . . . , l; yp =
(y1p, . . . , ymp) the excitation spectrum ofpth substance;zp =
(z1p, . . . , znp) the emission spectrum ofpth substance. The
spectra would then allow one to identify the pure substances.

Of course this is only valid in an idealized situation when
the measurements are performed perfectly without error and
noise. Under realistic noisy circumstances, one would then
need to a find best rank-r approximation.
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G. Statistical independence induces diversity

When measurements are recorded only as a function of two
variables (e.g. time and space), the present framework can
apply if at least one additional diversity is taken into account.
We have seen already several instances of additional diversities
in the previous subsections. We shall point out now a quite
different way to build a function of more than two variables,
which makes sense from the physical point of view.

Assume the linear model below

x(t) = Us(t) (63)

where only signalx(t) is observed,U = [u1, . . . ,ur] is an
unknownN × r matrix, and s(t) is of dimensionr with
mutuallly statistically independent components,si(t). Then
one can build thedth order cumulant tensor ofx(t), T, and
the latter will satisfy the SS model [52]:

T = (U, . . . , U) ·Λ =

r∑

p=1

λpup ⊗ · · · ⊗ up

whereΛ denotes the cumulant tensor ofs. Yet, because of
statistical independence,Λ is diagonal [18]. Ifd ≥ 3, and if
at most one entry ofΛ is null, then matrixU and the entries
Λp···p = λp can be identified. The uniqueness of the solution
is subject to identifiability conditions evoked earlier.

As pointed out in [18] and references therein, this kind
of problems generalizes to convolutive mixtures as well, and
finds applications in telecommunications, radar, sonar, speech
processing, and biomedical engineering, among others.

H. Nonstationarity induces diversity

If a signal x(t) is nonstationary, its time-frequency trans-
form, defined by

X(t, f) =

∫
x(u)κ(u − t; f) du

for some given kernelκ, bears information. If variablest and
f are discretized, then the values ofX(t, f) can be stored
in a matrixX , and the more nonstationaryx(t), the larger
the rank ofX . A similar statement can be made on a signal
y(z) depending on a space variablez. The discrete values of
the space-wavevector transformY (z,w) of a field y(z) can
be stored in a matrixY . And the less homogeneous the field
y(z), the larger the rank ofY . This is probably the reason why
algorithms proposed in [69], [3] permit to localize and extract
dipole contributions in the brains by identifying a multilinear
model, provided the have distinct time-frequency or space-
wavevector patterns. Nevertheless, localization is guaranteed
to be successful only under restrictive assumptions.

X. FUTURE WORK

A separate article discussing practical algorithms for the
bounded coherence best rank-r SS approximation is under
preparation with additional coauthors. These algorithms follow
the general strategy of the greedy approximationsWOGA and
OGA discussed in Sections VIII-D and VIII-E but contain
other elements exploiting the special separable structureof our
problem. Extensive numerical experiments will be providedin
the forthcoming article.

APPENDIX

Proof of Lemma 36. First note thatQ(αp)
HQ(αq) =

Q(αq−αp). HencegH
pgq can be of unit modulus only ifhp and

Q(αq−αp)hq are collinear. But the first entry ofhp is real and
the second is pure imaginary. Hence, corresponding imaginary
and real parts ofQ(αq − αp)hq must be zero, which implies
thatsin(αq−αp) = 0. ConsequentlyQ(αq−αp) = ±I, which
yields hp = ±hq. But because angleβ lies in the interval
(−π/4, π/4), only the positive sign is acceptable.

Proof of Proposition 37. We have|vH
pvq| = |gH

pB
T
pBqgq|.

Notice that matrixBT
pBq is of the form

BT
pBq =

(
γ η

−η γ

)

whereγ andη are real,γ = 1
2 (e

T
peq+fT

p fq) andη = 1
2 (e

T
pfq−

fT
p eq). Yet, since vectorsgp andgq are of unit modulus,|vH

pvq|
can be of unit modulus only if matrixBT

pBq has an eigenvalue
of unit modulus, which requires thatγ2+η2 = 1. Let us prove
that we haveγ2 + η2 ≤ 1 with equality if and only if results
of Proposition 37 are satisfied.

With this goal, define the three 6-dimensional vectors:

z =
1√
2

[
ep
fp

]
, w =

1√
2

[
eq
fq

]
, w′ =

1√
2

[
fq
−eq

]
.

Thenγ = zTw andγ = zTw′. Now decompose vectorz into
two orthogonal parts:z = z0 + z1, with z0 ∈ Span{w,w′}
andz0⊥z1. Clearly,γ2 + η2 = ||z0||2. It is also bounded by
one because||z0||2 ≤ ||z||2 = 1, with equality if and only
if z ∈ Span{w,w′}. By inspection of the definitions ofep
andeq, we see that the third entry ofz andw is null. Hence
z ∈ Span{w,w′} is possible only if eitherz is collinear tow
or if the third entry ofw′ is null. In the latter case, it means
that χq = π/2, and then thatχp = π/2 and θp = θq. In the
former case, it can be seen thatsin θp = sin θq, and finally
thatχp = χq.

The last step is to rewriteγ and η as a function of angle
θp − θq, using trigonometric relations:γ = cos(θp − θq)(1 +
sinχp sinχq) + cosχp cosχq andη = sin(θp − θq)(sinχp +
sinχq). This eventually shows thatγ = 1 and η = 0. As
a consequence,|vH

pvq| = 1 only if BT
pBq = I, and the

proposition follows by applying the lemma.
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