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Blind Multilinear Identification

Lek-Heng Lint and Pierre Comdn Fellow, IEEE

Abstract—We discuss a technique that allows blind recovery approximation, etc. This article examines the model that

of signals or blind identification of mixtures in instances vhere
such recovery or identification were previously thought to e
impossible: (i) closely located or highly correlated soures in
antenna array processing, (ii) highly correlated spreadig codes
in CDMA radio communication, (iii) nearly dependent spectra
in fluorescent spectroscopy. This has important implicatios —
in the case of antenna array processing, it allows for jointdcal-
ization and extraction of multiple sources from the measurenent
of a noisy mixture recorded on multiple sensors in an entirg}
deterministic manner. In the case of CDMA, it allows the poss
bility of having a number of users larger than the spreading @in.
In the case of fluorescent spectroscopy, it allows for detdon of
nearly identical chemical constituents. The proposed teafique
involves the solution of a bounded coherence low-rank tenso
approximation problem. We show that bounded coherence alles
us to establish existence and uniqueness of the recoveredigimn.
We will provide some statistical motivation for the approximation
problem and discuss greedy approximation bounds. To provid
the theoretical underpinnings for this technique, we devalp
a corresponding theory of sparse separable decompositionsf
functions, including notions of rank and Schatten norms tha
specialize to the usual one for matrices and operators but gpies
to also hypermatrices and tensors.

I. INTRODUCTION

HERE are two simple ideas for reducing the complexity
or dimension of a problem that are widely applicabl

because of their simplicity and generality:

combines these two simple ideas:

T d
Foeryeexa) =Y ap [T o), 1)
k=1

p=1

and we are primarily interested in iiaverse problemi.e.
identification of the factorsy, based on noisy measurements
of f. We shall see that this is a surprisingly effective method
for a wide range of identification problems.

Here f is approximately encoded by scalars,a =
(a1,...,a,) € C", and dr functions, pi,, &k = 1,...,d;
p=1,...,r. Sinced andr are both assumed to be small,
we expect (1) to be a very compact, possibly approximate,
representation off. We will assume that all these functions
live in some Hilbert spaces and that,, are of unit norm
(clearly possible since the norm of,, can be ‘absorbed into’
the coefficiento, in (1)).

Let ur = maxp.q|(prp, Prq)| and define therelative
incoherencev, = (1 — ux)/ux for k = 1,...,d. Note that
wi € [0,1] andwy, € [0, cc]. We will show in this article that

if d> 3, and
d
Zwk >2r—1,
k=1

then the decompositionin (1) is essentiallyiqueandsparsest
possible, i.er is minimal. Hence we may in principle identify

)

. Sparsit_y: resplving a complicated entity, repregented b¥kp based only on measurements of the mixtgire
a function f, into a sum of a small number of simple or Ope of the keys in the identifiability requirement is that

elemental constituents:

T
=2 0w
p=1

d > 3 or otherwise (wheni = 1 or 2) the result would not
hold. We will show that the conditiod > 3 however leads to
a difficulty (that does not happen whén= 1 or 2). Since it is
rarely, if not never, the case that one has the exact valug¢s of

« Separability: decoupling a complicated entity, repre_the degomposition (1) is only useful in an idealized scenari
sented by a function, that depends on multiple factors!n reality, one hasf = f + ¢, an estimate off corrupted

into a product of simpler constituents, each dependi

only on one factor:

d
g(x1,...,Xq) = H Ok (Xk)-
k=1

The two ideas underlie some of the most useful techniques

noisee. Solving the inverse problem to (1) would require
that we solve a best approximation problem. For example,
with the appropriate noise models (see Section V), the best
approximation problem often takes the form

T d
f- Zap H Php
k=1

p=1

; ®)

argmin
a€C”, |lerpll=1

in engineering and science — Fourier, wavelets, and other ) _

orthogonal or sparse representations of signals and image#h | - || an L=-norm. Now the trouble is that wheu > 3,
singular value and eigenvalue decompositions of matricdBis best approximation problem may not have a solution —
separation-of-variables, Fast Fourier Transform, meal fidecause the infimum of the loss function is unattainable in

general, as we will discuss in Section VIII-A. In view of this
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d
H(l—i—wk) >,

k=1

(4)



the infimum in (3) is always attainable, thereby alleviatihg « Discrete:
aforementioned difficulty. A condition that meets both (&§ia

T

(4) is easy to obtain because of the arithmetic-geometramme Qijk = Z WipUjpWhp- )
inequality p=1
d 1/d d This may be viewed as a further discretization of the
[H(l +wi) <1+ 1 Z“’C' semidiscrete case, i.€;jx = f(X:,¥j,2k), Uip = Op(x;),
k=1 4= Vip = $p(¥5)s Wkp = Vp(2k).

It is clear that wheni, j, k& take finitely many values, the
discrete decomposition (7) is always possible with a finite

The notion of sparsity dates back to harmonic analysis- since the space is of finite dimension. 4fj, k could
[64], [71], [50] and approximation theory [65], and has retake infinitely many values, then the finitenessrofequires
ceived a lot of recent attention in compressive sensing, [28hat equality be replaced by approximation to any arbitrary
[10], [28], [15]. The notion ofseparabilityis also classical precisions > 0 in some suitable norm. This follows from the
— the basis behind the separation-of-variables techniquefbllowing observation about the semidiscrete decomparsiti
partial differential equations [6] and special functio3], The space of functions with a semidiscrete representaiom a
fast Fourier transforms on arbitrary groups [51], mean fiel@), with r finite, is dense inC%(12), the space of continuous
approximations in statistical physics [44], and the n@@ges functions. This is just a consequence of the Stone-Weasstr
model in machine learning [5], [46]. We describe a simplgheorem [21]. Discussion of the most general case (5) would
model that incorporates the two notions. require us to go into integral operators, which we will not do

The functionf : X — C or R to be resolved into simpler as in the present framework we are interested in applicstion
entities will be referred to as otarget function We will treat  that rely on the inverse problems corresponding to (6) and
the discrete X is finite or countably infinite) and continuous(7). Nonetheless (5) is expected to be useful and we state it
(X is a continuum) cases on an equal footing. The discrefigre for completeness. Henceforth, we will drop the adjecti
cases are wherf is a vector (if X = [ni] = {1,...,n1}), ‘semidiscrete’ or ‘discrete’ and simply refer to (6) or (7)
a matrix (if X = [n1] x [n2]), @ hypermatrix (f X = as adecomposition into a sum of separable functigss).
[n1] x [n2] x -+ x [ng]), while the usual continuous caseNote that SS decompositions have been already proposed in
are whenf is a function on some domaiX’ = Q C R™ the past and received many different names. In particuar, i
or C™. In the discrete cases, the set of target functions undgiite dimension, the acronym CP is now widely used, and
consideration are identified with":, C™* "2, Cm*"2*x%4  gtands either for Candecomp/Parafac or for Canonical Bilya
respectively whereas in the continuous cases, we usual®compositions.
impose some additional regularity structures such intslitya  \we will also frame our discussions in terms of the semidis-
or differentability, so that the set of target functions and crete case (6), since this also includes the discrete c3se (7

consideration are?(Q2) or C*(Q) or H*(Q2) = W*2(Q), (whenx,y,z take only finite discrete values).
etc. We will only assume that the space of target functions is

a Hilbert space. Note that the requirement 3 implies that Example 1. SS decompositions arise in many contexts. For
f is at least a3-dimensional hypermatrix in discrete case ofXample, in machine learning and nonparametric statistcs
a function of at least three continuous variables, ie> 3, fact of note is that Gaussians are separable
in the continuous case. The identifiability does not work for
(usual2-dimensional) matrices or bivariate functions. With (1)
in mmd, we WI||. gall f a d-partite or multipartite functllon if More generally for symmetric positive-definitec R™*™ with
we wish to partition its arguments intbblocks of variables. _; o
Lot ; " > eigenvalues\ = diag(A1,..., ),

We will briefly examine the decompositions and approxima-

tions of our target function into a sum or integral of sep&rab "
; i inarti i implici exp(x' Ax) = exp(z' Az) = Hex (Niz?)

functions, adopting a tripartite notation for simpliciffhere p P PlAiZi )
are three cases: =1

Il. SPARSE SEPARABLE DECOMPOSITIONS

exp(a? +1° + 2%) = exp(z?) exp(y?) exp(z?).

« Continuous: under a linear change of coordinates= Q'x where A =
AQT. Hence, Gaussian mixture models of the form
f(x,y,2 :/9x,tcpy7tz/1z,t dv(t). (5) Q '
( ) . (x, t)p(y, £)(z, t) du(t) -
Here we assume thatis some given Borel measure and f(x) = Z ajexpl(x — p;) TAj(x — )],
that 7T is compact. j=1
« Semidiscrete:
™ ) where 4, A; = A, A, for all i # j (and therefored,, . .., A,,
_ have a common eigenbasis) may likewise be transformed with
X,y,2) = 0,(x z). 6 g y
fxy.2) Z; p(x) 0 ()0 (2) ©) a suitable linear change of coordinates into a SS decomposi-

. . . o . tion as in(6).
This may be viewed as a discretization of the continuous (©)

case in thet variable, i.e.0,(x) = 6(x,t,), pp(y) = We will later see several more examples from signal pro-
o(y,tp), ¥p(z) = Y(z,tp). cessing and spectroscopy.



A. Modeling with ¢y, € L?(X}). The tensor productof functions¢; €

The SS decomposition — aadditive decomposition into L*(X1),.-.,¢4 € L?(X4) is denoted byp; ® --- ® ¢4 and
multiplicatively decomposable components — is extremely the function inL?(X; x -+ x X;) defined by
simple but models a wide range of phenomena in signal
processing and spectroscopy. The main message of this arti- #1 %@ Pa(xi, ... Xa) = 1(x1) -+~ palXa)-
cle is that the corresponding @nverse problem — recoveriRgiih this notation, we may rewrite (9) as
the factorsé,,¢,, vy, from noisy measurements of —
can be solved under mild assumptions and yields a class >
of techniques for a range of applications (cf. Section IX) f= Z%P@"'@%i"
that we shall collectively calmultilinear identification We p=1
wish to highlight in particular that multilinear identifitan A point worth noting here is that:
gives a determistic approach for solving the problem oftjoin
localization and estimation of radiating sources with skata
lengths. Previous approaches based on cumulants [18Jreequi ) ) )
not only longer data lengths but also sources to be statitstic Finite-dimensional tensors are simply the special casenwhe
independent. Xi,..., X4 are all finite sets (see Example 6). In particular, a
The experienced reader would probably guess that sucingltivariate functio f € L*(R?) is a an infinite-dimensional
powerful technique must be fraught with difficulties and hEensor that can expressed as an infinite sum of a tensor groduc
would be right. The inverse problem to (6), like most othe? #1p: - - @dp € L*(R) andL*(R?) = LA(R)®- - ® L*(R).
inverse problems, faces issues of existence, uniquenesds, We shall have more to say about this later in conjunction
computability. The approximation problem involved can lbe i With Kolmogorov's superposition principle for multivate
posed in the worst possible way (cf. Section IlI). Fortuhate functions.
prompted by Study of theestricted isometry propert'y] com- In this paper, functions haVing fanite decompOSition will
pressed sensing (interpreted in a broad sense, enconpasii@y a central role; for these we define
not only the ideas covered in [10], [9], [15], [25], [26], [B2 ,
but also _in [7]. [8], [29], [33]), we will show here that mild ;pk(f) := min {T EN: f= ngp ®® wdp} (10)
assumptions on coherence could allow one to overcome most )
of these difficulties (cf. Section VIII)

“Multipartite functions are infinite-dimensional ten-

SOrsS.

provided f # 0. The zero function is defined to have rank
I1l. FINITE RANK MULTIPARTITE FUNCTIONS 0 and we sayrank(f) = oo if such a decomposition is not

In this section, we will discuss the notion of rank, whictPossible.
measures the sparsity of a SS decomposition, and the ndtion oVe will call a function f with rank(f) < r a rank-
Kruskal rank, which measures the uniqueness of a SS decdHiiction Such a function may be written as a sum sof
position in a somewhat more restrictive sense. Why is uniquieParable functions but possibly fewer. A decomposition of
ness important? It can be answered in one word: Identiftgbilithe form .
More specifically, a unique decomposition means that we may _ o
in principle identify the factors. To be completely precige U ;@11’ @ ® pap (11)
will first need to define the terms in the previous sentence,
namely, ‘unique’, ‘decomposition’, and ‘factor’. Beforeevdo Wwill be called an rank- SS decompositionNote that the
that, we will introduce the tensor product notation. It ist ngqualificative ‘ranks’ will always mean ‘rank not more than
necessary to know anything about tensor product of Hilbert If we wish to refer to a functiory with rank exactlyr, we
spaces to follow what we present below. We shall assume thll just specify thatrank(f) = r. In this case, the rank-SS
all our Hilbert spaces are separable and so there is no losgie€omposition in (11) is of mininum length and we call it a
generality in assuming at the outset that they are JifgtX) rank revealing SS decompositiof f.

for someo-finite X. A rank-1 function is both non-zero and decomposable, i.e.,
Let Xi,..., X, be o-finite measurable spaces. There is af the formy; ® --- ® ¢, wherey, € L?(X}). This agrees
natural Hilbert space isomorphism precisely with the notion of a separable function. Obselnas t

2 ~ 72 2 the inner product (and therefore the norm) BH(X; x - - x
LAX e x Xg) 2 LX) @ - @ LH(Xa). - (8) X,) of a rankd function splits into a product
In other words, everyl-partite L2-function f : X; x --- x

X, — C may be expressed ‘as (P1® - ®pa, Y1®- - @Ya) = (p1, 1)1 (Pa, Ya)a (12)

— here(, ), denotes the inner product &f(X,). This inner
. - g W »p P
Fes %) ; Prp(x1) - Pap(Xa), ©) product extends linearly to finite-rank elementsIgf(X; x

1point values ofLP-functions are undefined in general. So equations like 2We clarify our terminologies: A multipartite function is erfor which the
these are taken to implicitly meaimost everywhereAnyway all functions argumentsxg,...,xg4 can come from anyXi,..., X, but a multivariate
that arise in our applications will at least be continuoud aa this is really function, in the usual sense of the word, is one whéfe, ..., X, are
not a point of great concern. (measurable) subsets Bf So the former is a more general notion.



-xXq):for f = Z;:1 P1pR- - Rpqp andg = 2221 ¥14®  univariate function with other univariate functions. Feaders

-+ ® 1qq, We have not familiar with this remarkable result, we state a versibn
s it here due to Kahane [38]
(f9) = Z (P1p,Y1g)1* (Pdp, Vdg)d- Theorem 3 (Kolmogorov superposition)Let f : [0,1]9 — R
pg=l1 be continuous. Then there exists constahs..., \; € R
In fact this is how a tensor product of Hilbert spaces (thatrigand Lipschitz continuous functiogs;, . .., ¢q : [0,1] — [0,1]
hand side of (8)) is usually defined, namely, as the compietisuch that
of the set of finite-rank elements @f(X; x --- x X,) under 2d+1
this inner product. fx1,...,2q) = Z g(Mep(xr) + -+ Aapp(zq)).
When X,..., X, are finite sets, then all functions in p=1

L?(X; x --- x Xg) are of finite rank (and may in fact be

Otherwise there will be functions ih?(X; x - - - x X4) of in-
finite rank. However, since we have assumed fat. .., X,
areo-finite measurable spaces, the set of all finite-rgnkill
always be dense ih?(X; x - - - x X4) by the Stone-Weierstrass g(t1, ..., tq) = titg - ta, a7

theorem. d unlike th L in Th 3 thes in (17
The next statement is a straightforward observation abdtfi¢ uniike the univariatg in Theorem 3, theg |’n (17)
works universally for any functiorf — only the ¢,,’s need

rank-revealing SS decompositions of finite-rank functibos 0 b tructed. Furth 13 f I
since it is central to this article we state it as a theorem. [ P€ constructed. Furthermore, (13) applies more gegera

is also tempting to call the decomposition a ‘singular vald® functions on a product Of. general domaifs;, ... ’.Xd
decomposition’ given its similarities with the usual matri Whereas Theorem 3 only applies if they are compact intervals

singular value decomposition (cf. Example 4). of R. . . . . .

At this stage, it would be instructive to give a few examples
Theorem 2 (‘Singular value decomposition’ for multipartite for concreteness.
functions) Let f € L?(X; x --- x X) be of finite rank. Then

there exists a rank-SS decomposition

alleviates this by allowingy to be the simplest multivariate
function, namely, the product function,

Example 4. Let A € C™*™ be a matrix of rank. Then it can
be decomposed in infinitely many ways into a sum of dank-

. terms as
f:ZUP‘P1p®"'®SOdp (13) r .
p=1 A= Z opupVv, (18)
such that p=1
r = rank(f), (14) Wwhereu, € C™ andv, € C" are unit-norm vectors and
_ ) ) oy > --- > o, > 0. Note that if we regardd as a complex-
the functionspy, € L*(X,) are of unit norm, valued function on its row and column indicésand j as
lorpll =1 forall k=1,....d, p=1,...,r, (15) described earlier in Section I, thefi8) may be written as
the coefficients, ..., o, are real positive, and a(i,j) = Zcrpup(i)vp(j),
o1 203220 >0. (16) p=1

. ) ) . which clearly is the same a®). The singular value decom-
Proof: This requires nothing more than rewriting the,oition Gvp) of A yields one such decomposition, where
sum in (11) as a linear combination with the positivg’s {ui,...,u,} and {vi,...,v,} are both orthonormal. But in

accouning for the norms of the summands and then re—indexwem a rank-revealing decomposition of the foft8) will
them in descending order of magnitudes. B ot have such a property.

While the usual singular value decomposition of a matrix
would also have properties (14), (15), and (16), the onei@rucExample 5. The previous example can be generalized to
difference here is that our ‘singular vectors;1, . .., ¢ in infinite dimensions. Le# : H; — H> be a compact operator
(13) will only be of unit norms but will not in general be(also known as a completely continuous operator) between
orthonormal. Given this, we will not expect properties likéwo separable Hilbert spaces. Then the Schmidt decompuositi
the Eckhart-Young theorem, or tha} +- - - +02 = || f||2, etc, theorem says that there exist orthonormal bagjs, € H :

to hold for (13) (cf. Section VI for more details). p € N} and {¢, € H; : p € N} so that
One may think of the SS decomposition (13) as being oo
similar in spirit, although not in substance, to Kolmogdsov Af = Zcrpwp, fep (19)
superposition principle [39]; the main message of which is p=1
that:

for every f € H;. In tensor product notation(19) becomes
“There are no true multivariate functiofis.

oo
More precisely, the principle states that continuous fiomst A= Z Tppp @ Py
in multiple variables can be expressed as a composition of a =1



Whereujz’; denotes the dual form af,,. wheren; = dim(Vy). A notion defined on a hypermatrix is

Examples 4 and 5 are well-known but they are bipartitgenly defined on the tensor (that is represented in coordinate

S ) T T y the hypermatrix) if that notion is independent of the cleoi
examples, I.ed = 2in (13). This article is primarily concernedof bases. So the use of the word ‘tensor rank’ is in fact well

with the d-partite case wherd > 3, which has received far . .- .
! ) . . Justified because of (21). For more details, we refer theeead
less attention. As we have alluded to in the previous sectign

the identification techniques in this article will rely cralty 0 [45].

on the fact thati > 3.
- IV. UNIQUENESS OFSSDECOMPOSITIONS

In Theorem 2, we chose the coefficients to be in descending
order of magnitude and require the factors in each separable
term to be of unit norm. This is largely to ensure as much

URVRW = (uivjwk)??lfgi1 e Clxmxn unigueness in the S_S decomppsition as general_ly p_o_ssible.
] . R However there remain two obvious ways to obtain trivially
The rank ofA is defined to be the minimume N such that gigterent SS decompositions: (i) one may scale the factors

Example 6. Let A € C*™*" pe a3-dimensional hyperma-
trix. The outer product of three vectors € C!, v € C™,
w € C" is defined by

A can be written in the form ©1p, ..., pap Dy arbitrary unimodulus complex numbers as
r long as their product ig; (i) when two or more successive
A= Z TpUp & Vp & Wy, (20)  coefficients are equal, their orders in the sum may be arlbyjtra
p=1 permuted. We will call a SS decomposition ffthat meets

and if A = 0, then its rank is set to b& This agrees of course the conditions in Theorem Bssentially uniquef the only
with our use of the word rank i10), the only difference is other such decompositions gfdiffer in one or both of these

notational, sincg(20) may be written in the form manners.
” It is perhaps astonishing that whén> 2, a sufficient con-
a(i,j, k) = Zapup(i)vp(j)wp(k). dition for essential uniqueness can be derived with redgtiv
p=1 mild conditions on the factors. This relies on the notion of

This definition of rank is invariant under the natural actioh Kruskal rank, which we will now define.

GL(l) x GL(m) x GL(n) on C"*™m*n [22, Lemma 2.3], i.e. Definition 7. Let® = {¢1,...,»,} be a finite collection of
for any X € GL(I),Y € GL(m), Z € GL(n), vectors of unit norm inL?(X; x --- x X4). The Kruskal rank
. of ®, denotedkrank @, is the largestk € N so that every

rank((X, Y, 7) - ) = rank(4). (1) k-element subset @ contains linearly independent elements.

The definition also extends easily dedimensional hyperma-

: i nyX-Xn _

g;?nsitig]ncinl Exar;p?emil v]:/:rerr];la%xagicli(uc_?ﬁisto dter}%iltjits)lria: to the notion ofsparkintroduced in compressed sensing [26],

due to F. L. Hitchcock [36] and is often .called tensor ranljSZ]' defined as the smallekte N so that there is at least one
i . o k-element subset ob that is linearly dependent. The relation

The only dn‘f(_arence here is tha_lt_ our observation in Theoremisz simple to describespark @ — krank @ + 1, and it follows

allows us to impose the conditions immediately from the respective definitions. It is clearttha

o1 > 09> > 0p dim span ® > krank .

We now generalize Kruskal's famous result [40], [59] to
tensor products of arbitrary Hilbert spaces, possibly éhite
dimensions. But first let us be more specific about essential
while leavingrank(A) unchanged, thus bringin¢20) closer uniqueness.
in form to its matrix cousi{18). What is lost here is that the Definition 8. We shall say that a SS decomposition of the
sets{u, ..., ur}, {vi,...,vr}, {w1,..., w;} can no longer ., (13) (satisfying bott(16) and (15)) is essentially unique
be chosen to be orthonormal as in Example 4, the unit nori'fngiven another such decomposition,
condition (22) is as far as we may go. In fact for a generic

This notion was originally introduced in [40]. It is related

and
[wll = Ivpll = [[Wpll =1, p=1,....,r,  (22)

A e Clxmxn we will always have . .
Y ZUP<P1P®"'®@¢1P:fzz/\pwlp@"'(gdjdpa
r > max(l,m,n), p=1 p=1
and {uy,...,u.}, {vi,..., v, },{w1,..., w,} will be over- we mHst have (i) the coefficients = A, for all p = 17_. R
complete sets ift!, C™, C" respectively. and (ii) the factorspyy, ..., @ap and ¢u,, ..., ¢q, differ at

o ) . . most via unimodulus scaling, i.e.
Perhaps it is worthwhile saying a word concerning our use

. .0 10
of the words ‘tensor’ and ‘hypermatrix’: Al-tensor or order- Prp =€ 1p, . @ap = €V Pgp (23)
d tensor is an element of a tensor productiofector spaces wherefy, + - -+ 04, = Omod 27, for all p = 1,..., 7. In the

Vi @ ® Vg, a d-dimensional hypermatrix is an elemenyent when successive coefficients are equal; > o, =

Ny X XN .
of C™m *. If we choose bases 0y, ..., Vy, then any Opi1 = -+ = Oprq > Opiqr1, the uniqueness of the factors
d-tensorA € V,®---@ Vg will have a unique coordinate rep-jn (ijy is only up to relabelling of indices, i.en, ...,p + q.
resentation as d-dimensional hypermatrid € Cm x4,



Lemma 9. Let f € L?(X; x --- x X4). Then a SS decompo-accounts for the coefficient). We call the number
sition of the form

, { HZ:1 Tk —‘
d
fzzo—p%p@...@%p (24) 1—d+) 1
p=1

theexpected rankf L2(X; x - - -x X4), since it is heuristically
is both essentially unique and rank-revealing, .e= rank f, the minimumr expected for a SS decomposition (13).

if the following condition is satisfied: Proposition 11. Let the notations be as above fife L?( X x

d -+- x Xg4) has rank smaller than the expected rank, i.e.
2r+d—1<) krank y, (25) 0
k=1 rank(f) < { k=1 dk —‘ ,
where®y, = {pr1,..., 0k} fOr k=1,...,d. 1—d+ 3 ke

Proof: Consider the subspac®s = span(¢y1, .- ., @kr) then f admits at most a finite number of distinct rank revealing

in L?(X},) for eachk = 1,...,d. Observe thaf € V;®---® decompositions.

V. Clearly dim (V) < r and sodim(V, ® --- @ Vg) <% This proposition has been proved in several cases, ingudin
Now if we could apply Kruskal's result [40] to the finite-symmetric tensors [14], but the proof still remains incoetel
dimensional Spacéﬁ [N Vd, then we ma.y |mmed|ate|y for tensors Of most genera' form [13]' [1]

deduce both the uniqueness and rank-revealing property of

(24). However there is one caveat: We need to show that

Kruskal rank does not change under restriction to a subspace V. ESTIMATION OF SSDECOMPOSITIONS
i.e. the value ofkrank{es1,... ¢k} in (25) is 2the Same | practice we would only have at our disposf] a
whether we regardpyi, ..., ¢k, as elements of.*(Xy) or  measurement of corrupted by noise. Recall that our model

as elements of the subspag. But this just follows from ¢, f takes the form
the simple fact that linear independence has precisely this

property, i.e. ifvy,...,v, € U C V are linearly independent r d

in the vector spac®, then then they are linearly independent Fxaoxa) =Y oy [ [ orp(xk)- (26)

in the subspac#l. [ | p=1 k=1

_ It follows immediately why we usually need > 3 for Then we would often have to solve an approximation problem

identifiability. corresponding to (26) of the form

Corollary 10. A necessary condition for Kruskal's inequality . d

(25) to hold is thatd > 3. argmin f- Z ap H Orpll (27)
a€eCm, |lowpll=1 p=1 k=1

Proof: If d =2, then2r+d—1=2r+1 > krank ®; +

krank ®, since the Kruskal rank of of vectors cannot exceedwhich we will call a best ranks approximation problem
r. Likewise ford = 1. B A solution to (27), if exists, will be called a best rank-

Lemma 9 shows that the condition in (25) is sufficient tapproximation off.
ensure uniqueness and it is known that the condition is notin this section, we will give some motivations as to why
necessary. In an appropriate sense, the condition is sBaJp [such an approximation is reasonable. Assuming that the norm
We should note that the version of Lemma 9 that we stajie (27) is the L?-norm and that the factorg,, p = 1,...7
here for generall > 3 is due to Sidiropoulos and Bro [59].and k = 1,...d, have been determined in advance and we
Kruskal's original version [40] is only for = 3. are just trying to estimate the parameters,...,a, from

The main problem with Lemma 9 is that the condition (25§(1), ... f(") a finite sample of sizeV of measurements of
is difficult to check since the right-hand side cannot beifgad f corrupted by noise, then the solution of the approximation
computed. In fact Kruskal rank is known to be NP-completgroblem in (27) is in fact (i) a maximum likelihood estimator
over a field of two elements [70]. We conjecture that it i$mLE) if the noise is zero mean Gaussian, and (ii) a best linear
NP-hard ovefR andC. unbiased estimatorB(UE) if the noise has zero mean and

Kruskal's result also does not tell us how often are Sfhite variance. Of course in our identification problemss th
decompositions unique. In the event when the 8gts .., X, factors ¢y,’s are not known and have to be estimated too.
are finite, L2(X; x --- x Xg4) = C™*xna wheren; = A probabilistic model in this situation would take us too far
#X1,...,ng = #X4, and there is a simple result onafield. Note that even for the cage= 2 and whereX; and
unigueness based simply on a dimension count. Note thét are finite sets, a case that essentially reduces to principal
the dimension ofL?(X; x --- x X,) is the product:; ---ng components analysisP€A), a probabilistic model along the
and the number of parameters needed to describe a separtids of [67] require several strong assumptions and wag onl
element of the form\y; ® - - - ® g Wherep, ..., ¢4 are of developed as late as 1999. The lack of a formal probabilistic
unit norm isn; + --- 4+ ng —d + 1 (eachyy requiresn, —1 model has not stopperica, proposed in 1901 [56], to be an
parameters because of the unit norm constraint, the 4akt * invaluable tool in the intervening century.



VI. EXISTENCE OF BESTSSAPPROXIMATION which always exists for ajfi with rank(f) < r. The discussion

As we mentioned in the previous section, in realistic sif’j-‘bove shows that there afefor which
uation where measurements are corrupted by additive noise, argmin{||f — | : rank(f) <7} = @,
one has to extract the factagg,’s andc,, through solving an o
approximation problem (27), that we now write in a slighti@nd thus (28) or (30) does not need to have a solution in
different (but equivalent) form, general. This is such a crucial point that we are obliged to

formally state it.
r d
f- Z Qp H Pkp . ;
p=1 k=1 function by a sum of products ofd separable functions does

Note that by Theorem 2, we may assume that the coef‘ficierﬁ‘t%t exist in general. .
a = (ay,...,a,) are real and nonnegative valued without any ~ Proof: Take the tripartite functioff € L?(X; x X x X3)
loss of generality. Such a form is also natural in applicgatio in Example 12. Suppose we seek a best r2wlpproximation,
given that«, usually captures the magnitude of whateven other words, we seek to solve the minimization problem
guantity that is represented by thesummand. . 2

We will see this problem, whether in the form (27) or Ilqk“:ﬁ,fkgﬁlnwm"f Y91 © 92 @ g3 =1 @ ha @ hal.
(28), has no solution in general. We will first observe a -
somewhat unusual phenomenon in SS decompositiot- of
partite functions Wherel > 3, namely, a sequence of rank- inf If =791 ® g2 @ gs — nhy @ hy @ hs|| = 0
r functions (each with an rank-SS decomposition) can llgxl=llAxlI=1, v,n>0

converge to a limit that is not ranzk-(has no rank- SS since we may choose € N Sufﬁcienﬂy |arge’
decomposition).

argmin (28) Theorem 14.For d > 3, the best approximation of &partite

a€[0,00)7, llenpll=1

a
Now theinfimum

. . . I U
Example 12 (SS approximation of functions)For linearly 9k = ok +n 10|’ k= okl

independentﬁg,’l/)l X1 — C, (,OQ,’[Z)Q Xy — C, (pg,lﬁg :
X3 — C, |etf:X1XX2XX3—>(Cbe

i ) 1= s (a2 )23 () v = nllp1r +n " |||z +n | les +n s,
X1,X92,X3) = X X X
1 %2 %5 11 )p2la2 s n=nleillllezlllesl,

+ @1(x1)12(x2)p3(x3) + @1(x1)p2(x2)P3(x3).
For n € N, define

for k=1,2,3,

so as make|f — vg1 ® g2 ® g3 — nhi @ hy @ hs|| as small
as we desired by virtue of (29). However there is no rank-
Fr(x1,%2,%3) 1= functionyg1 ® g2 ® gs — nh1 ® hy @ hs for which

n |e1(x1) + %%(xn} |:S02(x2) + %wz(m)} |:4P3(X3) + %1/)3()(3) If =791 ® g2 ® g3 — nh1 ® ha @ hs|| = 0.

— n1(x1)p2 (x2)p3(x3). In other words, the zero infimum can never be attaineds
Our construction above is based on an earlier construction

Then in [22]. The first such example was given in [4], which also
R 1 contains the very first definiton of border rank. We will define
f(x1,x2,x3) = fu(x1,%2,x3) = ﬁw’l(xl)d’? (x2)¢3(x3) it here ford-partite functions. WheiX 1, . . ., X, are finite sets,
+ 11 (x1)p2 (x2)13 + @1 (%1 )2 (x2) 3 (x3)]. this reduces to the original definiton in [4] for hypermadsc
Hence Definition 15. Let f € L?(X; x --- x X,4). The border rank
R 1 of f is defined as
17 - s0=0(3) 29)
rank(f) = min{r € N:inf||f — g|| =0
ITemma_13. In Example 12,rank(f) = 3 i_ff_%-,wi are over all g with rank(g) = r}.
linearly independent; = 1, 2, 3. Furthermore, it is clear that
rank(f,) < 2 and Clearly we would always have that
nhﬂngo fo=f rank(f) < rank(f).
Note that our fundamental approximation problem may bEhe discussions above show that strict inequality can odgur
regarded as the approixmation problem fact, for the f in Example 12yrank(f) = 2 while rank(f) =
. 3.
argmin{|| f — fI| : rank(f) < r}, (30)  we would like to mention here that this problem applies

to operators too. Approximation of an operator by a sum of
tensor/Kronecker products of lower-dimensional operaier
in general an ill-posed problem whose existence cannot be

r d
F=> o [[em guaranteed.
p=1 k=1

followed by a decomposition problem



Example 16 (SS approximation of operatorsfor linearly Limiting the sizes ofas, ..., «; is a special case but there
independent operator®,, ¥, : V; — W;, i = 1,2,3, let T : are several other simple (but also artificial) strategieg1V],
VioVe® Vs — W) @ Wa ® Wi be the factorspy, ..., i, are required to be orthogontr all

~ ke{l,...,d}, ie.
T .= \111®‘I)2®(I)3+‘1)1®‘I)2®\IJ3+(I)1®‘I)2®\I/3. (31)

. . . . wk}’sok k?:(s b p’q:]‘?""r’ k:171d (34)
If ®,;,¥,’s are all finite-dimensional and represented in coor- (Pt Pia) P

dinates as matrices, themr’ may be taken to be Kronecker This remedy is acceptable only in very restrictive condisio
product of matrices. Fon € N, In fact a necessary condition for this to work is that

r < min dim L*(X}).
1 1 1 k=1 .d
Tn =n (I)l—i-—\Ifl ] (I)Q—F—\IJQ ] (1)3+—\I/3 e
n n n It is also trivial to see that imposing orthogonality betwee

—nP; @ Py ® P3. the separable factors removes this problem
Then ~ <(p1p®"'®(pdp7(plq®"'®(qu>:(Spq, p,g=1...,m7
lim T, = T. (35)
e This constraint is slightly less restrictive — by (12), it is
An example of an operator that has the form(Bl) is the equivalent to requiring (34jor somek € {1,...,d}. Both
3m-dimensional Laplaciams,,, which can be expressed in(34) and (35) are nonetheless so restrictive as to exclugle th
terms of them-dimensional Laplaciam\,,, as most useful circumstances for the model (13), which usually

involves factors that have no reason to be orthogonal, as we

will see in Section IX. In fact, Kruskal's uniqueness coiutit
There are several simple but artificial ways to alleviate such a potent tool precisely because it does not require

the issue of non-existent best approximant. Observe fram thrthogonality.

proof of Theorem 14 that the coefficients in the approximant The conditions (34), (35), and (33) all limit the feasible

~,n becomes unbounded in the limit. Likewise we see thiets for the original approximation (28) to a much smaller

happening in Example 16. In fact this madtvayshappen — compact subset of the original feasible set. This is not tsec

in the event when a function or operator is approximated Bgr nonnegative constraints. In [46] it was shown that thle fo

a ranks function, i.e. lowing best rank: approximation problem for a nonnegative-

; J ; J valuedf and where the coefficients, and factorspy,, of the
; 7 i ts are also nonnegative valued, i.e.
Fo Z a H Orp T_ Z a ® . (32) @pproximan ,
p=1 k=1 p=1 k=1
and if a best approximation does not exist, then theo-

r d
f - Z Qp H Pkp
efficients oy, ..., a, mustall diverge in magnitude teroco p=1 k=1
as the approximant converges to the infimum of the nordiways has a solution. The feasible set in this case is non-
loss function in (32). This result was first established i@, [2 compact and has nonempty interior within the feasible set of
Proposition 4.9]. our original problem (28). The nonnegativity constrainte a
So a simple but artificial way to prevent the nonexistenditural in some applications, such as the fluorescence spec-
issue is to simply limit the sizes of the coefficients,...,q, {roscopy one described in Section IX-F, wherg, represent
in the approximant. One way to achieve this is regu|arimtidntensities and concentrations, and are therefore notimega
[55], [46] — adding a regularization term to our objective/alued.
function in (28) to penalize large coefficients. A common There are two major problems with imposing artificial con-

choice is Tychonoff regularization, which uses a sum-ofiraints simply to force a solution: How do we know a priori
squares regularization term: that the solution that we seek would meet those constraints?

., But more importantly, perhaps the model is ill-posed and a
f- Z Qp H Pkp
p=1 k=1

or

)

argmin
a€l0,00)7, [|¢kpll=1, ¢rp>0

)

. 9 solution indeed should not exist? To illustrate the caseintp

+ A E lapl®. (33) .- '
— with a more commonplace example, suppose we want to find a

P=t maximum likelihood estimatoX € R™*™ for the covariance

argmin
a€[0,00)7, llenpll=1

Here X is an arbitrarily chosen regularization parameter. K of independent samples, ...,y ~ N(0,X). This would
can be seen that this is equivalent to constraining the sizead us to a semi-definite programming problem

ary ..o 10 300 ey|* = p, with p being determined a , .

posteriori from\. The main drawback of such constraints is ar%fgntr(x Y) — logdet(X) (36)

that p and \ are arbitrary, and that they generally have no | —m - .
physical meaning. whereY = =37 y;y, . However the problem will not

More generally, one may alleviate the nonexistence issue I%ve a solution when the number of samples is smaller than

restricting the optimization problem (30) to a compact stbst'€ dimension, i.em < n, as the infimum of the loss function
of its non-compact feasible set in (36) cannot be attained by any in the feasible set. This
is an indication that we should seek more samples (so that

{f e L*(X1 x - x Xgq) : rank(f) < r}. we could getn > n, which will guarantee the attainment of



the infimum) or use a different model (e.g. determin&if! define norms or.?(X; x - - - x X,) follows from the standard
might perhaps have some a priori zero entries due to statistiMinkowski gauge argument [23]. The Ky Fan and Schatten
independence of the variables). It is usually unwise to iseponorms are related by f|l. s.co = || f|l«.s- When Xy, ..., Xy
artificial constraints on the covariance matfi just so that are finite sets of cardinalities,...,nq € N, the Schatten
the loss function in (36) would attain an infimum on a smallel-norm for the unipartite casel(= 1) is just the usual!-
feasible set — the thereby obtained ‘solution’ may bear nwrm for vectors inC"* = L?(X;); the Schatters-norm for
relation to the true solution that we want. the bipartite cased(= 2) agrees with the usual Schatten
Our goal in Section VIII-A is to define a type of physicallynorm for matrices inC*:*"2 = L2(X; x X5). In particular,
meaningful constraints via the notion cbherencelt ensures the bipartite Schattem, 2, and co-norms are respectively the
the existence of a unique minimum, but not via an artificialuclear, Frobenius andspectralnorms of a matrix. Fod > 3,
limitation of the optimization problem to a convenient setbs Definitions 17 and 18 yield notions of Schatten and Ky Fan
of the feasible set. In the applications we discuss in Se¢¥o norms for hypermatrices i€ %" = [2(X] x - -+ x Xg)
we will see that it is natural to expect existence of a sotutiovhenX}, are finite sets (witl;, elements) foralk = 1,...,d.
when cohe_re_nce is smaI_I enough, but not otherwise. So qu)r(]ample 19 (Nuclear norm for 3-tensors) Let T
our model is ill-posed or ill-conditioned, we are warnedbgt ~ ° "~ . A
. . CrnixnzXns Then by Definition 17, we have
size of the coherence and could seek other remedies (collect
more measurements, use a different model, etc) instead of . " "
forcing a ‘solution’ that bears no relation to reality. Bugfbre 71«1 = inf {Z Ap i T = Z ApXp @Yp ® ZP} ’
we get to that we will examine another method based on an p=l p=l
approximation of rank by a ratio of Schatténandoo-norms. where the infimum is taken over all linear combinations of
complex vectors of un2-normx, € C", y, € C"?, z, €
VIl. SCHATTEN AND KY FAN NORMS C"s, with real positive coefficientss, € [0,00), and p =

We introduce the notion of Schatten norms and Ky Fah--- "> Withr € N.

norms for multipartite functions and see how a condition Note that we used the tertensors as opposed to hyper-

involving the Schatteri-norm and Schatteno-norm allows matrices, in the above example. In fact, Definitions 17 and

us to alleviate the problem discussed in Section VI, namelyg define Schatten and Ky Fan norms for the tensors, not

that ad-partite function may not have a best approximatiojust their coordinate representations as hypermatriess ¢sr

by a sum ofr separable functions. discussion after Example 6), because of the following iiawer
The definition of Schatten norm follows naturally from theproperties.

definition of rank in Section Ill, and from which the definito

of Ky Fan norm is immediate nLemma 20. The Schatten and Ky Fan norms as define(Bir)

and (38) for C"1**"d gre unitarily invariant, i.e. invariant
Definition 17. For any 1 < s < oo, we define the Schattenunder the natural action o/ (n;) x - -- x U(nq) whereU(n)
s-norm of f € L?(X; x --- x Xg) as denotes the group of unitary matrices @**".

o 1/s Proof: To avoid the clutter of indices, we will assume that
[ flls.s := inf [Z /\1571 . d = 3. It is easy, although notationally cumbersome, to extend
1 this to generadl > 3. Let (U, V, W) € U(n1)xU(ng)xU(n3)
andT € C™*m2xn"3_The natural action, given in coordinates

f:Z)‘PS"lp@@"'@‘Pdpv lnpll =1, Ap = Apta >0} by
p=1

ni,n2,n3
ni,n2,n3
37 U V,W)-T=1{ > uaivpwentij ;
with the usual modification (replace sum by supremum) for i,5,k=1 abo=1

the cases = oo, has the property that if’ has a SS decomposition of the form

Definition 18. For any1 < s < oo and anyk € N, we define r
the Ky Fan(s, k)-norm of f € L?(X; x --- x X,4) as T = Z,\pxp RYp @ 2y,

k 1/s
||.f||*,s,k := inf [Z )\;‘| . then )
p=1 U, VW)-T = Z )\p(UXp) ® (Vyp) ® (sz). (39)
p=1

p=1

= A , =1, A > Xpt1>0
/ pz:; PP © 0 Cap i ! . } (39) is obvious whem = 1 and for generat follows from the
(38) linearity of the action (i.e(U,V,W)-(S+T) = (U,V,W) -
S+ (U, V,W)-T). We also need the simple fact tHafn;) x
U(nz) x U(ng) acts transitively on unit-norm ranktensors,
The letterss and k are of course chosen to remind us of.e. take anyx € C", y € C"2, z € C" of unit norm,
the respective eponymous norms. The fact that (37) and (3B&n every other unit-norm ranktensor may be written as

with again the usual modification for the case= cc.
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Ux@Vy@Wzfor some(U,V,W) € U(n1)xU(n2)xU(nz). by the conditionj| f||..1 < 7| f[|.,- Recall that the discussion
With these, it follows immediately from Definition 17 thatin Section VI shows that there apefor which
Schatten norms satisfy

”(Ua Va W) : T”*,S = ”11”*71

argmin{”f — f|l s rank(f) < r} = @,

which really results from the fact that

and likewise for Ky Fan norms. [ ]
If we allow 0 < s < 1, then (37) and (38) no longer define {f e L*(X1 x---x Xg) : rank(f) <7}
norms although th&chatterandKy Fan quasinorms

is not a closed set. The condition (40) we derived may then
1 £1l«,s,5 = inf {Z’;Zl Ay be used as a work-around relaxation where we have the ratio
f= Z;O:1 ApP1p @+ @ @ap, [lorpll =1, Ap > Apy1 > O} 1l 1 /11100 @S ? proxy” in place ofrank(f).
. ) Theorem 22. Let f € L?(X; x --- x X,4). For anyr € N,
are nonetheless still interesting measures of near_neser@b the optimization problem
that we have dropped the/s power here. In particular, the

limiting case ass — 0 yields theSchatterD-quasinorm argmin{[|f — £I| - | e < 7[00}
I £l«,0 := inf {Z;":l AD always has a solution.
F=300 Mp1p @ @ @ap, Nlonpll =1, Ap = Apga > O} : Proof: The follows from the fact that the set
where we adopt the convention that = 0. {fe L (X1 x - x Xq) t |flleq S 7[00}
Lemma 21. Forany f € L*(X;x---xXg4), we havé|f|[.o = is closed, which follows easily from the continuity of there
rank(f) and valued function|| - [|,.1 — 7|l - [ls.co ON L2(X; X -+ x Xg),
£l < rank(f) x || f]+.c0- (40) which in turn follows easily from the fact that all norms are
’ ’ continuous functions. ]
In other words, the Schattelrnorm is a convex underestima- We would like to add a few words about the ratio
tor of rank on the Schatteso-norm unit ball { f : || f|l+,c0 < 1o
1}. In fact, (40) may be sharpened to have border rank in 171 —.
place of rank e
Note that this gives a crude notion of ‘numerical rank’ foi-a
11,1 < rank(f) x || f]l«,00- (41) partite function. Recall that wheh= 2 and X, X, are finite,

Proof: Let rank(f) = r and f = 5 App1, @ - ® bipartite functions may be regarded as matrices,li%X; x
p=

©4p be a SS decomposition as in Theorem 2. Thereforez) = C™*"> where#X, = ny, #Xs = ny. In this case,
e1p @ @ @apllen = lle1pll - lpapll = 1 for all p = the ratio of the Frobenius norm to the spectral norm and the

1,...,r. The triangle inequality immediate yieldsf|., < ratio of the nuplear norm to the spectral_ norm are occadinal

Z;:1|/\p| | 1 ® - @ Paplle1 = Z;:1|/\p| < 7| f||+.00- For used as proxies for matrix rank, often_ln scenarios where the
use of matrix rank would be computational intractable. Ehes

ratios are used because of bounds that are the analogues of

the border rank version, letnk(f) = r, then there exists a
sequencef,, whererank(f,) = r andlim,, f, = f. By
what we have just proved, (40),

[ fnllet < rank(fn) X || fallv.oo = 7| fn] [Allr < v/rank(A)[|Al2 and [[Al|. < rank(A)[|4]2,

Taking limits and using the continuity of norms immediateljor A € C™**"2. In fact the inequality on the right is exactly
yields (41). m (40) applied to the case of bipartite functions, i.e. masic

It is known that the/!-norm is thelargest convex under-  Theorem 22 represents a simple, elegant solution to the non-
estimato? of the 0-quasinorm on thé>°-norm unit ball [43] existence problem in Section VI but we do not find it useful
and that the nuclear norm is thergestconvex underestimator for the applications that we consider here. Instead another
of rank on spectral norm unit ball [29]. We suspect that a vagorkaround that uses the notion of coherence, discusséein t
generalization of this observation is true, namely, theaieln next section, is more naturally applicable in our situtagio
1-norm as defined in (37) is the largest convex underestimator
of the rank function as defined in (10). We are however unable
to prove nor disprove this stronger version of Lemma 21,
i.e., with largestconvex underestimator’ in place of ‘convex We will show in this section that a simple measure of
underestimator’. angular constriant called coherence, or rather, the glosel

The condition (40) in Lemma 21 provides a simple way foi€lated notion ofrelative incoherenceallows us to alleviate

alleviating the fact that by replacing the conditiemk(f) < two problems simultaneously: the computational intraiditgb
of checking for uniqueness discussed in Section IV and the

SAlso called thegreatest convex minoranin this case also equivalent to non-existence of a best approximant in Section VI.
the Legendre-Frenchel biconjugai@ convex biconjugate

*,00 "

VIIl. COHERENCE
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Definition 23. Let H be a Hilbert space provided with scalaror equivalently if

product(-, -}, and let® C H be a set of elements of unit norm d 1
in H. The coherence ob is defined as H Hre < r_1’ (43)
k=1
P) =s
(®) ;ilzl@,w then
where the supremum is taken over all distinct paits) € H. —inf - \
If & = {e1,...,p.} is finite, we also writqu(¢1, ..., @) = =1 f—Z pP1p & O Pap
=1

maxXpq|(Pps Pq) - P

We adopt the convention that whenever we wrjtéd) A€l plerr, - prr) < Hk} (44)
(resp. u(e1,--.,¢r)) as in Definition 23, it is implicitly .
implied that all elements o® (resp.y1,...,¢,) are of unit — inf{Hf — Z)‘P%P ® - ® Pap
norm. =1

Th notion of coherence has received different names in
the literature: mutual incoherence of two dictionaries][26 AeC, wpkt, - Prr) > Wk}

mutual coherence of two dictionaries [9], the coherence of
a subspace projection [8], etc. The version here follows tha attained. Here| - || denotes the.?-norm onL?(X; x - - - x

of [32]. Usually, dictionaries are finite or countable, bu¢ wX4) and A = (A, ..., ;). If desired, we may assume that
have here a continuum of atoms. Cleafly< x(®) < 1,and A €R"andX; >--- > A, > 0 by Theorem 2.

w(®) =0 iff v1,...,¢, are orthonormal. Alsou(®) = 1 iff

 contains at least a pair of collinear elements, g = Ay, from Definition 24. We show that if either of these conditions

for SO”?EP?E @A F O'. . are met, then the loss function is coercive. We have the
We find it useful to introduce a closely related notion thq;

o Bllowing inequalities
we call relative incoherence. It allows us to formulate some
of our results slightly more elegantly.

Proof: The equivalence between (42) and (43) follows

d

2 T
= Z ApAq H<‘Pkpa90kq>

T

D> A1, @ @ Pap

Definition 24. Let ® C H be a set of elements of unit norm.

=1 ,q=1 k=1
The relative incoherence df is defined as : prq d
w(@) = L) >3 04 [T lowl?
/L((I)) p=1 k=1
For a finite set of unit vector® = {¢1, ..., ¢, }, we will also r ¢
write w(e1, . . ., ) occasionally. = Mg [ ks k)
p#q k=1

It follows from our observation about coherence that - d
w(®) < 00, w(P) = oo iff ¢1,...,p, are orthonormal, and > =TT e S 1A
w(®) =0 iff @ contains at least a pair of collinear elements. ; : ,};[1 ; m

In the next few subsections, we will see respectively how d
coherence can inform us about the existence (Section IlI-A > A2 = (r = 1)||A|12 H m
unigueness (Section VIII-B), as well as both existence and 1
unigueness (Section VIII-C) of a solution to the best rank- : .

oo ) : where the last inequality follows from

SS approximation problem (28). We will also see how it can be q y
used for establishing exact recoverability (Section \D)land Z|/\p5\q| = 22|,\p5\q| < Z(|/\p|2+|,_\q|2) = (r—1)| A2
approximation bounds (Section VIII-E) in greedy algorithm ;- p<q p<gq

A. Existence via coherence This yields

The goal is to prevent the phenomenon we observed in Ex-{| _" 2 d )
ample 12 to occur, by imposing natural and weak constraints;|| Y _ Ap@1p @ -+ ® @ap|| > |1 = (r = 1) [] s | N3
we do not want to reduce the search to a compact set. It ig/r=! k=1 (45)

clear that the objective is not coercive, which explains w

. . d o
the minimum may not exist. But with an additional conditio ince by assumptioftr — 1) [T, e < 1, it is clear that

on thecoherencewe shall be able to prove existence thank@e left hand side of (45) tends to infinity g\[|2 — oo.

to coercivity. And becaus¢ is fixed, Hf — D 1 M1y ® - ® sode also
The following shows that a solution to the bounded coheiends to infinity as|A||2 — co. This proves coercivity of the
ence best rank-approximation problem always exists: loss function and hence the existential statement. ]

. . The condition (42) or, equivalently, (43), in Propositioh 2
Proposition 25. Let f € L*(X1 x -+ x Xq) be ad-partite is sharp in an appropriate sense. Proposition 25 showsithat t
function. If d condition (43) is sufficient in the sense that it guarantelesst
H(l +wp)>r—1 (42) rank+ approximation when the condition is met. We show that

Pt} it is also necessary in the sense that if (43) does not hadd, th
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there are examples where a best rardpproximation fails to C. Existence and uniqueness via coherence
exist. A

In fact, let f be as in Example 12. As demonstrated in thg;;
proof of Theorem 14, the infimum for the cade= 3 and

Now the following existence and uniqueness sufficient con-
ion can be deduced from Propositions 25 and 27.

r=2, Corollary 28. If d > 3 and if coherenceg,, satisfy
inf F— A1 ® g2 @ g3 — ptha @ ha @ h a o\
Joulmlini, 2 iz I A1 ® 92 G5 = s & o @ s o) <2 48)
is not attained. Since putet 2r+d—1
g = ok + 1"y by = Pk then the bounded coherence best rankpproximation prob-
lor +n= 1| [l |l lem has a unique solution up to unimodulus scaling.

for k =1,2,3, the corresponding coherence Proof: The existence in the case= 1 is ensured, because

w(grs i) > [{gr, hi)] — 1 the set of separable functiofg; ®--- @ ¢4 : ¢ € L*(X;)}

asn — oo. For any values ofi1, s, is € [0, 1] such that (43) is cIosedl. Consider thus the case> 2. Since the function

d
holds, i.e.ju1 a3 < 1/(r — 1) = 1, we cannot possibly have f(z) = 3 — (ﬁ'ld,l) is strictly positive forz > 2 and
gk, hi) < g for all k =1,2,3 since d > 3, condition (48) implies thaf[¢_, u is smaller than
11(g1, ha) (g2, ho)p(gs, hs) — 1 1/r, which permits to claim that the solution exists by calling
for Proposition 25. Next in order to prove unigueness, we use

asmn — oo. the inequality between harmonic and geometric meanls: if (48
B. Uniqueness via coherence is verified, then we also necessarily haﬂlézzzl ;L,:I) <
In order to prove uniqueness, we need a simple observatigﬂr%. HenceZZ:1 ppt > 2r+d—1and we can apply
and the notion of Kruskal rank introduced in Definition 7. Proposition 27. ]
. In practice, simpler expressions than (48) can be more
2 e
Lemma 26. Let @ C L7(X; x x Xq) be finite. Then attractive for computational purposes. These can be dkrive
krank & > (1(1)) (46) from the inequalities between means:
7

. d 1 d 1/d d d 1/2
Proof: Let s = krank ® + 1. Then there exists a subset of{ 1 1 1 1 9
L . : - < <= <=
s distinct unit vectors in®, {®,,..., ®,} such thato; ®; + <d Z“k = kl_[l“k =1 ;“k =14 ;“’“

+asq)S:0W|th |a1|:max{|a1|’___7|asl}>0. Tak|ng k=1 — -

inner product with®; we geta; = —ag(®o, ;) — -+ — Examples of weaker sufficient conditions that could be used
as(®s, ®1) and sola| < (|ag| + -+ + |as|)u(V). Dividing N place of (48) include
by |a1| then yieldsl < (s — 1)u(®). [ | d 22

We now characterize the uniqueness of the rank revealing Z/‘k < - (49)
decomposition in terms of coherence introduced in Defini- k=1 2r+d—1
tion 23. d d 2

2 —

Proposition 27. Let f € L?(X; x --- x X4) have a rankr ;H’“ =d (2r+ d— 1> ' (50)

SS decomposition
Another simplification can be performed, which yields dif-

T
f= Z ApP1p ® - @ Pap ferentiable expressions of the constraints if (50) is to ®edu
=1 In fact, noting that for any set of numbets, ..., z, € C,

. o o max;—1, |z < /Do |zi]?, a sufficient condition ensur-
where @y, := {y1,.., i} are elements in.(X;) of unit ing that (50) is satisfied, and hence (48), is

norm for allk =1,...,d. Letwy = w(®y). If
d d 9 d 2
Zwk >2r—1, 47 ;Z|<<ﬁkm<ﬂkq>| <d (m) :
k=1 =1p<q

thenr = rank(f) and the decomposition is essentially unique, o
. o 4 ) D. Exact recoverability via coherence
Proof: Inequality (47) implies thab_y_, ju.~ > 21+ \ye now describe a result that follows from the remarkable

d — 1, where i denotesy(®y). If it is satisfied, then so is work of Temlyakov. It allows us to in principle determine the

K_ruskals condition (25) thanks to Lemma 26. The resulthaen%S decomposition meeting the type of coherence conditions
directly follows from Lemma 9. B . Section VIILA

Note that unlike thé:-ranks in (25), the coherences in (47$ Some additional notations would be useful. We detc

are trivial to compute. In addition to uniqueness, an eagy b 2 i — o
important consequence of Proposition 27 is that it proviles f e L*(Xy x -+ x Xg : rank(f) = 1} be adictionary* of

.read”y checkable SUfTiCient condition for tensor rank, obhi 45 dictionary is any set® C H whose linear span is dense in the Hilbert
is NP-hard over any field [41], [42]. spaceH.



separable functions (i.e. ranB-in L?(X; x --- x X,) that
meets a bounded coherence condition , i.e.
p(®) < p (51)

for somey € [0, 1) to be chosen later. Recall that the elemen}

of & are implictly assumed to be of unit norm (cf. remar
after Definition 23). Note that in Proposition 25, we had-
HZ:1 1 but we would not impose this here.

Let ¢ € (0,1]. The weakly orthogonal greedy algorithm
(woGaA) is simple to describe: Sefy = f. For eachm € N,
we inductively define a sequence ff,’s as follows:

1) g € ® is any element satisfying

l

[{fr—1,9m)| = tsup|(fm—1,9)
geD

2) hy € L?>(X; x -+ x X4) is a projection off onto

span(gi, - .-, gm), i.€.
hy € argmin{||f — g|| : g € span(g1,...,gm)}; (52)
3) fm € L3(X; x --- x Xg4) is a deflation off by h,,, i.e.

fm=f—hm.

Note that by Proposition 25, the projection in (52) is well-

defined, i.e. a minimizek,,, always exist. The following result,

adpated here for our purpose, was proved for any arbitrzfrg/

dictionary in [66]. Also note that deflation generally doex n

work to compute SS decompositions, as pointed out in [63}

Theorem 29 (Temlyakov) Supposef € L?(X; x -+ x Xg)
has a SS decomposition

T
f:Z/\p(Plp@)"'@(Pdp
p=1
with p1, ® - -+ ® pgp € ¢ and the condition that

(+3)

for somet € (0,1] and u = [[¢_, u- Then thewoca
algorithm recovers the factors exactly,
fr =0 and thusf = h,..

1

1

< t
r
141

Soh,., by its definition in (52) and our choice df, is given
in the form of a linear combination of rankfunctions, i.e.
an ranks SS decomposition.

E. Greedy approximation bounds via coherence

This discussion in Section VIII-D pertains to exact recgver
of a ranks SS decomposition although our main problem

really takes the form of a best ramkapproximation more

or more precisely,z) If <

13

By our definition of rank and border rank,

or(f) = mf{|f = fI| s vank(f) < r}
= min{|lf = fI| : rank(f) < r}.

k§ would be wonderful if greedy algorithms along the lines
of what we discussed in Section VIII-D could yield an
approximant within some provable bounds that is a factor of
ar(f). However this is too much to hope for mainly because
a dictionary comprising all separable functions, ifgf :
rank(f) = 1} is far too large to be amenable to such analysis.
This does not prevent us from considering somewhat more
restrictive dictionaries like what we did in the previoustsen.

So again, letd C {f € L?*(X; x -+ x Xg) : rank(f) = 1}

be such that

W) < p
for some givenu € [0,1) to be chosen later. Let us instead
define
se(f) = aGC}I}gpefb F= ;O&m@p '
Clearly

o (f) < Sr(f)

ince the infimum is taken over a smaller dictionary.

(53)

The special case wherte= 1 in the woGA described in
ection VIII-D is also called therthogonal greedy algorithm
OGA). The result we state next comes from the work of a
number of people done over the last decade: (54) is due to
Gilbert, Muthukrisnan, and Strauss in 2003 [31]; (55) is due
to Tropp in 2004 [68]; (56) is due to Dohono, Elad, and
Temlyakov in 2006 [27]; and (57) is due to Livshitz in 2012
[48]. We merely apply it to our approximation problem here.

Theorem 30. Let f € L(X; x -+ x X4) and f, be therth
iterate as defined iwoGA with t = 1 and inputf.

1) If r < Hp~t, then

IF = £oll < 801725, f). (54)
su~t, then
If = frll < (1 +6r)'25,(f). (55)
3) If r < &p2/3, then
1f = Friogrll < 24s.(f). (56)
4) If r < 55p7 ", then
I1f = forll < 3s,(f)- (57)

often than not. We will describe some greedy approximation |t would be marvelous if one could instead establish bounds

bounds for the approximation problem in this section.
We let

inf

()= e B 1

T d
f- Z Qp H Pkp
p=1 k=1

in (54), (55), (56), and (57) witkr,.(f) in place ofs,(f) and
{f : rank(f) = 1} in place of®, dropping the coherence
altogether. In which case one may estimate how wellrtthe
OGA iteratesf, approximates the best ramkapproximation.
This appears to be beyond present capabilites.
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IX. APPLICATIONS telecommunications, but the same principle could apply in

Various applications, many under the headingsafDE- other fields. Letr signals impinge on an array, so that their
comp [12] and PARAFAC [35], have appeared in psychomet-miXture is recorded. It is wished to recover the originahsilg,
rics and, more recently, also other data analytic appticati and to estimate their directions of arrival and respectiwegrs
We found that many of such applications suffer from a rét the receiver. If the qhannel is speculgr, some of thesmlsig
gretable defect — there are no compelling reasons nor rigordan correspond to different propagation paths of the same
arguments that support the use of a ran8S decomposition radiating source, and are hence correlated. In other werds,
model. The mere fact that a data set may be cast in the fofiges not denote the number of sources, but the total number
of a d-dimensional arrayl € C™ %<1 does not mean that of distinct paths viewed from the receiver.
(13) would be the right or even just a reasonable thing to do.!n the present framework, we assume that channels can be
In particular, how would one even interpret the facteis’s time-varying, but that they can be assumed constant over a

whend > 2? Whend = 2, one could arguably interpret thesesufficiently sho_rt observation length. The goal is henceeo b
as principal or varimax components when orthonormality R0!€ to work with extremely short samples.

imposed but for general > 2, a convincing application of a In qrder to face thls. challenge, we assume that the sensor
model based on the rankSS decomposition (13) must rely&Tay is structured, as in [60]. More precisely, the sensaya

on careful arguments that follow from first principles. is composed of eference arraycontainingn, sensors, whose

The goal of this section is two-fold. First we would likelocation is defined by a vectds; € R®, andn, —1 other
to provide a selection of applications where the ran&S subarrays, deduced from the reference array by a translatio

decomposition (13) arises naturally via considerationiref N SPpace defined by a vectas; ¢ R®, 1 < j < ny. The

principles (in electrodynamics, quantum mechanics, walgference subarray is numbered wjth= 1 in the remainder.
Under these assumptions, the signal received at discnege ti

propagation, etc). Secondly we want to also demonstrate tha )
the coherence conditions discussed extensively in Sewtion s+ ¥ =1, .,n3, on theith sensor of the reference subarray

invariably have reasonable interpretations in terms ofsjry  C2n Pe written as:

guantities. s
The use of a rank- SS decomposition model in signal sii(k) = ZUP(tk)eXpw’i»P)
processing via the higher-order statistics has a long fyisto p=1

[57], [30], [16], [11], [58]. Our signal processing appltns  with 1, = j%(b/d,) where the dotlesg denotesy/—1,
here are of a different nature, they are based on geometrigattord, is unit norm and denotes the direction of arrival of
properties of sensor arrays instead of considerationsgbiei  the pth path. Next, on thgth subarray; > 1, we have

order statistics. This line of argument first appeared in the -

work of _Sidiropoulo_s and .Br(_) [60], which is in_novative and sij(k) = ZUp(tk)eXp(%,j,p) (58)
well-motivated by first principles. However, like all other =1

applications considered thus far, whether in data analysis oo T

signal processing, psychometrics, or chemometrics, sdoe  With ¥ijp = J& (b dp + Aj dy). If we let A, be the null
address the serious nonexistence problem that we discasseffCtor, then (58) also applies for the reference subarrag. T
length in Section VIII-A. Without any guarantee that a sint INterest of this structure is that variablesnd j decouple in
to (28) exists, one can never be sure when the model wol#fiction exp(¢; ;,), yielding a relation resembling the rank
yield a solution. Another issue of concern is that the Krusk&evealing SS decomposition:

unigueness condition in Lemma 9 has often been invoked to r
provide evidence of a unigue solution but as we have disdusse sij(k) = Z ApUipUjpWhp
in Section 1V, this condition is impossible to check sincerth p=1

is no known way to efficiently computing the Kruskal rank, w w AT
The applications considered below would use the c:oherer\{(\éte]ere Yip = OXP (jab;dp)’ Vip = ©XP (JGAJ' d”) and
conditions developed in Section VIII to avoid these diffteed. Wk = op(tr)/llopll, /\_P = [lopll. ) N
More precisely, Proposition 25, Proposition 27, and Corol- Hence, by computing the rank revealing decomposition of
lary 28 are invoked to guarantee the existence of a solutif NS0l = (s;;(k)) € C>"2""2, it is possible to jointly

to the approximation problem and provide readily checkapf$timate: (i) signal waveforms,(k), and (ii) the directions of

conditions for uniqueness of the solution, all via the nows  &r"val d,, of each propagation path B; or A; are known.
coherence. However, the observation model (58) is not realistic, and

In this section, applications are presented in finite dimefD additional error term should be added in order to stand for

sion. In order to avoid any confusioh, " andT will denote modeling inaccuracies and background noise. It is custpmar

complex conjugation, hermitian transposition, and trassp (and realistic thanks to the central limit theorem) to assum
tion, respectively. that this additive error has a continuous probability diskr

tion, so that tenso$ has ageneric rank Yet, the generic rank
) o takes values at least as large[asnans/(ny +na+mn3 —2)]1,
A. Joint channel and source estimation which is always larger than Kruskal’s bound [20]. Therefore
Consider a narrow band transmission problem in the fare have to face the problem of approximating ten$or
field. We assume here that we are in the context of wirelelsg another of rankr. And we have seen that the angular
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constraint imposed in Section VIl permits to deal with a lwel defined by Figure 2.c, or by the array of Figure 2.c translated
posed problem. In order to see the physical meaning of thigee times according to Figure 2.b. We agree to express this
constraint, it is convenient to define first the tensor produelationship by the equation:

between subarrays.

B. Tensor product between sensor subarrays m - iii BT 00?% iii
The sensor arrays we cope with are structured, in the sense

that the whole array is generated by one subarray, defined Ayother decomposition may be obtained as
the collection of vector locationfb;, € R3 : 1 <i < n;}, and

a collection of translations in spaced; € R? : 1 < j < no}.
If we define vectors m = i ® = ®i
o—0—0 o—0—0

1 w ny
U.p = —nl |:€‘Xp (ijpo)} L y
\/ 1=
B 1 wATd na 59 In fact, =1 ® oo and o—o—o0 = o—o ® o—o. However,
Ve = T {eXp (JE j P)L:l’ (59 it is important to stress that the various decompositions of
oy the whole array into tensor products of subarrays are not
P el equivalent from the point of view of performance. In patagu

. the Kruskal's bound can be different, as will be pointed out
then this means that we may see all measurements as% e

superimposition of decomposable tensors:

AU, Q vy, ® W

rreome o (a) (b) (©)
The geometry of the sensor array is containediyn® vy,
whereas), andw, contain energy and time information on m i:i
each pathp, respectively. Note that the reference subarray and 0—0
the set of translations play symmetric roles, in the senae th
u, andv, could be interchanged without changing the whoI(Eti)g-aZn-d éf)‘ten”a array (a) is obtained as the tensor produutesm subarrays
array. This will become clear with a few examples.
When we are given a structured sensor array, there can be

several ways of splitting it into a tensor product of two (or Similar observations can be made for grid arrays in general.
more) subarrays, as now shown by simple examples.

Example 33. Take an array o0 sensors located atx,y) €

Example 31. Define the matrix of sensor locations g
{1,2,3} x {1,2,3}. We have the relations

0 0 1
[b17b27b3] - |: 0 1 1 :|

This subarray is depicted in Figure 1.b. By translating it _ _ _
according to the translation defined in Figure 1.c one olsain m ®i m @ m @

another subarray. The union of the two subarrays yields the
array of Figure 1.a. The same array is obtained by interchang
ing the roles of the two subarrays, i.e. three subarrays af tW®Mong others.

sensors deduced from each other by two translations. ) .
Let's now have a look at the maximal number of sources

Tmax that can be extracted fromrma x noy x ns. A sufficient
@) (b) (©) condition is that the total number of paths,is smaller than
Kruskal’s bound (25). We shall simplify the bound by making
i_o Oﬁ two assumptions: (a) the loading matrices are generic, that
is, they are full rank, and (b) the number of paths is larger
than the sizesi; and no of the two subarrays entering the
array tensor product, and smaller than the number of time
Fig. 1. Antenna array (a) is obtained as the tensor produetdss subarrays samplesys. Under these simplifying assumptions, Kruskal's
(b) and (c) bound become8r,.x < n1 + ng + rmax — 2, Or:
Example 32. Define the array by
01 2 0 1 2 Tmax = N1 + N2 — 2 (60)

“10o 001 11

This array, depicted in Figure 2.a, can be obtained eithéFhe table below illustrates the fact that the choice of stayar
by the union of subarray of Figure 2.b and its translatiomas an impact on this bound.

[b1,ba, ..., bg]
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Array | Subarray| n1 na | Tmax know that uniqueness of the matrix factor = [uy, ..., u,]

product and identifiability of the directions of arrival, are equivalent.
And from the results of Section VIII, they are ensured by a
?i% re 13 203 constraint on coherence such as (48).
From Section IX-B, one can claim that a similar interpreta-
1|10 ®c<| 4 2 4 tion can be put forward for the second coherence, which mea-

sures the minimal angular separation between paths, viewed
from the subarray defining translations.

The third coherence is nothing else but the maximal corre-
% ®oowo| 3 3 4 lation coefficient between signals received from variouhpa

on the array:
H [taei|s 2] o oyl

(43 = max
e 4 4 6

[®ooo| 2 3 3

r#a [lop|lllogll

As a conclusion, the tensor approximation exists and is
unique if either signals propagating through various paties
C. Significance of the angular constraint not too much correlated, or if their direction of arrival aret

We are now in a position to interpret the meaning deo close. B)_/“nottoo” it shquld be und_erstood that the paidu
angular constraints proposed in Section VIII. According tBf coherencies need to satisfy inequality (48) of Corol28y

the notations given in (59), the first coherence In other words, one can separate paths with high correlation
provided they are sufficiently well separated in space.
M= InQXIuSqu Hence, the decomposition of an array into a tensor product
pP7q

_ _ of two (or more) subarrays should not only take into account
corresponds to the angular separation viewed from the-refgtyskal’s bound, as elaborated in Section 1X-B, but also the

ence subarray. In fact, vectoks andd,, having a unit norm, apjlity of the latter subarrays to separate two distinatctions
as well as vectorsi,, the quant|ty|u§uq| may be seen as aof arrival (cf. Proposition 35).

measure of angular separation betwegrandd,, as we shall

now subsequently show in Proposition 35. L
D. CDMA communications

Definition 34. We shall say that a collection of vectors
{b1,...,b,} is resolvent with respect to a directionc R3
if there exist two indiceg and! such thatv = b, — b; and

The application to antenna array processing we described
in Section IX-A is one among many others, including Sparse
Component Analysis and Compressed Sensing. Actually, the
present framework also applies to all Source Separation-pro
lems, as those reported in [18], provided an additionalrgitye
is available. For example, one can mention the case of Code
Division Multiple Access (CDMA) communications. In fact,
Let b;, d, andu, be defined as in (59)1 < i < ni, as already pointed out in [61], it is possible to distinguish
1 < p,q < na. Then we have [19]: between symbol and chip diversities. In order to be more
explicit, let’s detail a little further the latter example.
Consider a downlink CDMA communication with users,
each assigned a spreading sequefigg:), 1 < p <r, 1 <

A
0<Ivl<3 (61)

where A = % denotes the wavelength.

Proposition 35. If {by,...,b,} is resolvent with respect to
three linearly independent directions, then

|u;'uq| =1l&d,=d, k < n. Next, denoted,, the complex gain between sensor
] H B i=1,...,m, and usep, S;, the symbol sequence transmitted
Proof: Assume |uyug| = 1. Then because they areby userp, j € Z, and H,(k) the channel impulse response of

unit norm, vectorsu, and u, are collinear with a unit

modulus proportionality factor. Hence from (59), for gJlk,

1 <j,k <n, (b;—by)"(d,—d,) € A\Z, whereX is defined

in Definition 61. Since{by,...,b,} is resolvant, there exist B -

(k,1) such tha) < ||bx, — b;|| < A\/2. Hence, because vectors Tijr = ZAiPSJ'PBkP

d, are unit norm||d, — d,| < 2 so that we necessarily have P=t

that(b,—b;) " (d,—d,) = 0. Vector(d,—d,) is consequently where By, = >, H,(k — t)C,(t) denotes the output of the

orthogonal to(b;, — b;). The same reasoning can be carriegth channel excited by thgth coding sequence, after removal

out with two other independent vectors. Eventually, vectaf the guard chips (which may be affected by two different

(d, — dg) is null because it is orthogonal to three linearlgonsecutive symbols) [61].

independent vectors iR3. The converse is immediate, by the The columns of matridB are often referred to as “effective

definition of u,. B codes”, and coincide with spreading codes if the channel is
Note that the condition of Definition 61 is not very restricmemoryless and noiseless. In practice, the receiver fifter i

tive, since sensor arrays usually contain sensors sefddngite matched to the transmitter shaping filter combined with the

half a wavelength or less. Thanks to Proposition 35, we ngwopagation channel, so that effective and spreading cades

userp. Then, the signal received on sengaduring the kth
chip of the jth symbol period takes the form:
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ideally proportional. Under these conditions, the coheeenfs, € (—n/4, 7/4) — {0}, we have:

ue accounts for the angular separation between spreading e £
sequencesi,~ = 0 means that they are orthogonal. On the B, = \/LE { fp _g }
other hand,., = 0 means that symbol sequences are all P P
uncorrelated. Lastly, as seen in Proposition35,= 1 means gp = Qlap) by
directions of arrival are collinear. with

Yet, in order to avoid multiple access interferences, sprea —siné, — cos B, sin x,
ing sequences are usually chosen uncorrelated for all de- e, = cosb, |, f,=| —sinf,sinx,
lays, which implies among others that they are orthogonal. 0 €OS X
Hence the results obtained in this paper show that spread- cosa sino cos 3
ing sequences do not need to be orthogonal, nor symbol Q(a)= { Cdina  cosa } , hy, = < jsiné; >

sequences need to be uncorrelated, if directions of arareal
not collinear. In particular, shorter spreading sequemoayg Whered,, € [0, 27) andx,, € (—/2, /2] denote respectively
be used for the same number of users, which would incre48e azimuth and elevation of the direction of arrival of ik
the throughput. Alternatively, one could increase the nembpath. In particular, the unit vector defining thph direction
of users for a given spreading gain. This is made possittéarrival is:
because the constraint of having almost orthogonal sprgadi
sequences is relaxed. In addition, some directions of arriv !
may be collinear if the corresponding spreading sequernees a S0 Xp

sufficiently angularly separated. However, these conghssi so that the tripletd,, e,, f,) forms a right orthonormal triad.
are essentially valid when users are synchronized, th&bris
downlink communications.

cos ), cos xp
d, = | sinf, cosx,

' Lemma 36. |gl'g,| = 1 if and only if o, = o + k7 and
Bp = Bg k € Z.

Proposition 37. |vyvq| < 1, with equality if and only itv, =
E. Polarization aq +km, By = Bg, Op = 0 + k'm and x;, = x4, k. k' € Z.
The exploitation of polarization as an additional diversit Proofs are given in appendix. This proposition proves that
takes its roots in the paper by Nehorai and Paldi [543 constraint on coherenge imposes sources paths to have

Several attempts to use this diversity in the frame of tenséiither different directions of arrival or to have differemo-
based source localization and estimation can be found in {g&Zations. The constraini; < 1 has hence a clear physical

literature. A good account of the existing approaches can B§aning. Itis also interesting to note that< 1 contributes to
found in [34]. satisfy u; < 1, becauses; also involves directions of arrival.

In this framework, we consider again an arrayefsensors, .
whose location is defined by a 3-dimensional real vebigr F. Fluorescence spectral analysis
and we assume a narrow-band transmission in the far field ( Here an another application to fluorescence spectral a@salys
sources - or source paths - are all seen as plane waves af®é We refer the reader to Example 6 for the notations
receiver sensor array). The difference with Section IX-Bist used here. Suppose we havesamples with an unknown
the translation diversity is not mandatory anymore, predid number of pure substances in different concentration treat a
impinging waves are polarized, and provided their poldigza fluorescent. Ifa;;; is the measured fluorescence emission
is neither linear nor circular. One measures the electrit atitensity at wavelengti\S™ of ith sample excited with light
magnetic fields at each sensor as a function of time, so ti#twavelength\?*. The measured data is #dimensional

ny = 6. More precisely, vectov,, of Equation (59) is replaced hypermatrixA = (a;;,) € R*™*™. At low concentrations,
by: Beer’'s law of spectroscopy (which in turn is a consequence

of fundamental principles in quantum mechanics) can be

vy =B, 8, (62) Jinearized [49], and yields a rank-revealing decompositio

whereB,, is a6 x 2 matrix depending only on the direction A=x1Qy1 Q@21+ +X Qyr Q2.

of arrival d,, (defined in Section IX-B), and a vect, Thijs can reveal the true chemical factors responsible fer th
depending on the orientation and ellipticity of the polatian  gata:r — rank(A) would be the number of pure substances

of the pth wave. in the mixtures,x, = (z1,,..., ;) would be the relative
Coherencesy; and p; are the same as in Section IX-B,concentrations opth substance in specimens...,[; y, =

and represent respectively the angular separation betdieen(y,,,. ... y,,,) the excitation spectrum gfth substancez, =

rections of arrival, and correlation coefficient betweenvarg (2, ..., z,,) the emission spectrum gfth substance. The

sources. Itis slightly more involved to capture the sigaifice spectra would then allow one to identify the pure substances

of the coherence associated with polarizatios, Of course this is only valid in an idealized situation when

With this goal, we need to go into more details. Referrinthe measurements are performed perfectly without error and
to [54], and denotingy, andj, the orientation and ellipticity noise. Under realistic noisy circumstances, one would then
angles of the polarization of thegh wave,«, € (—7/2, /2], need to a find best rankapproximation.
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G. Statistical independence induces diversity APPENDIX

When measurements are recorded only as a function of WO, 00f of Lemma 36 First note thatQ(a,)"Q(ay) =
variables (e.g. time and space), the present framework b !
apply if at least one additionalldiversity s taken.into ageo Q(aq—ay,)hy are collinear. But the first entry af, is real and
We have seen already S(_averal Instances Of_ additional diesrs the second is pure imaginary. Hence, corresponding imagina
in the previous subsections. We shall point out now a quUIIe 1 real parts 0Q(a, — a,)h, must be zero, which implies
different way to build a function of more than two variablesrhatsin(a —a) =0 qun;)eqaentIQ(a Ca )' _ 1T which
which makes sense from the physical point of view. yields hpq: jz:)hq. But because angléq Iiespin the ,interval

Assume the linear model below (—m/4, 7/4), only the positive sign is acceptabie.

c@r(‘aq—ap). Henceg!'g, can be of unit modulus only i, and

x(t) = Us(t) (63) Proof of Proposition 37We have|viv,| = |g/B]B,g,l.
where only signalx(t¢) is observedJ = [uy,...,u,] is an Notice that matrixB;Bq is of the form
unknown N x r matrix, ands(¢) is of dimensionr with
mutuallly statistically independent componenis(t). Then BB — < Yon >
one can build thelth order cumulant tensor of(¢), T, and P -n

the latter will satisfy the SS model [52]:
. wherey andn are realy = 3(efe,+£f,) andn = 3 (e]f, —
T=(U,....,U) A= Z Aplly ® - ®u, fle,). Yet, si.nce vectors, anFqu are of unit modulu.q,vqu|
et can be of unit modulus only if matrlB;Bq has an eigenvalue
of unit modulus, which requires that +7,? = 1. Let us prove
that we havey? + n? < 1 with equality if and only if results
of Proposition 37 are satisfied.
With this goal, define the three 6-dimensional vectors:

where A denotes the cumulant tensor ef Yet, because of

statistical independence, is diagonal [18]. Ifd > 3, and if

at most one entry of\ is null, then matrixU and the entries

A,...p = Ap can be identified. The uniqueness of the solution

is subjec_t to identif_iability conditions evoked earl_ier. o 1 (e 1 [ e, ) 1 f,
As pointed out in [18] and refergnces_ therein, this kind z NG { £, } » W 7 [ £, } y W NG [ —e, } .

of problems generalizes to convolutive mixtures as welf an

finds ap_phcanons in teIe_commur_ncatlc_)ns, radar, SON@esP Then~ = z'w and~y = z"w’. Now decompose vecter into

processing, and biomedical engineering, among others.  two orthogonal partsz = z, + z,, With z, € Span{w,w'}

o . andz, L z,. Clearly,y* + n? = ||z,||>. It is also bounded by

H. Nonstationarity induces diversity one becausélz,||? < ||z/|? = 1, with equality if and only

If a signal z(t) is nonstationary, its time-frequency transif z € Span{w,w’}. By inspection of the definitions of,

form, defined by ande,, we see that the third entry afandw is null. Hence
z € Span{w,w’} is possible only if eithe is collinear tow
X, f) = /x(“)“(“ —t; f) du or if the third entry ofw’ is null. In the latter case, it means

that y, = 7/2, and then thal, = 7/2 and6, = 6,. In the

for some given kernet, bears information. If variablesand . ] . )
g former case, it can be seen thah 6, = sinf,, and finally

f are discretized, then the values #f(¢, f) can be stored that v, —
in a matrix X, and the more nonstationany(t), the larger aAXp =Xg- . )
the rank of X. A similar statement can be made on a signa| The Iast_step_|s to rewritg anqn a_s a function of angle
y(z) depending on a space variableThe discrete values of “» ~ fa: USING trigonometric relationsy = cos(f), — 6,)(1 +
the space-wavevector transfoffi(z, w) of a field y(z) can S Xp S Xq) + cos X, cos xq andn = sin(d, — b;)(sinx, +
be stored in a matri". And the less homogeneous the field™" Xq)- This evemtually shows tha - L andn = 0. As
y(z), the larger the rank of . This is probably the reason why? consequencelv,v,| = 1 only if BB, = I, and the
algorithms proposed in [69], [3] permit to localize and extr proposition follows by applying the lemma.
dipole contributions in the brains by identifying a mutidiar
model, provided the have distinct time-frequency or space- ACKNOWLEDGEMENT
wavevector patterns. Nevertheless, localization is guaeal
to be successful only under restrictive assumptions. We thank Ignat Domanov for pointing out that in Proposi-
tion 25, the factor on the right hand side may be improved from
X. FUTURE WORK rtor—1, and that the improvement is sharp. Sections VIII-D
A separate article discussing practical algorithms for ttand VIII-E came from an enlightening series of lectures
bounded coherence best ranksS approximation is under Vladimir Temlyakov gave at the IMA in Minneapolis and the
preparation with additional coauthors. These algoritholiefy  useful pointers he graciously provided afterwards. We also
the general strategy of the greedy approximatismessA and gratefully acknowledge Tom Luo, Nikos Sidiropoulos, and
0GA discussed in Sections VIII-D and VIII-E but containYuan Yao, for their very helpful discussions.
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