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Virtual Gesture Control of Sound Synthesis:
Analysis and Synthesis of Percussion Gestures
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1) IDMIL, CIRMMT, McGill University, Montreal, Quebec, Canada
2) VALORIA, Université de Bretagne Sud, Vannes, France

Abstract

Inrecent years, the control of virtual instruments or seaydthesis processes by natural gestures has become atampesearch
field, both for building new audio-visual tools and for exjihg gesture-sound relationships. Such multimodal aretaative tools
typically present two advantages, on the one hand they georgalistic virtual instruments whose response can be amdp
to existing musical instruments, and on the other hand tiy the possibility to vary characteristics of natural gess, while
ensuring a certain coherence between gesture and sounmdgtara.

In this paper, we present and evaluate a new framework fdicékp expressing the characteristics of natural permurss
gestures used for modeling, controlling and finally synitieg new percussion gestures. A preliminary analysis efneccorded
gestures leads to the identification of significant parareetnd their evaluation using a classification approachis ahalysis
shows that a reduced-dimension representation of captactihn can be used to control a virtual character. Furtheemihe
simulated gestures provide dynamical variables that carsed to control sound synthesis through a mapping-inieraptocess.

1 Introduction and Motivation

While playing a musical instrument, a musician establishesore or less continuous interaction with the instru-
ment. Such interaction is based on complex mechanismsyiaiahe fine-tuning of the sound-producing gestures
via sensorimotor loops, including audio, visual and hdptaprioceptive feedback. This sensory information is di-
rectly influenced by the semiotic information containedia musical phrases, and may change the motor commands
that produce the gesture. Virtual musical instrumentsrotietl by natural gestures try to realistically reproduus t
sensorimotor situation with the aims of approaching resttiitmental situations and exploring possible gestur@dou
relationships. Reality may then be extended through neadigims where users can interact in real-time with sound
processes.

Traditional acoustic models provide a formal represeoiatif the underlying physical mechanisms that are at the
origin of the produced sounds. Such models have been progosa wide range of musical instruments, such as
strings [3], single-reed [16] or brass instruments [19]e3d contributions imply more generally inversion procgsse
starting from the produced sound to obtain physical pararaébr controlling virtual instruments models, which are
themselves driven by instrumental gesture excitationsfa¢h, one of the main issues of the above approaches is
to characterize the inversion processes, and especiathafothe physical parameters of the virtual instrument with
interaction gestures.

Previous works have focused on the analysis and modelingtefaction gestures for particular instrumental
gestures, namely for taking into account the gestural $8ghat are responsible for the sound production. For exampl
in the case of bowing gestures, related works have focus#tkadentification and use of interaction profiles|[13, 20],
as well as gesture following [4]. These works are generalgted to the analysis of the considered instrumental
gestures [12, 21] for identifying gesture profiles of instréout rarely address the modeling of the equivalent gestur
actions that are at the origin of these profiles. Our workisgndiffers from these previous works in the sense that
the proposed system produces the gestural signals thagsprensible for the sound production, with a special focus
on timpani gestures.

We propose to introduce a complete modeling of gesture, bigdimg a human-like character endowed with real-
istic and expressive behavior. In order to reproduce thatzracteristics of the control exerted on a real instrumen
and more specifically the efforts involved in the interactiowe adopt a physics-based approach for modeling both the
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Fig. 1: Approach: gesture dimension reduction by extracting nmgp@rameters, evaluation of motion parameters and
synthesized motion data, and finally interaction betweeh®sized motion data and sound synthesis.

virtual performer and the sound-synthesis process. The imirest of a biomechanics-based modeling of gesture lies
in the dynamical understanding of the mechanical linkshéistaed between the instrumentalist and the instrument.
Furthermore, this physical approach may also provide Irisigbout the various parameters that are responsible for
producing specific performances with a desired degree akssjveness. These parameters may characterize for ex-
ample the joint constraints in the form of angular limits @rbechanical parameters such as stiffness and damping of
the joints. Finally, such a physics modeling approach altswepresent not only what occurs during the mechanical
interaction between the instrumentalist and the instrumart also the whole gesture production system, including
the preparatory and the retraction phases that preced®bma the interaction process.

In a similar way to sound-synthesis research that focusedfent-centered (sampling and spectral modeling) or
cause-centered (physical modeling) synthesis methoglsathtrol of virtual characters involves either effecttesad
(kinematics)([28, 117]) or cause-centered (physics)[[29), dalutions. To take advantage of both methods, we define a
cascaded combination of two inversion models (kinematickphysics) allowing the control of the virtual performer
through a sensorimotor control loop from motion data of retlidimension compared to related contributions [28].
This controller uses sensory information, for instancelehatajectories or more generally visual or proprioceptiv
information, to compute the forces/torques that drive timgspcal model of the virtual performer.

However, without real data, inferring the forces and momeapiplied to joints and bones of the virtual character
still remains a difficult inverse problem. As illustratedfig. [, we propose to solve it by using motion captured
data recorded during real performances. The idea is toaxn@m these data a segmented and reduced-dimension
representation of motion, and then to edit and assemble thesion chunks in order to control the virtual character.
One key issue of our work is therefore to propose an origirethmdology which evaluates a reduced-representation of
the recorded motion data, and to demonstrate that this eeldiepresentation may be used to synthesize the movement
through an inversion process. Concerning the reducedrdiime process, we observe that the trajectories of the
mallet’'s end-extremity follow cyclic patterns which diiasily change with the type of the attack depending among
other factors on the type of the technique, the style of tsrumentalist, and the different playing modes. We make
the hypothesis that these patterns can be considered as whthe movement that contain most of the necessary
features to reconstruct the movement. To go further, weqgeeo characterize these patterns by a limited number of
parameters representing the extremities of the kinemajedtories and their corresponding timing.The methogiplo
is divided into two parts: first, it evaluates this reducepresentation, thanks to a classification process. Second,
the same classification method is applied on the synthegiestires. In addition, we propose an interaction scheme
between gesture and sound, so that the impact forces andhible gestures produced during the simulations may
be taken into account to control the sound synthesis prdabessgh a mapping strategy. We finally show how such
models can be used to simulate virtual percussion perfaceramand evaluated using auditory and sound feedback.

This paper is organized as follows. Sectidn 2 presents thlysia part of the work, by extracting a set of rel-
evant parameters that characterize percussion perfoesaand by evaluating these parameters using a classifica-
tion/recognition method. We then propose in secfiibn 3, éirstethod for modeling and controlling virtual gestures



from reduced-dimension motion data, according to the tesifiithe analysis, and second a general scheme for inter-
acting with sound synthesis. Results are presented irosédtithey concern the evaluation of synthesized gestures
compared to real ones, as well as the evaluation of virtualyssion performances, from visual and auditory output.
We conclude and draw perspectives of this work in se¢fion 5.

2 Percussion Performance Analysis

In this section, we present an original analysis methodotogvaluate the relevance of gesture parameters extracted
from recording percussion playing techniques, and esfpetimpani performances.

2.1 Timpani Data Collection
2.1.1 Timpani Playing Techniques

Timpani-related equipment is mainly composed of a bowl, adhend mallets. In general, timpanists have to cope
with several timpani (usually four) with bowls varying ireei As for timpani mallets, they consist of a shaft and a
head that can be designed in a wide range of lengths, wetbitknesses and materials [11].

Timpani playing is characterized by varied playing teclueis, We focus here on three main techniques: percussion
grips, gesture variations and beat impact locations. ,Rirete are two main strategies for holding mallets: French
grip (also called "thumbs-up”) and th&@ermangrip (or "matched” grip). Timpani players also use severaiations
of a gesture: we selected five of thetre@atq Tenutq Accent Vertical Accentand Staccatd which are associated
with related sound effects, typically characterized bydtiemand resonance differences. Players also use threectlisti
locations of impactsOne-thirdof membrane radiu§enterandRimof the membrane. The most used is @we-third
location, whileCenterandRimare used less often. These playing techniques define thanirgpsture typology used
for building a motion capture protocol from which our datdection is derived.

2.1.2 Motion Capture Protocol and Database

We captured the motion of several performers using a Vicdhs§8tem based on Infra-Red camera tracking, as well
as a standard DV camera allowing the synchronization of bagtured gestures and sounds [6]. Timpanists wore a
lycra suit fitted with markers placed according to the magaasition setup of Vicon'®lug-in Gait Mallets have also
been augmented with markers, so that beat impacts can bblyaletrieved. In this study, we have also restricted the
drumset to an unigue timpani.

Three percussionists were asked to perform a pre-definddregprotocol consisting of a single stroke roll for
each gesture variation. For each gesture, performers vg&egldo change the location of the beat impact according
to the three locations previously described. In total,tyhéexamples of timpani exercises were performed for each
percussionist (each with six beats per hand). Performetsdraous musical backgrounds and playing characteristics
Main differences included their degree of expertibeaicher Master studenor Bachelor student their preferred grip
used Frenchor German), dominant Left or Righ?) hand, and gender.

One of the main issues using such hardware solutions is thieebf the sampling rate used for the capture of
percussive gestures, mainly because of the short durdtitne deat impact [25]. With high sampling rates (500 Hz
and above), one can expect to more accurately retrieve tiaeks, but the capture space range is significantly reduced
so that it may be difficult to capture the whole body of the perfer. For this project, a compromise was chosen by
setting the cameras at 250 Hz, allowing both full-body cepas well as a reasonably high sampling rate for reliably
capturing mallet beat impacts.

2.2 Analysis

The analysis of timpani performance gestures collectedérdatabase focuses on the study of mallet extremity tra-
jectories, the result of the percussionist action duringical performance. An intuitive hypothesis consists tghjc
in stating that percussionists more specifically contrelrtiotion of mallets over time, even if studies have undedline
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strategies involved in the motion of shoulders, elbows aridts/[12]8]. The aim of this section is to provide a quan-
titative analysis of this hypothesis, as well as to givevaft parameters that are of particular interest for the rimngle
and synthesis part of our work (sectidn 3). In order to higjttiithis asumption, we conduct below a study based on
mallet height trajectories.
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Fig. 2: Motion profiles for theFrenchgrip. First raw: local extrema extracted from height trégeies of the mallet
extremity, one particular legato beat ferenchgrip: (a) position (withE;, E; andE3 extrema), (b) velocity
and acceleration. Second raw: profile variations of (c)tposi (d) velocity and (e) acceleration trajectories
for the Frenchgrip, and for each gesture variation (bladkgatg red: tenutq blue: accent green:vertical
accentand cyanstaccatd.
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2.2.1 Method

The parameters used to characterize mallet extremityctaajes are local extrema extracted from position trajeeso
duringbeat-to-beat preparatorghases, as well as local extrema from velocity and acc@eragat-centeregrofiles

as represented on Figurk 2 (a, b) for a particular legat&estimr theFrenchgrip. Variations of mallet trajectories
(position, velocity and acceleration) from which localrexha are extracted are given in Figlite 2 (c—e) for both grips
and for each gesture variation.

The evaluation of such a parameterization is conducted lbyatgative analysis based on a classification/recogni-
tion scheme. The relevance of these parameters is meassingdtiie Support Vector Machine (SVM) classification
method, with the use of Radial Basis Functions (RBF) as kdumetions. The scope of this evaluation initially
concerns parameters related to the type of percussiortigeipseveral gesture variations. For each case, a conthinati
of parameters is chosen and forms a reduced-dimension fineldelata set of the motion capture database, on which
the classification/recognition scheme will be based ons Téfined data set is then divided into two sub-sets, an elxcerp
of each is randomly extracted for representing determitesbes that will train a classifier, whereas the remaining
data will consist in queries submitted to the classifier. Télevance of the selected parameters will be estimated
accordingly to their recognition success by the classifier.

In this quantitative study, the determined classes to begrzed will typically correspond to two classes for
percussion grips, and five classes for gesture variatianthat a multi-class SVM approach has been adopted. The
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Tab. 1: Statistical features computed on mallet trajectories atrdeted extrema: verticean Varianceand Range
of Motion (RoM), as well as the average temporal (in percentage of gesuueation) and spatial character-
ization of extracted extrema presented in Fidure 2.

|| Statistics Grips || Mean[m] | Variancelm | RoM[m || Ei[%/m | E[%/m [ Es[%/m |
French 1.1 0.1 0.4 21/1.3 47/1.1 68/1.3
German 0.9 0.05 0.2 12/0.9 68/0.8 85/1.0

Tab. 2: SVM recognition percentage: timpani grips using malletifas extrema presented in Figurk 2.

| Training/Test || French [ German ||
French 98.2 1.8
German 2.7 97.3

classical approach to multi-class SVM is to construct ssEv@inary one-versus-rest classifiers, each being characte

ized by a decision hyperplane to discriminate the corregipgrclass to the others [24]. The approach adopted in this
work is to characterize the multi-class problem by a piesewdecision hyperplane, enabled with a decision function
that can train data without errors compared to a set of ongugerest classifiers as argued|inl[27]. The presented
classification analysis has been conducted based on therdipidiry [26], and uses default parameters of RBF kernel

functions.

2.2.2 Percussion Grips

We initially focus on the analysis of the influencefefenchand Germangrips on mallet trajectories. Quantitative
features (Tablg]1) processed on the vertical componenteoétiremity of the mallet show th&renchgrip-related
data performs the same timpani gesture with much more andplitThe mean of the mallet extremity height is about
twenty centimeters higher than i&ermangrip counterpart, with a variance twice higher. This facstiengthened
by the vertical range of motiorRpoM) of the extremity of the stick foFrenchgrip-related data that is about twice
higher than foilGermangrip data. Moreover the mean of mallet extremity height@@rmangrip data shows that the
extremity of the stick is in average closer to the timpani rheame.

Specific local extrema can also be observed during prepgugéstures. Figuild 2 presents examples of the vertical
component of the preparatory gesture between two beakattaad the identification of three characteristic extrema
denotedg;, E, andE;. These extrema are temporally (temporal apparition ingreege of gesture’s duration) and
spatially characterized in Tallé 1.

Vertical extreméE;, E; andEg are temporally equi-distributed for tiigenchgrip-related data showing a contin-
uous preparatory gesture, whereas local extrem&émangrip-related data denote three distinct parts. In therlatte
case E; corresponds to the reaction to the previous beat attackideete; andE; the extremity of the mallet seems
to seek a rest position (during more than the half of the whwgement duration) just above the timpani membrane,
while E; andEj correspond to the amplitude of t@ermangrip-related data around the following beat attack. Table
also quantifies the effect of the french and german gripsewértical amplitude of the extrema.

FrenchandGermangrips influence the spatial and temporal characteristith@gxtracted extrema from height
trajectories of the extremity of the mallets. In order toleate the relevance of such parameters for discrimining
percussion grips, we chose to use a classification/redogmitocess. The training set is randomly composed of only
1/8" (68) of the total number of available data (540), and the yjget is composed of the remaining data.

The high recognition rates of these extrema (superior to B¥8&verage), as shown by the confusion matrix in
Table[2, indicate that such a parameterization is wellksuior characterizing the effect of percussion grips on the
height trajectories of mallets.
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Tab. 3: SVM recognition percentageésrenchgrip gesture variations using the combination of mallebe#y and
acceleration extrema presented in Figure 2 .

| Training/Test || Legato | Tenuto | Accent | Vert Accent | Staccato ||
Legato 96.2 3.1 0 0.7 0
Tenuto 2.1 92.6 3.2 2.1 0
Accent 2.4 0 94.7 2.9 0
Vert. Accent 0 0 0 934 6.6
Staccato 0 0 0 3.3 96.7

Tab. 4: SVM recognition percentagé&sermangrip gesture variations using the combination of malletifgms and
acceleration extrema presented in Figure 2 .

| Training/Test || Legato | Tenuto | Accent | Vert Accent | Staccato ||
Legato 9.4 5.1 0 25 0
Tenuto 3.3 931 0 11 25
Accent 2.9 0 94.3 2.8 0
Vert. Accent 1.7 0 1.6 91.8 4.9
Staccato 1.1 0 0 54 93.5

2.2.3 Gesture Variations

Following the same methodology, the considered set of ebedgparameters is enhanced for taking into account more
timpani playing techniques, namely the different gestagations available in the motion capture database for each
percussion grip sub-group, as described in se€fion]2. hdsd additional parameters are composed of the previously
presented mallet height extrema (Fighre R(a)), as well eal lextrema extracted from mallet height velocity and
acceleratiorbeat-centeregrofiles (Figurd 2()). Beat-centered profiles are the tatioo of motion to a window

of 120 ms, 60 ms before and after the beat impact. In bothtginsfor discriminating gesture variations inside
percussion grips, the training set is randomly composeahlyf /4" (45) of the total number of available data (180),
and the query set is composed of the remaining data.

The discrimination of gesture variations related tofmenchgrip is achieved by considering the combination of
velocityandaccelerationextrema. The results obtained with such a parameterizatimpresented by the confusion
matrix in Tablé_B, with an average recognition rate supea®@4%.

As for gesture variations related to t@ermangrip, the discrimination is achieved by combining bgibsition
andacceleratiorextrema. The results obtained with such a parameterizat®presented by the confusion matrix in
Table[4, with an average recognition rate superior to 93%.

2.2.4 Discussion

Regarding the nature of the spatio-temporal parameterigiided through this analysis, we believe that they are
relevant according to the percussion task, since both tiglht@nd the timing of gestures are highly controlled during
percussion performances. The introduction of velocity anceleration characteristics for discriminating between
gesture variations amonigrench and Germangrip-related data can be interpreted as the parameterizafi the
musical expressiveness intrinsically related to eachugesariation.

More interestingly is the use of different parameter corabioms {elocity/acceleratiorfor Frenchgrip gesture
variations, andositioryacceleratiorfor Germangrip gesture variations), related to the statistical fezgypresented
in sectior 2.22. As shown in Takile 1 the mallet range of nmiSanuch more constrained for teermangrip, attest-
ing the importance of position parameters for discrimimgtjesture variations in this case. Conversely, the cootigu
and equi-distributed preparatory gesture shown foFttemchgrip underlines a less stiff constraint on mallet position,
so that the way velocity is involved is predominant for disgénating gesture variations in this particular situation
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Fig. 3: Virtual gesture control: physical control of the muscukeigeton model of the virtual performer from mallet
extremity trajectories.

Acceleration parameters are important features for baisgrs they may be related to the dynamics of the strike.

3 Virtual Gesture Modeling and Interaction with Sound Synthesis

In this section, we first present the physics-based modeliriige virtual character and the way the mallet extremity
trajectories can be used to control the performance, asdstiatthe previous section. Then we derive an interaction
mechanism to make possible the virtual performer contrahdsynthesis.

3.1 Virtual Gesture Modeling and Control

The virtual performer is represented by a physical modehmused of two skeleton layers: a physics lay@)(and a
kinematics layer%), as depicted in Figufé 3. The skeleton phySiess composed of a system of rigid body segments
(limbs) linked by mechanical joints. These latter form tlenbechanical propertieB of the model, constraining the
allowed rotational degrees of freedom between the artiedlbodies. Each rigid body is characterized by physical
properties, such as mass and inert. is put into motion by a forward dynamics scheme according ¢avfdn’s
motion laws, where rigid bodies acceleration and anguléocitees are inferred by the application of forces and
torques.

Such a musculo-skeleton representation of the virtuabperér can therefore be responsive to any application of
forces and torques during a simulation. This is the stawioigt of the motion control formulations presented here,
which aim at applying the right physical torque®on S only by the specification of end-effector cartesian targets
describing the motion of mallet extremity trajectord$. This motion control scheme inferring physical torques
from kinematic trajectories is characterized by the iniersf two cascaded problems, the inverse kinematics)
and inverse dynamic®( 1) formulations. In a first time, given the target trajectofyttte mallet extremityx™ and
its stateXS, the inverse kinematics scheme processes automaticailyeanktic pos@®! that realizes the targetT,
and representing the orientation of each joint compoSingand specifically the arms). In a second time, given the
kinematic pos®" and joints current stat®®, ©S), the inverse dynamics scheme computes automaticallpthees
T to be applied on the rigid bodies composi®g Such cascaded strategy therefore achieves the physitabkof
the virtual percussionist by the reduced-dimension andtingé specification of mallet extremity trajectories dahle
in our database. The method used to link both inverse schisrdegailed in[[7 5].

3.2 Interaction with Sound Synthesis

In this paper, we are interested in physically based sourdkfapwhich produce sound that respond to physical input
parameters. One of the main interests of this physical gmbrds its interactivity and ease in mapping gesture to
sound control. In our work, we adopt the modal synthesis &jism [1], which describes the vibrational model of the
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drum membrane as a model governed by the vertical displatd@®f N coupled oscillators parameterized by mass
(M) and stiffness (K) coefficients, cf. Equatidd (1).

M.z(t) +K.z(t) = Fs 1)

Such a model is typically characterized by physics paramm&éncluding the size, tension, mass and Young's
modulus of the membran& also includes other parameters related to sound synthedisas the number of modes
taken into account as well as dispersion terms. Finally,reefalensityFs is exerted by the mallet on the drum
membrane model. This force represents the excitation odithn and is responsible for the selection and weighting
of the modes involved in the sound production. The intecadbietween gesture and sound synthesis can be represented
by the gesture output§( Fg) mapped to the sound inputS, Fs), as shown in Figurigl 4.

Gesture outputs are characterized by parame®&rgd) revealing the nature of the impact during the simulation.
G includes the impact locatiofxg, yo) and velocity, as well as the attack anglef the mallet on the membrankgg is
an impact force which results from a collision detectionEn the mallet and the drum membrane during the gesture
physics simulation. Physical models of impacts can be aceonfrknowledge for determining the excitation fofeg
such as the Hertz’s law of contact as described by Equaflon (2

FG(t) = k [C(XoayOat)]a Wlth C(X07y07t) = p(t) - w(Xan()at) (2)

wherep(t) is the displacement of the mallet’s head, andhe vertical component of the displacement of the
membrane at the impact poing( yo). The parametek characterizes the force stiffness and can be determindueby t
force impulsa~g coming from the gesture synthesis. The expomreist determined by the contact geometry between
the mallet and the membrane, and can be affected by the ¢amigied.

Gesture parametefs andFg are then used to control sound parameters through a gesiuret mapping. The
excitation forceFs(Xo, Yo, X, ¥, t) is limited in time and distributed over a certain width. Somedels assume that the
time and space dependence can be sepafated [10], and testists a relationship betweBg andFs, Equation[(B),

Fs(X,¥,X0,Yo,t) = Fa(t).22(9(X,¥; X0, Y0)) 3)

whereg(x,y, Xo, Yo) is a spatial window that accounts for the contact width ofrttalet with the membrane. Other
models consider that the spatial dependency is negligibie consequently the excitation foféecan be defined as
the impact forcé [2]]. This mapping-interaction approach gives the posgytid simulate real physical mechanisms—
both for gesture control and sound synthesis—as well asopeopariations that affect the numerical simulations. In
particular, sound parametesgan be controlled from gesture parameters as a means opeldtiag different gesture
output and sound input parameters, as well as various mggphremes, thus allowing us to explore the relationship
between gesture and sound. This flexibility can be interggtr instance in virtual reality appications.
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4 Simulation Results

The gesture modeling and control system is implemented mguke Open Dynamic Engin€OQE) library [22]
which simulates elementary rigid body dynamics on whicheantrol algorithms are built. This library includes an
integrated collision detection scheme with friction. Thedual of the virtual character is composed of 19 bodies and
19 ball-and-sockejoints, each with three degrees of freedom. The control hedmly applied on the two hand-arm
systems with a stick-mallet. It uses advanced joint typasahow us to specify the stiffness and damping coefficients
that characterize the shoulder, elbow and wrist joints. ®itltese joints’ coefficients, as well as the links’ paraengt
(size, mass), biomechanical parameters. They can be ohémggmulating variations of the gestures.

The collision detection module @DE produces impact forcess;(t) which are instantaneous impulse functions
applied on the vibrating surface at some specific poityo). We use this position as well as the initial veloayof
the mallet’s head at this point, at the time where it come®imact with the surface. We may also use the motion of
the mallet before the impact, as it is simulated by the plasiodel.

Quantitative results are first presented, by analyzing y#imthesized gestures, using the same methodology as
the one described in section 2. We then qualitatively evaltige virtual percussion performances, using visual and
auditory feedback.

4.1 Evaluation of Synthesized Gestures

In order to evaluate the quality of the synthesized gestgeeerated by our framework, we first compute the error
made on upper-body member trajectories between syntheaim real gestures. Figure 5 presents the root mean
squared errorRMS computed on two hundred simulation trials compared to naexb data specifically foFrench

grip and for each gesture variation. In each case a gestitreepnesenting the motion of the mallet extremity has
been chosen as the target trajectory to be reproduced. éfigsinows for each gesture variation the errors resulting
from the synthesis, not only for the mallet extremity trégees, but also for the trajectories of the wrist, elbow and
shoulder joints. Among the simulated gesture variations,@an identify differences in the RMS errors. These can be
explained by the fact that the biomechanical parametéwiz& of the physical model (mechanical joints, Figlite 3)
has been kept constant for all simulations, while dedichtethechanical parameters for each gesture variation may
lead to more accurate results. However, the low errors seenatlet extremity and joints trajectories (less than 1cm
in average) attest to the ability of our motion control sckamaccurately reproduce the different gesture variations
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Tab. 5: SVM recognition percentage: simulatétenchgrip gesture variations using the combination of mallet ve-
locity and acceleration extrema presented in Figlre 2.

| Training/Test || Legato | Tenuto | Accent | Vert Accent | Staccato ||
Legato 92.6 4.8 0 2.6 0
Tenuto 3.7 94.2 1.2 0.9 0
Accent 2.5 0 96.4 0 11
Vert. Accent 0.8 0.6 0 93.9 4.7
Staccato 0 0 0.5 4.4 95.1

Second, we evaluate the timing of velocity and acceleratiosynthesized gestures. Although we only specify
mallet extremity position over time in our motion controhsene (section 312), we obtain interesting results reggrdin
velocity and acceleration profiles. In an analogous marmntiret analysis evaluation work made in secfion 2.2, mallet
position, velocity and acceleration parameters at extsepaiints (as shown in Figufé 2) have been extracted from two
hundred simulation trials for each gesture variation. Tdraes classification/recognition approa&/Mmethod with
radial basis functions) was used to evaluate the recognitiacghe Frenchgrip gesture variations,e. a combination
of velocity and acceleration parameters, and their spetiifie values. The training set is composed of parameters
related to motion capture data, whereas the query set issepted by the parameters related to the simulation trials.
Table[® presents the confusion matrix of the recognitionltesThey show that gesture variations are similarly well
recognized, with results comparable to the those obtaindtlé analysis study (Tablg 3). This result shows that
synthesized gestures can be characterized (both spatmlyemporally) in the same way as captured motion data.

4.2 Virtual Percussion Performance: Visual and Auditory Feedback

As for the sound synthesis, we use the Modalys implememt§itidL8]. A first difficulty is defining the exact shape of
the functionFs(Xo, Yo, X, Y,t) since no study makes available physics knowledge abouttiirfprce profiles. We use
as excitation forces with Modalys simple mathematical fioms such as thADSR(attack, decay, sustain, release)
function, that has the advantage to clearly define the gestoumnd interaction at the physical level. In addition, an
interface based on an asynchronous client-server artinigethat uses th®SC[14] communication protocol makes
possible the modification of the drum membrane propertiesséntension, dispersion), as well as the multimodal
integration, interaction and synchronization of visuad anditory output within our framework.

With such a simulation framework, we have synthesized wargestures performed by the virtual character, by
considering as input of the gesture control model the ttajexs of the mallet's head. We simulated various gesture
profiles (video examples of simulations are available at:Httww.youtube.com/SamsaraUBS), according to the na-
ture of the grips and to the five playing variations [9]. Théads to synthesized gestures which are deeply influenced
by the percussionist style techniques and the playing mddesanimations can provide the user an appropriate visu-
alization of the simulated percussion gestures with thaipdity to modify the 3D rendering of the virtual charagter
or offering different views of the mallet trajectories ob@mpacts. Figurel6 shows particular results for the sitiaria
of Legatobeat impacts for thErenchgrip. It highlights op) the comparison between real and synthesized trajectories
(mallet extremity and joints positions), as well as the mwet soundriddle and visual feedbackptton) resulting
from the interaction between mallet and timpani physicadaats.

5 Conclusions and Future Work

We have presented in this paper a complete framework foyaingl and synthesizing new percussion performances
from real pre-recorded gestures, and for facilitating titeriaction process between gesture and sound. An initial
analysis step on mallet trajectories has led to the ideatifio of consistent control parameters (position, vejoaitd

acceleration with their corresponding time stamps). Suphrameterization of timpani gestures proves to be perti-
nent, as shown by the high recognition rates obtained weétcthssification/recognition methodology. The synthesis
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Fig. 6: Results from the simulation dfegatoimpacts for thé=renchgrip. Top: comparison of recorded and simulated
trajectories (mallet extremity and joints positions). Mlieland bottom: resulting sound and visual feedback
from the physical interaction between the mallet and th@&m membrane.

step provides a sensorimotor control loop for controllinghgsical model of a virtual performer using only mallet
trajectories. The cascaded control scheme solves twosioreproblems which lead to the calculation of appropriate
forces and torques applied to the physical model. The etratuaf the synthesized model is done both quantitatively
and qualitatively. The quantitative evaluation compayediesized and real gestures. We also evaluate the sirdulate
gestures through the analysis/recognition method usdtkipitevious analysis step. This comparison shows that the
proposed framework can accurately reproduce the mechamswlved during percussion performances and that the
various gestures produced may be easily discriminatedc®h&ol of sound synthesis processes is also made easier,
as the physical models can be used to dynamically modifyriteraction parameters that are applied to the drum
model. The mapping-interaction scheme describes the glguigysical mechanisms involved in the interaction, but it
can also provide ways to build new experiences that can Haluseirtual reality.

There are many directions for extending this work, mainlatesl to the synthesis by analysis schemes, and the
building of new interaction paradigms in order to simulagequssion performances. Our analysis could be extended
for a larger database of gestures, including other dyndraita stylistic variations, such as dynamics variations in
music pp, mf andff). Furthermore, an accurate analysis of timpani gesturekldead to the identification of the
stiffness and damping coefficients involved in our synthesbdels, thus characterizing various biomechanical con-
straints applied on arm joints, depending on musical vianat Further work on synthesis of percussion performances
mainly relies on the interaction process that is made prograble with our system. Our interaction scheme currently
focuses on the influence of the synthesized percussionrgesin a physical drum model. Inversely, the interaction
process could also involve the influence of the drum modehengesture simulation. This would involve the de-
velopment of other gesture control models for dealing witfecent action/reaction schemes, depending on various
physical characteristics of the vibrating models.
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