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ABSTRACT

The variability of the West African monsoon on the intraseasonal time scale is a major issue for agricultural

strategy, as the occurrence of dry spells can strongly impact yields of rain-fed crops. This study investigates

this intraseasonal variability of rainfall over West Africa and gives a first overview of its predictability at a

medium lead time.

A statistical method, the singular spectrum analysis, is applied to a ground-based rainfall index in West

Africa to describe first temporal patterns of the main leading modes of intraseasonal variability. The results

point out the existence of one oscillatory mode of 34 days, one of 20 days, and one of 14 days. The same

methodology is applied to rainfall from two reanalysis datasets and to deep convection from satellite data in

order to assess the accuracy of the representation of intraseasonal variability in these datasets. It is shown

that although the day-to-day variability of rainfall is not well captured in these datasets, intraseasonal fea-

tures and, in particular, the low-frequency mode are very well reproduced.

The medium lead-time predictability (5–10 days) of the intraseasonal modes is investigated using both the

dynamical forecast scheme of the ECMWF and a statistical method, the maximum entropy method. For the

latter method, an operational application using unfiltered input data is also considered. The performance of

these prediction schemes is compared using a simple reference technique in which forecasts are based

entirely on persistence. It is found that statistical predictions are much more promising than the dynamical

ones, though they encounter problems when applied operationally. In an operational application, the fore-

cast skill for the 10–90-day intraseasonal band is low but the predictability of individual intraseasonal modes

is higher. The stability of the forecast skill levels is influenced by the characteristics of the intraseasonal mode.

When the characteristics (i.e., amplitude and period) of the considered intraseasonal mode are well defined,

skillful forecasts can be obtained. However, when the characteristics change rapidly, the forecast fails.

1. Introduction

West African societies depend heavily on summer

monsoon rainfall, especially in the Sahel where rain-fed

crop production is the main source of food and income

of one of the world’s most rapidly growing populations

(Baron et al. 2005). Predicting the fluctuations of the

West African monsoon would be greatly beneficial to

regional agriculture and water resource management.

The distribution of rainfall within the rainy season is of

particular importance to agricultural strategy (Ingram

et al. 2002), as the occurrence of dry spells can strongly

impact yields of rain-fed crops (Sultan et al. 2005). Al-

though there is more and more evidence of specific in-

traseasonal variability in convective activity during the

West African monsoon (Janicot and Sultan 2001; Sultan

and Janicot 2003; Matthews 2004; Mounier and Janicot

2004; Mounier et al. 2008), no study has investigated its

predictability. Nevertheless, there are many examples

of skillful forecasts of intraseasonal variability of con-

vection in other regions of the tropics. Most of these

examples concern the prediction of the Madden–Julian

oscillation (MJO), which is the dominant oscillatory

mode in the tropics (Madden and Julian 1972). Skillful

predictions of the MJO have been obtained at a medium

lead time (less than 10 days) using either dynamical

forecasts or statistical methods. For instance, the Na-

tional Centers for Environmental Prediction (NCEP)

Medium-Range Forecast (MRF) model shows skillful

forecasts of convection anomalies associated with the

MJO for up to 7 days (Hendon et al. 2000; Waliser et al.
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1999). On the other hand, several statistical methods,

such as principal oscillation pattern (POP) techniques

(von Storch and Xu 1990) or singular value decompo-

sition (SVD) methods (Waliser et al. 1999), have been

used to produce skillful forecasts of large-scale intra-

seasonal anomalies of convection. Until now, the com-

parisons between dynamical and empirical predictions

of the intraseasonal variability of convection indicate

modeling progress must be made in achieving the likely

potential of dynamic models (Waliser et al. 1999; von

Storch and Baumhefner 1991).

The aim of this paper is to give a first overview of the

predictability of the intraseasonal variability of rainfall

over West Africa at a medium lead time. We use a

statistical method, singular spectrum analysis (SSA),

which has already provided promising results in filter-

ing and predicting intraseasonal oscillations of con-

vection (Mo 2001). The SSA (Vautard and Ghil 1989;

Vautard et al. 1992; Ghil et al. 2002) is related to em-

pirical orthogonal functions (EOFs) but is applied to

lagged time series providing SSA modes that corre-

spond to intraseasonal oscillations in a frequency band.

We apply SSA to rainfall amounts from three different

sources: the Institut de Recherche pour le Developpe-

ment (IRD) rainfall dataset and the NCEP–National

Center for Atmospheric Research (NCAR) reanalysis

and the 40-yr European Centre for Medium-Range

Weather Forecasts (ECMWF) Re-Analysis (ERA-40).

In addition, we use satellite outgoing longwave radia-

tion (OLR) data to estimate deep convection. The

approach is twofold.

We first document the intraseasonal variability in the

IRD rainfall dataset, providing the most reliable mea-

surement of the ground-based truth. We apply the SSA

to a rainfall index in West Africa computed from the

IRD rainfall dataset to statistically extract the main

leading modes of intraseasonal variability. The same

methodology is applied to rainfall from the two rean-

alysis datasets and to deep convection from OLR data

in order to assess the accuracy of the representation of

intraseasonal variability in these datasets.

Second, the medium lead-time predictability (5–10

days) of these intraseasonal modes is documented us-

ing both the maximum entropy method (MEM; Burg

1968; Penland et al. 1991) and the dynamical forecast

scheme of the ECMWF. The performance of these two

prediction schemes is compared using a simple refer-

ence technique in which forecasts are based entirely

on persistence.

Section 2 introduces the datasets used to describe the

intraseasonal variability of the West African monsoon.

Section 3 describes the SSA and its application toward

extracting and predicting oscillatory modes. Section 4

provides the main results of the study. Section 5 con-

cludes the study and discusses future steps.

2. Datasets

a. The IRD daily rainfall

Daily rainfall amounts at stations located in the West

African domain 38–208N, 188W–258E have been com-

piled by IRD, the Agence pour la Securite de la Navi-

gation Aerienne en Afrique et a Madagascar (ASECNA),

and the Comite Interafricain d’Etudes Hydrauliques

(CIEH). These data are available for the period 1968–90,

and this dataset includes more than 1300 stations for the

period 1968–80 and between 700 and 860 stations from

1981 to 1990. These daily values were interpolated onto

the NCEP 2.58 3 2.58 grid by assigning each station daily

value to the nearest grid point and averaging all the

values related to each grid point. They were also in-

terpolated in time with reference to NCEP daily wind

fields since daily rainfall amounts were measured be-

tween 0600 local solar time (LST) on the given day and

0600 LST the following day. We applied a time lag of

12 h between the average time of the NCEP daily values

at 0900 UTC and an approximated average time of daily

precipitation over the West African continent (2100

LST). Duvel (1989) indicates a maximum of high cloud

coverage over land between 1800 LST and midnight,

and Sow (1997) finds a maximum of half-hourly pre-

cipitation over Senegal between 1700 LST and the

end of the night, depending on the station. The greatest

density of stations is located between 58 and 158N. Data

at 17.58N can also be taken into account since 30–45

stations are available.

b. The NCEP–DOE and ERA-40 reanalyses

The NCEP and NCAR have completed a reanalysis

project with a current version of the MRF model (Kalnay

et al. 1996). This dataset consists of a reanalysis of the

global observational network of meteorological varia-

bles (wind, temperature, geopotential height, humidity

on pressure levels, surface variables, and flux variables

such as precipitation rate) with a ‘‘frozen’’ state-of-the-

art analysis and forecast system at a triangular spec-

tral truncation of T62 to perform data assimilation

throughout the period from 1948 to the present. This

circumvents problems with previous operational analy-

ses due to changes in techniques, models, and data as-

similation. Data are available on a 2.58 3 2.58 grid every

6 h (0000, 0600, 1200, and 1800 UTC) on 17 pressure

levels from 1000 to 10 hPa. This study uses the NCEP–

Department of Energy (DOE) Atmospheric Model In-

tercomparison Project (AMIP-II) reanalysis (reanalysis-2),
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which is based on the NCEP–NCAR reanalysis but with

improvements in the physical parameterizations and

error fixes (Kanamitsu et al. 2002).

The ECMWF has released reanalyzed datasets for the

time frame 1957–2002 (Uppala et al. 2005). The ERA-40

reanalysis has a finer resolution corresponding to a T159

spectral truncation with 60 vertical levels from 1000 to

0.1 hPa. Data are available on a 1.1258 3 1.1258 grid

every 6 h (0000, 0600, 1200, and 1800 UTC).

In this study, we used rainfall from the two reanaly-

sis datasets covering the period 1 April–31 October

1979–2000 with one value per day obtained by averaging

the four outputs of each day.

c. The OLR/NOAA dataset

Since its launch in 1974, the National Oceanic and

Atmospheric Administration’s (NOAA) polar-orbiting

Television and Infrared Observation Satellite (TIROS)

has enabled the establishment of a quasi-complete se-

ries of twice-daily measures of OLR at the top of the

atmosphere and at a resolution of 2.58 latitude–longitude

(Grueber and Krueger 1984). The Interpolated OLR

dataset (Liebmann and Smith 1996) provided by the

Climate Diagnostics Center has been used here. In trop-

ical areas, deep convection and rainfall can be estimated

through low OLR values. The local time the measure-

ments were taken during the period 1979–2000 varied

between 0230 and 0730 LST in the morning and be-

tween 1430 and 1930 LST in the afternoon. Since the

deep convection over West Africa has a strong diurnal

cycle, the sample of daily OLR based on two values

separated by 12 h suffices in providing a daily average.

Moreover, this dataset has already been widely used for

tropical studies. We used data covering the period

1 April–31 October 1979–2000, with one value per day

obtained by averaging the two outputs of each day.

3. Methods

From the rainfall datasets described above, we first

compute a rainfall index over West Africa by averaging

daily rainfall data between 58N and 17.58N and between

108W and 108E. A similar index for deep convection is

computed using OLR data. The spatial domain used for

the average corresponds to the area of the maximum

variance of convection over West Africa where the in-

tertropical convergence zone (ITCZ) is located from

late spring to early autumn. These ITCZ indexes are

computed from March to October using each dataset

separately. The longest overlapping period used here is

1979–90. We then apply the SSA and MEM to docu-

ment and predict the intraseasonal variability of rainfall

over West Africa.

a. The SSA

To document the rainfall variability in the intra-

seasonal band, data must be filtered to retain fluctua-

tions in the band. Whereas a filter based on the Fourier

decomposition is well adapted for time series with fixed

amplitudes, phases, and periods, one requires other

methods to deal with the noisy and stochastic nature of

convection variability (Mo 2001). The SSA is an inter-

esting alternative as it is designed to extract information

from noisy time series and can be used to compute an

adaptive filter (Ghil et al. 2002). The SSA is a statistical

tool based on an EOF analysis applied to time series

(Vautard and Ghil 1989; Vautard et al. 1992; Ghil et al.

2002). Given a time series x(t) of length N, the first

step is to embed x in a vector space of dimension M to

represent the behavior of the system by a succession

of overlapping ‘‘views’’ of the series through a sliding

M-point window (Ghil et al. 2002). The embedding

procedure generates a matrix D whose dimensions are

(N – M 1 1) 3 M:

D 5

x(1) x(2) . . . x(M)
x(2) x(3) . . . x(M 1 1)

..

. ..
. . .

. ..
.

x(N �M 1 1) x(N �M 1 2) . . . x(N)

2
6664

3
7775.

The procedure is then similar to a principal compo-

nent analysis since we compute the M 3 M time-lagged

covariance matrix C and extract the M eigenvalues and

M eigenvectors from C. By analogy with the meteoro-

logical literature, the eigenvectors are called TEOFs

(EOFs in the time domain). Quasiperiodic modes

appear as pairs of degenerate eigenvalues that are

approximately equal and associated with TEOFs in

quadrature. The SSA thus allows isolation of quasipe-

riodic modes from the initial time series.

The projection of the original time series onto the kth

TEOF gives the corresponding principal components

(TPCs):

TPCk t 1
M

2

� �
5 �

M

j51
x(t 1 j� 1)TEOFk ( j). (1)

The length of each TPC is N – M 1 l. Each TPC

isolates an oscillatory component defined in a very

short-range window of the spectral domain. This oscil-

latory component explains a part of the variance of the

original time series. This explained variance decreases

from the first to the Mth mode. One can reconstruct the

part of the original time series (RCk) associated with the

mode k by combining the kth TEOF and the kth TPC

(Vautard et al. 1992). The reconstructed components
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(RCs) are defined in the time space (the total length is

N), which is an advantage over the TPCs, which cannot

be directly compared to the original time series. The

TPCs thus contain the phase information. The RCs are

additive. The entire original time series can be re-

constructed by summing up the M reconstructed com-

ponents, RCk:

x(t) 5 �
M

k51
RCk (t). (2)

As the TPCs isolate oscillatory modes in a given

intraseasonal band, one can filter the original time series

by partially summing up a subset of RCs in the intra-

seasonal band of interest. The procedures are similar to

the Fourier techniques but based on TEOF functions

instead of sines and cosines (Mo 2001).

The choice of the window size M is arbitrary. It must

be large enough to get as much information as possible

and yet small enough to ensure many repetitions of the

original signal by maximizing the ratio N/M (Ghil et al.

2002). The M selection should also accommodate the

oscillatory modes in the intraseasonal band. As de-

scribed by previous works addressing the question of

the intraseasonal time scale of convective activity in the

West African monsoon (Janicot and Sultan 2001; Sultan

and Janicot 2003; Matthews 2004; Mounier and Janicot

2004; Mounier et al. 2008), the intraseasonal activity has

been found to be in two modes: one of around 15 days

and one of around 40 days. Thus, M 5 40 has been

used to accommodate the latter intraseasonal mode at

40 days. Similar analyses have been performed for dif-

ferent values of M (50 and 60) and the results are not

very sensitive to the window size M.

b. Intraseasonal predictions

As the SSA allows the capturing of quasiperiodic

modes from noisy and stochastic time series, the use of

MEM was considered to be an interesting way of pre-

dicting intraseasonal variability. Autoregressive (AR)

processes can do a good job when applied to narrow-

band time series such as the ones isolated by the SSA.

The combination between SSA and MEM has already

found applications in climate science for forecasting the

Southern Oscillation index (Keppenne and Ghil 1992)

and the intraseasonal variability of convection in

California (Mo 2001). The authors used the SSA to filter

the original time series and then used an AR process

based on the MEM to extrapolate the obtained TPCs

(Mo 2001) or RCs (Keppenne and Ghil 1992; Keppenne

and Ghil 1993). Given the MEM properties (Childers

1978), a time series x(t) can be extrapolated up to x(t 1 L)

by applying an AR process of order L as follows:

x(t 1 L) 5 �
L

k51
a(k)x(t 1 M � k) 1 j, (3)

where j is a white-noise process and a(k) the kth AR

coefficient. The order L must be chosen before applying

the AR process. The L AR coefficients a can be de-

termined by several methods: for example, the Yule–

Walker approach (Yule 1927; Walker 1931) or the Burg

method (Burg 1968). The latter is more fitted to the SSA

filter as it is based on the symmetric Toeplitz matrix

structure of the autocovariance matrix (Penland et al.

1991). The choice of L can be determined by minimizing

the Akaike information criterion (AIC; Akaike 1974).

In this study, we consider two applications of the SSA–

MEM combination:

First, we examine the predictability of the SSA modes.

The ITCZ index is first split into two samples: a training

period from 1979 to 1984 and a test period from 1985 to

2000. We compute a TEOF basis over the training pe-

riod 1979–84 and project the unfiltered but seasonally

adjusted ITCZ index (the annual and semiannual cycles

defined by the first and second harmonics are removed)

over the test period in order to get SSA modes after

1984. We then quantify the predictability of the intra-

seasonal modes by extrapolating separately each RC

using the MEM [Eq. (3)]. Two time lags are explored:

5 and 10 days.

To evaluate the accuracy of the MEM forecasts, we

use two skill measures. First, we compute the correla-

tion coefficients between the observed and the predicted

intraseasonal modes over the test period 1985–2000.

The significance of the correlations is established by

setting up a test reproducing our experimental condi-

tions: we generate 10 000 random Gaussian time series

with the same length as the observed rainfall time series.

We extract the SSA modes from these random time

series in the same way as is done with our observed

rainfall time series. We then calculate the correlation

between each random SSA mode and the observed ones

and compute the probability distribution function

(PDF) of these correlations. We then take correlation

values higher than the 95% random PDF value to be

significant at the 95% confidence interval. Second, we

generate a skill score (later SS):

SS 5
MSE�MSEbenchmark

�MSEbenchmark
, (4)

where MSE is the mean square error and MSEbenchmark

is the MSE of a simple reference technique in which

forecasts are based entirely on persistence [the last ob-

servation x(t) is used as the predicted value x(t 1 p) at the

lag p]. The SS accounts simultaneously for correlation
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and amplitude. Negative (positive) values of SS mean

that the forecast method performs lower (better) than

persistence. The range of possible positive SS values

goes from 0 to 1, where a perfect forecast system has a

value of 1 and a forecast system with no information

with respect to persistence has an value of 0 (MSE being

equal to MSEbenchmark).

The MEM forecast skill is also compared to the skill

of the dynamical forecasts running operationally at

ECMWF. We use the medium-range deterministic

forecast model rainfall outputs [archived since 1985 into

the ECMWF’s Meteorological Archival and Retrieval

System (MARS)] based on the 1200 UTC high-resolution

forecast model. Rainfall forecasts are produced from 3

to 72 h and every 6 h from 72 to 240 h. The 5- and 10-day

forecasts are extracted and averaged over the ITCZ

area. This predicted index over the 1985–2000 period is

then filtered by using SSA and compared to the index

predicted using SSA–MEM.

Second, we construct a prediction scheme to address

an operational objective. This method differs from the

SSA–MEM described below in one way: the projection

of the ITCZ index onto the TEOF basis is not just done

once during the test period but is applied iteratively

throughout the period. To predict the day To 1 p, we

use data from (To – N 1 1) to To, where N is the length

of the training period from 1979 to 1984 and To is the

last day of the training period, that is, 30 October 1984.

The seasonally adjusted ITCZ index is filtered using the

SSA (see below) and the RCs are extrapolated from To

to To 1 p. The whole procedure is applied iteratively by

incrementally increasing the value of To from the last

day of the training period to the end of the test period.

Such a procedure is adapted to real-time data acquisi-

tion systems with new measurements every day, such as

OLR data, and thus can easily be used for operational

applications. It is important to note that in this predic-

tion scheme we use the SSA as a real-time filter, which

implies the presence of edge effects that might impact

the prediction skill at any lead time. The skill of this

operational method is compared to the persistence-based

prediction skill by computing the SS. However, because

of inconsistencies between the ERA-40 reanalyses and

the ECMWF dynamical forecasts, it is not possible to

directly compare the dynamical forecast skill with the

skill of the SSA–MEM operational prediction scheme.

Note that for these two SSA–MEM applications, we

have checked the robustness of the results by examining

their sensitivity to the choice of the training/test periods

lengths, the determination of the order of the AR pro-

cess and the extrapolation of the TPCs instead of the

RCs as suggested by Mo (2001). It appears that the re-

sults are not very sensitive to these choices.

4. Results

a. The intraseasonal modes within the ITCZ
rainfall index

Figure 1a shows an example of the intraseasonal

variability of IRD rainfall captured by the ITCZ index

for 1979. Gray bars represent the average daily rainfall

time series in the ITCZ box. Note that the seasonal

cycle has been removed. The day-to-day variability of

rainfall is very clear, characterizing the influence of

synoptic-scale weather systems such as easterly waves

(Diedhiou et al. 1999) and mesoscale convective sys-

tems (Mathon and Laurent 2001). Moreover, sequences

of persistent high or low rainfall amounts can be ob-

served throughout the year. The lengths of such se-

quences vary from a very long dry spell from mid-June

to mid-July to a more rapid alternating pattern of 5-day

high and low rainfall sequences starting in mid-September.

The thick line in Fig. 1 represents the 10–90-day bandpass-

filtered rainfall. It is obvious from this filtered index that

rainfall is not modulated at a single intraseasonal time

scale but at several different time scales, the influence

of which seems to be intermittent throughout the year.

Using wavelet analysis (Torrence and Compo 1998)

applied to rainfall time series, Sultan et al. (2003) have

documented this intraseasonal time-scale variability

as intermittent signals with more variance within two

period intervals of 10–25 and 25–60 days, respectively.

To better characterize the intraseasonal time scale of

rainfall fluctuations, we apply the SSA to the 10–90-day

ITCZ index based on IRD rainfall over the 1979–90

period. Table 1 shows the explained variance of the first

10 TEOFs. Most of the variance is explained by the first

10 TEOFs (99.9% of the total variance in Table 1).

Oscillatory modes can be detected by pairs of eigen-

values that are approximately equal and by TEOFs in

quadrature. The first oscillatory mode is captured by the

first pair of eigenvalues associated with two TEOFs

in quadrature (Fig. 2) and characterized by a period of

34 days. This low-frequency mode explains 38.4% of the

10–90-day variance (Table 2). The time series of this

mode (later mode 1) is given by the sum of RC1 and RC2

[see Eq. (2)]. A MEM spectrum (Burg 1968) applied to

this time series finds the power to be between 27 and

90 days. An example of the time evolution of this first

mode is shown for 1979 as a thin line in Fig. 1b. It is

compared to the bandpass filter in the corresponding

intraseasonal band of 27–90 days. The next pair of ei-

genvalues represents another oscillatory mode with a

higher frequency. It explains 27.1% of the 10–90-day

variance (Table 2). TEOFs 3 and 4 show periods of

around 20 days. Applying the MEM spectrum to the

reconstruction based on these two TEOFs highlights the
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variance between 16 and 28 days. The time series of this

second mode (the sum of RC3 and RC4; later mode 2) is

very close to that of a 16–28-day bandpass filter (see

Fig. 1c). A third quasiperiodic mode is captured by

TEOFs 5 and 6, with a period of about 14 days and

power between 11 and 17 days. It explains 19.9% of the

10–90-day variance (Table 2). Its time series (the sum of

RC5 and RC6; later mode 3) is compared to a 11–17-day

bandpass filter in Fig. 1d. The periodicity between

11 and 26 days dominates the intraseasonal variability of

the ITCZ index. Indeed, the sum of the explained var-

iance of modes 2 and 3 (near 47%) is greater than the

explained variance of the low-frequency mode (38.4%).

The three oscillatory modes represent more than 85%

of the 10–90-day filtered ITCZ index and the time series

given by the sum between these three modes (the sum

between the six first RCs) is very close to the 10–90-day

filtered index with a correlation of up to 0.97 (see Fig. 1a

for the comparison between the two time series in 1979).

Because of their dominance, we retain only these intra-

seasonal modes in the following sections of this paper.

To quantify how well the intraseasonal variability of

rainfall is represented in other datasets, we perform a

similar analysis, applied separately to the 10–90-day

ITCZ indexes derived from each dataset described in

section 2. We first compute the correlation between the

raw IRD rainfall index and the ERA-40, NCEP–DOE,

and OLR unfiltered ITCZ indexes (Table 3). Note the

indexes have been seasonally adjusted by removing the

FIG. 1. An example of the SSA intraseasonal modes for the year 1979. (a) The seasonally adjusted unfiltered ITCZ

index (gray bars), 10–90-day bandpass-filtered ITCZ index (thick line), and SSA filtered ITCZ index (thin line). The

SSA filter time series is the sum of the six first RCs. (b) The 26–90-day bandpass-filtered ITCZ index (thick line) and

the first SSA mode (thin line). The mode 1 time series is given by the sum RC112. (c) The 16–28-day bandpass-filtered

ITCZ index (thick line) and the second SSA mode (thin line). Mode 2 is given by the sum RC314. (d) The 11–17-day

bandpass-filtered ITCZ index (thick line) and the third SSA mode (thin line). Mode 3 is given by the sum RC516.

TABLE 1. Percentage of explained variance of the 10 first TEOFs.

Mode Explained variance (%) Cumulative (%)

1 20.6 20.6

2 17.8 38.4

3 14.1 52.5

4 13.0 65.5

5 10.6 76.1

6 9.3 85.4

7 6.2 91.5

8 5.8 97.3

9 2.1 99.4

10 0.5 99.9
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first two harmonics. The correlations are weak in par-

ticular for the NCEP–DOE and ERA-40 reanalyses and

explain no more than 14% and 27% of the rainfall

variance, respectively. The inconsistency of the day-to-

day rainfall variability is a well-known characteristic of

the two reanalysis datasets. At this point, it is important

to remember that a reanalysis is a combination of model

and measurement, using observations to constrain the

dynamical model to optimize between the properties of

complete coverage and accuracy (Betts et al. 2006). The

relative contribution of model and measurement varies

between variables, and rainfall is the most model-

dependent variable in the reanalysis production. The

fact that such numerical models have difficulties simu-

lating rainfall in convective areas can explain why this is

one of the less reliable variables in the reanalysis data-

sets. Moreover, if deep convection and rainfall can be

estimated through low-OLR values in tropical areas, the

relatively weak correlation between the OLR and IRD

rainfall ITCZ indexes shows that this relation is not

strong at the synoptic time scale since the occurrence of

convective clouds does not necessarily imply rainfall. In

addition, this inconsistency can be partly explained by

the fact that the OLR daily mean is an average of two

instantaneous measurements during the day while the

rainfall data are an integration of measurements from

throughout the day. It is interesting to see that despite

the fact that the day-to-day rainfall variability is not well

reproduced by the different datasets; the intraseasonal

variability is much more reliable. This is particularly so

with the ERA-40 and OLR datasets, which show re-

spective correlations of 0.74 and 0.70. The decrease in

the number of degrees of freedom with the use of the

10–90-day filter is certainly not sufficient to explain the

increase in the correlation values. It is more likely that

this means intraseasonal rainfall variability is induced

by large-scale patterns, which are well reproduced in the

FIG. 2. (left) Pairs of TEOFs corresponding to the three intraseasonal modes captured by the SSA. The open circles

represent the TEOFs 1, 3 and 5 and the filled circles, the TEOFs 2, 4 and 6. (right) The MEM spectrum of the ITCZ

index (dashed lines) and for each intraseasonal mode (full lines). The SSA–MEM spectrum is applied separately to

the sum RC112, RC314, and RC516. The order of the MEM spectrum is 40 days.

TABLE 2. Percentages of the explained variance of the three first SSA

modes and by the sum of these three first modes (mode 1–3).

Mode IRD ERA-40 NCEP–DOE OLR

1 (RC112) 38.4 38.7 40.3 41.4

2 (RC314) 27.0 25.0 22.9 24.3

3 (RC516) 19.9 20.1 19.1 19.0

1–3 (RC11. . .16) 85.4 83.8 82.3 84.8
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reanalysis datasets and more easily estimated by the

convection monitoring through OLR than individual

rainy events. Table 3 shows the correlations between

the three rainfall intraseasonal modes described below

and the modes obtained from ERA-40, NCEP–DOE,

and OLR. The percentage of the 10–90-day variance

explained by the three modes is shown in Table 2. The

contribution of each mode to the 10–90-day signal is

very close in the different datasets although it seems

that the NCEP–DOE and OLR data overestimate the

contribution of the low-frequency mode and underes-

timate (in particular NCEP–DOE) the contribution of

the higher-frequency mode. The first mode is well re-

produced in all datasets with the highest correlation

obtained by ERA-40 (R 5 0.76). The two other modes

are also well reproduced using ERA-40 and OLR.

Nevertheless, NCEP–DOE fails to represent these

shorter modes with correlation coefficients of 0.46 and

0.39, respectively for the second and the third modes. To

try to understand where these differences come from,

we look at the spectral characteristics of each intra-

seasonal mode by computing a MEM spectrum (Fig. 3).

Although there are some differences in the power am-

plitude, the spectral characteristics of the three modes

are very close in the IRD and ERA-40 rainfall. The

spectrum of the first intraseasonal mode from OLR and

NCEP–DOE is close to the IRD one although there is

an overestimation in the lower frequencies using OLR

data. Concerning the second mode, each dataset shows

the same 20-day peak as the one obtained with the IRD

rainfall but each differs mainly by an overestimation of

the 14–19-day signal. This overestimation is particularly

obvious using NCEP–DOE. Additionally, NCEP–DOE

underestimates the signal in the frequencies that are

lower than 20 days while the OLR data show too much

signal in the frequencies that are lower than 20 days.

The spectrum of the third mode shows two peaks at

13 and 15 days. These two peaks are reproduced quite

well using the ERA-40 and OLR datasets but are lagged

using NCEP–DOE to show peaks at 12 and 14 days.

These differences in the spectral characteristics of the

second and third modes in NCEP–DOE can partly ex-

plain the weak correlations between these modes and

those obtained with IRD rainfall.

Previous studies have already examined the intra-

seasonal time-scale variability of convection over west-

ern and central Africa. Janicot and Sultan (2001) and

Sultan et al. (2003) examined the importance of 10–25-

and 25–60-day periodicities in rainfall and the convec-

tive activity over the Sahel. Mounier and Janicot (2004)

extended this work by carrying out an EOF analysis on

convection fields during the northern summer over

western and central Africa, and showed evidence of two

independent modes of variability in the 10–25-day

range. The first one (hereafter the Guinean mode) is

characterized by a stationary and uniform modulation

of convection within the African ITCZ. It is associated

with a modulation of the zonal low-level wind over the

equatorial Atlantic and a zonal dipole of convection

between Africa and the north equatorial Atlantic off the

coast of South America (Mounier et al. 2008). The

second mode (hereafter the Sahelian mode) is a west-

ward-propagating signal from eastern Africa to the

western tropical Atlantic, consistent with the signal al-

ready detected over the Sahel (Sultan et al. 2003). On

the 25–90-day range, the dominant mode on the global

scale is the MJO (Madden and Julian 1972). Matthews

(2004) showed that the remote circulation to the MJO

over the warm pool sector offers a plausible explanation

for the dominant mode of variability in convection over

western and central Africa at these time scales. This

mode, the first EOF mode of filtered OLR over western

and central Africa (hereafter the MJO mode), consists

of an enhancement of convection over most of western

and central Africa, whose northern part propagates

westward from northeast of Lake Chad to the north-

western part of Africa, while its southern part is sta-

tionary and increases and weakens along the Guinean

coast and over central Africa (Janicot et al. 2009).

Twenty days prior to an enhancement of convection

over Africa, convection is reduced over the equatorial

warm pool. In response to this change in warm pool

convection, an equatorial Kelvin wave propagates east-

ward and an equatorial Rossby wave response propa-

gates westward. Together they complete a circuit of the

equator and meet up 20 days later over Africa, favoring

an enhancement of deep convection (Matthews 2004).

To better characterize the three SSA modes, they are

now interpreted in terms of Guinean, Sahelian, and

MJO modes (the EOF modes). First, the time series of

TABLE 3. Correlations between the ITCZ index based on IRD

ground-based measurements and the same index based on ERA-40,

NCEP–DOE, and OLR data. These correlations are shown for the

unfiltered rainfall (first row), for the 10–90-day filtered rainfall

(second row), and for the three SSA intraseasonal modes (re-

maining rows). Note that in the first row, the annual and semian-

nual cycles defined by the first and second harmonics are removed

to compute the correlations. The correlations are computed over

the 1979–90 period from 1 April to the end of October. All values

are significant at the 95% confidence interval.

ERA-40 NCEP–DOE OLR

Raw ITCZ index 0.52 0.37 0.58

10–90-day ITCZ index 0.74 0.58 0.70

Mode 1 (RC112) 0.76 0.69 0.74

Mode 2 (RC314) 0.73 0.46 0.68

Mode 3 (RC516) 0.70 0.39 0.62
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the reconstructed OLR signal over the ITCZ area

(58–17.58N, 108W–108E) for each of these modes is

computed. Second, correlations between these ITCZ

indexes based on the SSA modes and those of the EOF

modes are calculated. Third, the composite time se-

quences of the OLR fields associated with the difference

between the highest and the lowest values of the ITCZ

indexes, computed from the SSA modes, is drawn and

compared to those computed from the EOF modes and

previously published (see above). Mode 1 of the SSA is

highly correlated with the MJO mode (R 5 0.87) and its

composite time sequence (Fig. 4) is very similar to that

FIG. 3. Spectral characteristics of the (top to bottom) three SSA modes. A MEM spectrum has been computed for

each mode (corresponding to the three panels) and for each used dataset. The histogram represents the MEM

spectrum of the intraseasonal modes based on the IRD dataset and the different solid lines correspond to the

spectrum applied to each of the datasets (see the legend).
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associated with the MJO signal shown by Matthews

(2004) and Janicot et al. (2009). Figure 4 highlights the

negative OLR signal covering the whole region around

western and central Africa around t0, associated with

enhanced westerly low-level winds bringing more

moisture inland. This OLR signal appears 10 days ear-

lier over the eastern Sahel, then moves and develops

widely westward, before disappearing over the western

part of Sahara 8 days later, giving way for the occur-

rence of the reversed phase. The whole cycle visible on

this sequence is consistent with the dominant 34-day

periodicity identified for this SSA mode 1. Figure 4

also shows the high MJO activity in the Indian–Asian

sector, characterized by the northeastward propagation

of convective rainbands. As the SSA modes 2 and 3

have closed periodicities (20 and 14 days, respectively)

included in the 10–25-day band, they have been com-

bined before being compared to the 10–25-day EOF

modes. This combined mode (corresponding to the

ITCZ index reconstructed with these two modes) cor-

relates with the Guinean mode at 0.70, with the Sahelian

mode at 0.40 and the combined Guinean–Sahelian

ITCZ index at 0.79. Moreover, the corresponding

composite time sequence (Fig. 5) is very similar to the

sequence computed from the combined Guinean–

Sahelian ITCZ index (not shown). Its spatial pattern is

difficult to interpret as it mixes properties of the Guinean

and the Sahelian patterns. This is not surprising as we

FIG. 4. Composite time sequence based on the SSA mode 1 index. The dates (called t0) where this index is maximum (minimum)

between June and September over the 1979–1990 period are retained to define a weak (high) convective phase. The respective high minus

weak composite sequence is shown for the unfiltered OLR and 925-hPa wind fields. This sequence goes from t0 2 18 days to t0 1 18 days

with a 4-day lag. Shaded areas represent the OLR anomalies (W m22). The vector scale (m s21) is shown in the lower right. Only values

significant at 90% are displayed.
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use an ITCZ index over the area from 58 to 17.58N be-

fore computing the SSA modes, meaning we cover the

areas of influence of both the Guinean and the Sahelian

modes. We can conclude from all these results that

the SSA mode 1 can be interpreted to be the previ-

ously detected MJO mode over Africa (Matthews 2004;

Janicot et al. 2009), and that the combination of the SSA

modes 2 and 3 well represents the combination of the

Guinean and Sahelian modes described in Mounier et al.

(2008) and Sultan et al. (2003), respectively.

b. Predictability of the intraseasonal modes

We now examine the medium-range predictability of

the intraseasonal modes. In the following, we have cho-

sen to work only on the ERA-40 intraseasonal modes in

order to use the longest time series (1979–2000) and to

FIG. 5. As in Fig. 4, but for the combination of SSA modes 2 and 3. This sequence goes from t0 2 9 days to t0 1 9 days with a

2-day lag.
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compare statistical and dynamical predictions obtained

by the SSA–MEM and the ECMWF forecast systems.

This choice has few consequences on the results since the

IRD and ERA-40 are very close (see section 4a) and

since the skill of the statistical method does not depend

greatly on the input data. We calibrate the SSA–MEM

over the 1979–84 period and examine the predictability

of the SSA modes from the ERA-40 datasets over the

1985–2000 test period using this statistical method and

the ECMWF forecasts. We also attempt to document

the predictability of the 10–90-day signal by predicting

separately each SSA mode and by summing up the three

predicted modes. Table 4 shows the correlations be-

tween the observed SSA modes and their predictions

using the two methods for two time lags: 5 and 10 days.

Table5 shows the skill score in reference to the persistence-

based forecasts. The correlation values and skill scores

are quite high, up to 0.95 regardless of the mode or the

lag, meaning the MEM is well suited to the oscillatory

characteristics of the SSA modes. The ECMWF dy-

namical forecast, on the other hand, gives lower skill

levels although the correlation coefficients are signifi-

cant at the 95% confidence interval. The highest cor-

relation value is R 5 0.50 for the 5-day prediction of the

first mode, which is lower than the persistence forecast

since the skill score value is negative (SS 5 21.63). This

low skill is quite surprising since the ERA-40 reanalysis

dataset can accurately reproduce the rainfall SSA

modes. Figure 6 shows the variations of the dynamical

forecast skill levels according to the prediction time lag.

Although there is a clear decrease in the skill with the

time lag increase, the correlations between the observed

and predicted modes, although significant at the 90%

level, are low even for the 1-day time lag. The discrep-

ancy between the model analyses and forecasts has al-

ready been shown by Thorncroft et al. (2003) within the

context of the JET2000 experiment. The authors found

that although the ECMWF analyses were able to ac-

curately represent the characteristics of the African

easterly jet in 2000, despite the absence of upper-air

observations at this latitude, it was very difficult to see

any African easterly jet at all in the ECMWF 5-day

forecasts. Assuming the starting analysis for the forecast

was accurate, it is then a concern that in the space of

5 days the model can move so far from the observed

states. It clearly indicates some processes are being

misrepresented in the region. The examination of the

ECMWF-predicted SSA modes reveals the same spec-

tral characteristics as the observed ones but with shifts

in the phase. It also reveals a strong intermittency in the

quality of the forecasts, with 1–2-month sequences very

accurately forecasted while the following months are

quite badly predicted. This variance in the forecast skill

does not seem to be linked to the characteristics of the

intraseasonal mode time series. Regular and strong in-

traseasonal oscillations can be poorly forecasted while a

weaker signal may be much better forecasted.

Since we have attested that the SSA modes are highly

predictable using the SSA–MEM approach, we can now

look at the application of such a method in an opera-

tional way. This application presents a major difficulty,

namely the use of raw data to predict filtered data, since

most of the typical filtering applications require infor-

mation beyond the end of the time series. We therefore

constructed an iterative prediction scheme adapted

from Mo (2001) that is well fitted to real-time data ac-

quisition to predict SSA modes based on unfiltered data

(see section 3). The skill of this operational method is

shown in Table 6 for the three SSA modes and for the

sum of these three modes, which is close to the 10–90-

day signal. It is not possible to directly compare the

dynamical forecast skill with the skill of the SSA–MEM

operational prediction scheme due to inconsistencies

between the ERA-40 reanalyses and the ECMWF dy-

namical forecasts. As expected, the correlation coeffi-

cients are weaker than those obtained previously due to

edge effects that impact the prediction skill at any lead

TABLE 4. Correlation coefficients between the observed SSA

modes and the 5- and 10-day predicted modes using the SSA–MEM

and the dynamical forecasts of ECMWF. The correlations are

computed over the 1985–2000 period from 1 April to the end of

October. All values have a correlation value significant at the 95%

confidence interval.

SSA-MEM ECMWF

5 day/10 day 5 day/10 day

10–90 days (RC11. . .16) 0.95/0.95 0.36/0.27

Mode 1 (RC112) 0.99/0.99 0.50/0.35

Mode 2 (RC314) 0.98/0.98 0.33/0.34

Mode 3 (RC516) 0.95/0.95 0.23 /0.18

TABLE 5. Skill scores (SSs) of the 5- and 10-day SSA–MEM and

ECMWF dynamical forecasts. Negative (positive) values of SS

mean that the forecast method performs worse (better) than per-

sistence. The range of possible positive SS values goes from 0 to 1,

where a perfect forecast system has a value of 1 and a forecast

system with no information has a value of 0. The SS is computed

over the 1985–2000 period from 1 April to the end of October.

SSA–MEM ECMWF

5 day /10 day 5 day/10 day

10–90 days (RC11. . .16) 0.93/0.94 0.19/0.28

Mode 1 (RC112) 0.99/0.99 21.63/0.03

Mode 2 (RC314) 0.99/0.99 0.45/0.65

Mode 3 (RC516) 0.81/0.60 0.43/20.24
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time. The skill score values are also weaker but remain

positive, meaning the forecast scheme performs better

than the persistence-based forecasts. Although the

prediction skill is very low for the 10–90-day intra-

seasonal band (R 5 0.09 and R 5 0.06, respectively, for

the 5- and 10-day lags), the individual intraseasonal

modes remain predictable. The prediction of the first

mode shows the highest skill with a correlation between

the observed and the predicted mode of 0.54 at the

5-day lag and 0.36 at the 10-day lag, which is higher than

the persistence-based forecasts in particular for the

10-day lag. Note the skill score values increase from the

5- to the 10-day lag. The accuracy of this mode is in-

creased by using pentads instead of daily values. By

applying the same method to 5-day means of the ITCZ

index (with M 5 40/5), the correlation between the

predicted and observed signal reaches 0.65 at lead times

of one pentad and 0.50 for the two-pentad prediction.

The correlation values are lower for the predictions of

the second and third modes with their respective cor-

relation coefficients of 0.44 and 0.40 at the 5-day lag and

a decrease to 0.37 and 0.24 at the 10-day lag. However,

the skill score values show that the skill remains much

better than that of forecasts obtained with persistence.

The computation of the correlation between observed

and predicted intraseasonal modes for each year of the

test period reveals a strong interannual variability (Fig. 7).

The predictions of the first mode are less variable, al-

though the year-to-year variance in the skill increases

from the 5- to the 10-day lag. At the 5-day lag, the first

mode shows 5 yr of successful forecasts with a correlation

coefficient higher than 0.60 and only 4 yr with a nonsig-

nificant correlation value at the 95% confidence interval.

The prediction skill levels of the second and third modes

are more variable, with some years characterized by a

correlation greater than 0.5 and others with correlations

near 0 and even negative. Figure 7 also shows the loss of

skill between the 5- and 10-day lags is the highest for the

first mode and the lowest for the second mode.

The examination of the observed and predicted time

series reveals that the amplitude of the intraseasonal sig-

nal must be high to be well reproduced by the SSA–MEM

prediction scheme. It also reveals that the method bet-

ter predicts regular intraseasonal oscillations in time

and amplitude, as illustrated by Fig. 8 for 1994. The

observed time series of the third mode is shown in

the top panel of Fig. 8 and the wavelet modulus is shown

in the bottom panel. The wavelet analysis points out

two sequences characterized by strong and regular oscil-

lations of a 12-day period from May to mid-June and

from mid-September to the end of October. The 5-day

FIG. 6. Correlations between the observed and the predicted SSA modes using the ECMWF

forecasts according to the time lag. The correlations are computed over the 1985–2000 period

from 1 April to the end of October. A correlation value significant at the 95% confidence

interval is plotted using a bigger symbol.

TABLE 6. As in Tables 4 and 5 but computed operationally.

Italics indicate that the correlation value is significant at the 95%

confidence interval.

SSA–MEM ECMWF

5 day/10 day 5 day/10 day

10–90 days (RC11. . .16) 0.09/0.06 0.13/0.07

Mode 1 (RC112) 0.54/0.36 0.15/0.35

Mode 2 (RC314) 0.44/0.37 0.51/0.53

Mode 3 (RC516) 0.40/0.24 0.53/0.14
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prediction of this mode (thin line in Fig. 8) is very ac-

curate for these two periods while it fails elsewhere.

These are well-known features of the AR forecasts al-

ready raised in previous works dealing with long-range

forecasting of the break and active summer Indian

monsoons (Cadet and Daniel 1988). When the charac-

teristics, that is, the amplitude and period, of the con-

sidered intraseasonal mode are well defined, skillful

forecasts can be obtained. However, when characteris-

tics change rapidly, the forecasts fail.

5. Conclusions and discussion

In this paper we have investigated the intraseasonal

variability of rainfall over West Africa. We used the

SSA method, which is an interesting alternative to the

Fourier decomposition as it is designed to extract in-

formation from noisy time series and can be used to

compute an adaptive filter (Ghil et al. 2002). The SSA

was first applied to a ground-based rainfall index within

the West African ITCZ domain to isolate oscillatory

modes in several intraseasonal bands. The results

showed the existence of one oscillatory mode of 34 days,

one of 20 days, and one of 14 days. This confirms the

results of previous studies on the intraseasonal time-

scale variability of convection over western and central

Africa during northern summer (Sultan and Janicot

2003; Mounier and Janicot 2004; Mounier et al. 2008),

which used, in particular, spatial EOF analysis and

showed from the 10–90-day filtered OLR signal that

intraseasonal variability can be split into two periodicity

ranges: 10–25 and 25–90 day.

We then used the SSA to intercompare the intra-

seasonal variability in several widely used datasets. We

have shown that although the day-to-day variability of

rainfall is not well captured by OLR datasets nor the

two reanalysis datasets, the intraseasonal variability is

far better reproduced. The intraseasonal features revealed

by the SSA are particularly well captured by the rainfall

data from ERA-40, while the NCEP–DOE reanalysis

fails to accurately reproduce the shorter modes of varia-

bility. The discrepancies between the two reanalysis

datasets can result from several factors. First, the ERA-40

and the NCEP–DOE have different atmospheric

models, with different parameterization schemes and

resolutions. Second, the assimilation of satellite data is

very different in each reanalysis (see Dell’Aquila et al.

2005). For instance, both ERA-40 and NCEP–DOE

FIG. 7. Interannual variability of the June–September skill of the 5-day (full line) and 10-day (dashed line) forecasts

of the intraseasonal modes (a) 1 (RC112), (b) 3 (RC314), and (c) 3 (RC516). (d) The forecast skill of the sum of these

three modes (RC11. . .16). The skill is determined by the correlation between the predicted SSA modes and the

observed SSA modes for each year between April and October.
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reanalyses assimilate the TOVS data, but ERA-40 as-

similates satellite radiance directly while NCEP–DOE

assimilates profiles of the retrieved temperature and

humidity. Third, the instrumental data basis has very

large spatial and temporal homogeneities.

We then investigated the medium-range predictabil-

ity of the intraseasonal modes by using both statistical

and dynamical forecasts. We have shown that although

ERA-40 reanalysis can accurately reproduce the intra-

seasonal features in rainfall, the dynamical forecasts are

far less skillful even at very short time leads. The sta-

tistical predictions based on the SSA–MEM are much

more promising, though they encounter problems when

applied operationally. In an operational application, we

found that the forecast skill is very low for the 10–90-day

intraseasonal band but the predictability of individual

intraseasonal modes is greater. The forecasts skill levels

are lower than those from Mo (2001) using the same

forecast scheme and the same convection data but for

California in winter. These differences may be due to

the stronger and more persistent influence of the MJO

oscillation in the pan-American convection (Mo 1999),

FIG. 8. (top) Time series of the observed (thick line) and predicted (thin line) third intra-

seasonal modes by using the SSA–MEM method for 1994. (bottom) Corresponding wavelet

analysis of the observed mode. Contour lines represent the wavelet modulus depicting the

clearest periodic oscillations (in terms of amplitude and regularity) with the highest values.
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while the 10–90-day intraseasonal variability in West

Africa is much more intermittent and less energetic. We

found the year-to-year variability of the forecast skills is

influenced by the characteristics of the intraseasonal

mode. When the characteristics of the considered in-

traseasonal mode are well defined, skillful forecasts can

be obtained. However, when the characteristics change

rapidly, the forecast fails. These conclusions are very

close to those of previous works dealing with the long-

range forecasting of the break and active summer

Indian monsoons (Cadet and Daniel 1988).

Even if the forecast skill is not high, the results of the

present paper are important for the study of the West

African monsoon. Since it is the first forecast exercise of

the intraseasonal fluctuations of convection in West

Africa, it can be considered as a skill reference to be

improved upon using other prediction systems. The

strategy for achieving this improvement is twofold.

First, we can continue to develop empirical forecasts

initiated by the present study. The crux of the intra-

seasonal prediction problem shown in our study using a

purely statistical approach with the SSA–MEM is the

use of raw data to predict filtered data. As discussed in

several studies (Wheeler and Weickmann 2001;

Wheeler and Hendon 2004) dealing with MJO moni-

toring and prediction, the use of a typical bandpass filter

to extract its frequency-limited signal is restricted for a

real-time task because of its need for information be-

yond the end of the time series. Alternative approaches

must be employed, but these introduce a level of noise

that affects the forecast skill. In the present study we

used the SSA filtering, which is one of these alternative

approaches. The results of this method should be com-

pared with the skills of other methods like the one used

by Wheeler and Hendon (2004) to construct a real-time

MJO index. This involves the projection of the daily

observed data onto the multiple-variable EOFs, with

the annual cycle and components of interannual varia-

bility removed, to extract principal PC time series that

vary primarily only on the intraseasonal time scale of

the MJO (Lo and Hendon 2000; Wheeler and Hendon

2004). This projection thus serves as an effective filter

for the MJO without the need for conventional time

filtering, making the PC time series an effective index

for real-time use. Another interesting way to improve

the skill of the physically based prediction scheme in-

troduced in this paper is the application of a wavelet

banding technique to the predictand and predictors,

before performing the linear process, to sort time series

into specific spectral bands (Webster and Hoyos 2004).

This method, combined with a linear regression model

for predicting monsoon rainfall and river discharge on

15–30-day time scales, has shown promising results.

Second, more work must be done to investigate the

skill of dynamical forecasts. Several studies (Slingo et al.

1996; Waliser et al. 2003) have recently shown the po-

tential for the numerical predictions of intraseasonal

variability in general circulation models in other re-

gions. In addition, we have shown ERA-40 very accu-

rately reproduces intraseasonal variability, although the

ECMWF rainfall prediction skill level has been found to

be very low and highly variable within 1 yr. A more

detailed examination of these ECMWF forecasts to

understand, if possible, why they fail or succeed could

be one avenue of future exploration. This better un-

derstanding will require the examination of other dy-

namical variables, usually more reliable than rainfall, to

identify atmospheric patterns that can be related to

rainfall intraseasonal variability. This may show for in-

stance that the predictability of intraseasonal rainfall in

the ECMWF model is greater with the occurrence of a

specific large-scale atmospheric pattern. One can also

imagine building statistical adaptations of the intra-

seasonal rainfall forecasts by linking statistically ob-

served rainfall and such atmospheric patterns as well as

other more reliably predicted dynamical variables.

Even if the intraseasonal forecasts developed in this

paper remain far from end users’ primary interests,

which are mainly the occurrence and length of dry spells

at the local scale, we believe our approach can progress

toward real applications. For instance, the African Cen-

tre of Meteorological Applications for Development

(ACMAD), whose mission is the provision of weather

and climate information addressed to the end users in

the fields of agriculture, water resources, health, public

safety, and renewable energy, publishes a decadal cli-

mate bulletin with operational analyses and 10-day

forecasts based on ECMWF forecasts scheme. The im-

provement of the forecast skill by using the statistical

approach instead of the dynamical approach shown in

this paper is thus relevant for African end users with an

interest in the publication of this bulletin.
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