
HAL Id: hal-00763160
https://hal.science/hal-00763160

Submitted on 10 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fragment-based Version Management for Repositories of
Business Process Models

Chathura C. Ekanayake, Marcello La Rosa, Arthur H. M. ter Hofstede,
Marie-Christine Fauvet

To cite this version:
Chathura C. Ekanayake, Marcello La Rosa, Arthur H. M. ter Hofstede, Marie-Christine Fauvet.
Fragment-based Version Management for Repositories of Business Process Models. OTM 2011 -
Confederated international conference on On the Move to Meaningful Internet Systems, Oct 2011,
Crete, Greece. pp.20-37, �10.1007/978-3-642-25109-2_3�. �hal-00763160�

https://hal.science/hal-00763160
https://hal.archives-ouvertes.fr

This is the author’s version of a work that was submitted/accepted for pub-

lication in the following source:

Ekanayake, Chathura C., La Rosa, Marcello, ter Hofstede, Arthur H.M., &

Fauvet, Marie-Christine (2011) Fragment-based version management for

repositories of business process models. (Unpublished)

This file was downloaded from: http://eprints.qut.edu.au/41538/

c© Copyright 2011 The Authors

Notice: Changes introduced as a result of publishing processes such as

copy-editing and formatting may not be reflected in this document. For a

definitive version of this work, please refer to the published source:

http://eprints.qut.edu.au/view/person/Ekanayake,_Chathura.html
http://eprints.qut.edu.au/view/person/La_Rosa,_Marcello.html
http://eprints.qut.edu.au/view/person/ter_Hofstede,_Arthur.html
http://eprints.qut.edu.au/41538/

Fragment-based Version Management for

Repositories of Business Process Models

C.C. Ekanayake1, M. La Rosa1, A.H.M. ter Hofstede1,2, and M.-C. Fauvet3

1 Queensland University of Technology, Australia

chathura.ekanayake@student.qut.edu.au,{m.larosa,a.terhofstede}@qut.edu.au
2 Eindhoven University of Technology, The Netherlands

3 University of Grenoble, France

marie-christine.fauvet@imag.fr

Abstract. As organizations reach higher levels of Business Process Management

maturity, they tend to accumulate large collections of process models. These

repositories may contain thousands of activities and be managed by different

stakeholders with varying skills and responsibilities. However, while being of

great value, these repositories induce high management costs. Thus, it becomes

essential to keep track of the various model versions as they may mutually over-

lap, supersede one another and evolve over time. We propose an innovative ver-

sioning model, and associated storage structure, specifically designed to maxi-

mize sharing across process models and process model versions, reduce conflicts

in concurrent edits and automatically handle controlled change propagation. The

focal point of this technique is to version single process model fragments, rather

than entire process models. Indeed empirical evidence shows that real-life pro-

cess model repositories have numerous duplicate fragments. Experiments on two

industrial datasets confirm the usefulness of our technique.

1 Introduction

Organizations need to develop process models to document different aspects of their

business operations. For example, process models are used to communicate changes in

existing operations to relevant stakeholders, document procedures for compliance in-

spection by auditors or guide the development of IT systems [30]. Such process models

are constantly updated to suit new or changed requirements, and this typically leads

to different versions of the same process model. Thus, organizations tend to accumu-

late large numbers of process models over time [24]. For example, Suncorp, one of

the largest Australian insurers, maintain a repository of 6,000+ process models [23],

whereas the Chinese railway company CNR has 200,000+ models.

The requirement to deal with an increasing number of process models within or-

ganizations poses a maintenance challenge. Especially, it becomes essential to keep

track of the various models as they may mutually overlap, supersede one another and

evolve over time. Moreover, process models in large organizations are typically edited

by stakeholders with varying skills, responsibilities and goals, sometimes distributed

across independent organizational units [6]. This calls for techniques to efficiently store

process models and manage their evolution over time.

2 C.C. Ekanayake et al.

In this paper, we propose a novel versioning model and associated storage structure

which are specifically designed for process model repositories. The main innovation

lies in storing and versioning single process fragments (i.e. subgraphs), rather than en-

tire process models. In this way duplicate fragments across different process models,

or across different versions of the same process model, are stored only once. In fact,

empirical evidence [38] shows that industrial process model collections feature a high

number of duplicate fragments. This occurs as new process models are created by copy-

ing fragments from existing models within the same collection. For example, we iden-

tified nearly 14% of redundant content in the SAP R/3 reference model [19]. Further,

when a new process model version is created, only a subset of all its fragments typically

changes, leaving all other fragments unchanged across all versions of the same model.

Besides effectively reducing the storage requirements of (large) process model

repositories, our technique provides three benefits. First, it keeps track of shared frag-

ments both horizontally, i.e. across different models, and vertically, i.e. across different

versions of the same model. As a result, this information is readily available to the

repository users, who can monitor the various relations among process model versions.

Second, it increases concurrent editing, since locks can be obtained at the granularity

of single fragments. Based on the assumption that different users typically work on

different fragments at the same time, it is no longer necessary to lock an entire pro-

cess model, but only those fragments that will actually be affected by a change. As

a result, the use of traditional conflict resolution techniques is limited to situations in

which the same fragment is edited by multiple users concurrently. Finally, our tech-

nique provides sophisticated change propagation. For example, if an error is detected

in a shared fragment, the fix can be automatically propagated to all process models

containing that fragment, without having to edit each process model individually. This

in turn can facilitate reuse and standardization of best business practices throughout the

process model repository. To the best of our knowledge, the use of process fragments for

version control, concurrency control (i.e. locking) and change propagation of process

model collections has not been studied in existing research. Commercial BPM suites

only offer propagation of attribute changes at the node level, e.g. a label change.

The proposed technique is independent of the process modeling language being

adopted as all the developed methods operate on an abstract modeling notation. Thus, it

is possible to manage processes modeled in a variety of languages (e.g. BPEL, YAWL,

BPMN, EPC) with our technique. We implemented this technique on top of the MySQL

relational DBMS and used the prototype to conduct experiments on two industrial pro-

cess model collections. The results show that the technique yields a significant gain

in storage space and demonstrate the usefulness of its locking and change propagation

mechanisms.

We present our technique in three steps. First, we introduce the versioning model in

Sec. 2. Next, we describe our locking mechanism in Sec. 3 and finally our controlled

changed propagation in Sec. 4. In Sec. 5 we discuss the storage structure used to im-

plement our technique on top of relational DBMSs, while in Sec. 6 we present the

algorithms for manipulating this data structure. We report the experimental setup and

results in Sec. 7, and discuss related work in Sec. 8. We draw conclusions in Sec. 9.

Fragment-based Version Management for Repositories of Business Process Models 3

2 Versioning model

We define process model versions according to a branching model which is inspired

by popular version-control systems such as Concurrent Version Systems (CVS) [4] and

Apache Subversion (SVN).4 Accordingly, each process model can have one or more

branches to account for co-existing developments. Each branch contains a sequence of

process versions and has a unique name within a process model.

A new branch can be created by “branching out” from a version in another existing

branch, where the existing branch may belong to the same process model (internal

branching) or to another process model (external branching). The primary branch is

the first branch being created for a process model, and as such it can be new or be

derived via external branching. Non-primary branches of a process model can only be

derived via internal branching. Only the last version of a branch, namely the current

version can be modified.

Branch 1

Home

(primary)

1.0

1.1

1.2

1.3

1.0

1.1

1.2

1.0

1.1

1.0

“draft”

“signed”

“released”

Branch 2

Motor
Branch 4

Commercial

Branch 3

Private

“signed”

“alpha”

“beta”

“initial”

“draft”

Fig. 1. Process model versioning (cur-

rent version of each branch is shaded).

A modification to a current version pro-

duces a new version in the same branch

which becomes the current version. Accord-

ing to this versioning model, a specific ver-

sion of a process model is referred to by the

tuple (process model name, branch name,

version number). Optionally, a version may

have a name which needs not be unique.

This model is shown in Fig. 1 by using an

example from the insurance domain. Here

the primary branch is new and named “Home”, whereas “Motor”, “Private” and “Com-

mercial” are all secondary branches. For example, version 1.0 of the Motor branch,

named “alpha”, is derived from version 1.1 of the Home branch, named “signed”.

The focal idea of our versioning model is to use process model fragments as stor-

age units. To obtain all fragments from a process model, we use the Refined Process

Structure Tree (RPST) [39]. The RPST is a linear-time method to decompose a process

model into a tree of hierarchical SESE fragments. A SESE fragment is a subgraph of a

process model with a single entry and a single exit node. Each fragment in the hierarchy

contains all fragments at the lower level, but fragments at the same level are disjoint.

Thus, a given process model has only one RPST decomposition. The advantage of using

SESE fragments is that they are modular: any change inside a fragment does not affect

other fragments outside the modified fragment. Fig. 2 shows version 1.0 of the Home

insurance claims process model, and its RPST decomposition. The notation is BPMN.

For each model, we store its SESE fragments with their composition relationships.

A fragment may contain one or more child fragments, each of which may also contain

child fragments, forming a tree structure. Fig. 3 shows the fragment version tree of the

process model in Fig. 2.

4 http://subversion.apache.org

4 C.C. Ekanayake et al.

Determine

whether tax

invoice is valid

Determine if the

invoice relates

to the claim

Complete customer or

third party

reimbursement

Determine

source of

invoice

Investigate error

yes

yes

yes

Close the

relevant invoice

received activity

yes

F14

F13F12F10

F11

F5 F7

F4

F1 F2

Determine if

invoice is

duplicate

Determine whether

invoice received is

for proof of

ownership

Determine if

invoice has

already been paid

Determine

whether Insurer

authorised work
Contact customer

activity for the

relevant Insurer team

Contact service

provider activity for the

relevant Insurer team
Close the

relevant invoice

received activity

yes

F6 F8

F9

F3

Task
Exclusive OR

gateway

Start

event

End

event
Legend:

Flow

relation

Fig. 2. Version 1.0 of the Home insurance claims process model, and its RPST fragments.

1 F1

1 F2

1 F7

1 F41 F3

1 F101 F11

1 F12

1 F141 F13

1 F6

1 F91 F8

1 F5

P: “Insurance claims”
B: “Home”

V: 1.0 – “draft”

Fig. 3. RPST of model in Fig. 2.

We maintain a version history for each

fragment. Each fragment has a sequence of

versions and the latest version is named as

the current version. When a new fragment is

added, its version sequence starts with 1 and

is incremented by one for each subsequent

version. Fig. 3 depicts fragments as rectan-

gles and fragment versions as circles; version

numbers are shown inside circles. As all frag-

ments in this example are new, each fragment

has version 1. Each process model version

points to the root fragment version of its frag-

ment version tree.

By using fragments as units of storage, we can efficiently support version control,

change management and concurrency control for process models. Before describing

how we realize such operations, we explain how a fragment is stored in the repository.

Each fragment version needs to store its composition relationships and its structure.

yes

yes

Pocket 3

Pocket 2 Pocket 1

Fig. 4. Structure of fragment F2

from the model in Fig. 2.

The composition relationships contain the iden-

tifiers of all the immediate child fragment versions.

The structure of a fragment version is the subgraph

of that fragment version where the subgraphs of all

its child fragment versions are replaced by place-

holders called pockets. Each pocket is associated

with an identifier and within the structure of a partic-

ular fragment version, it points to one child fragment

version. In this way we can maximize reuse across fragments, since two fragments can

Fragment-based Version Management for Repositories of Business Process Models 5

share the same structure but point to different child fragment versions from within their

pockets. Fig. 4 shows the structure of fragment F2 from Fig. 2. This structure contains

three child fragments, each represented by a pocket. In the case of version 1 of F2,

pocket 1 points to version 1 of F3, pocket 2 to version 1 of F4 and pocket 5 to version

1 of F5. Next, we describe how to reuse structures by mapping different child fragment

versions to pockets.

2.1 Vertical sharing

Process models are not static artifacts but evolve with an organization. As we store

individual fragments, all unmodified fragments can be shared across different versions

of the same process model. We call this vertical sharing. When a new version of a

process model is created, only those fragments that have changed or that have been

added are stored. Fig. 5 shows the derivation of version 1.1 from version 1.0 of the

Home insurance claims process by modifying fragment F3. Fragment F3 is modified

by removing F6 and adding F25 and F32. This leads to a new version of F3 with the

modified content (version 2). In addition, new versions of F2 and F1 need to be created

with the modified composition relationships. All other fragments (i.e. F4 to F14) remain

the same and are shared between version 1.0 and 1.1 of the Home insurance process.

1 F1

1 F2

1 F7

1 F4

1 F3

1 F101 F11

1 F12

1 F141 F13

1 F6

1 F91 F8

1 F5

P: “Insurance claims”
B: “Home”

V: 1.0 – “draft”

2 F1

2 F2

2 F3

1 F32

1 F28

1 F25

P: “Insurance claims”
B: “Home”

V: 1.1 – “signed”

Shared fragments

Fig. 5. Sharing fragments across multiple versions of the

same process model.

As we mentioned

earlier, we reuse structures

of fragments across subse-

quent fragment versions in

order to avoid redundancy.

For example, changing

fragment F3 does not

affect the structure of

fragment F2. However,

a new version of F2 has

to be created to represent

the modified composition

relationships (i.e. replace-

ment of version 1 of F3

with version 2). Thus, the

structure can be shared

across versions 1 and 2

of F2. Let us consider the

structure of version 1 of F2 as shown in Fig. 4. According to the example, version 1

of F2 maps version 1 of fragments F3, F4 and F5 to pockets 1, 2 and 3 respectively.

In version 2 of F2, the structure does not change except for the mapping of pocket 1

which now points to version 2 of F3. Thus, we reuse the structure of version 1 of F2 in

its version 2 simply by changing the mapping of its pocket 1.

2.2 Horizontal sharing

Real-life process model repositories hardly have unique process models. It is common

in fact that multiple process models share common fragments. For example, we identi-

6 C.C. Ekanayake et al.

fied 840 duplicate fragments in the SAP reference model. In order to avoid such redun-

dancy, we also allow fragment versions to be shared among multiple branches within

or across process models. We call this horizontal sharing. By keeping track of such

derivation relationships, we can efficiently propagate changes and keep the repository

in a consistent state. As an example, Fig. 6 shows the relationship between version 1.2

of the Home insurance branch and version 1.1 of the Motor insurance branch, which

share fragments F3 and F5, and their child fragments. Similar sharing relations can

exist between branches of different process models.

3 Locking

If two or more users try to modify two overlapping sections within the same process

model or across different process models, the resulting process model(s) may become

inconsistent. The solution used by current process model repositories to avoid such

conflicts is to lock an entire process model before editing it. However, such a solution

limits the ability for collaboration, especially in light of the current trend for collabora-

tive process modeling, as only one user can edit a process model at a time. We propose

a fragment-based locking mechanism for process models which supports increased col-

laboration while reducing the number of conflicts.

1 F1

1 F2

F7

1 F4

1 F3

F6

1 F5

P: “Insurance claims”
B: “Home”

V: 1.2 – “released”
Propagation: “Instant”

1 F35

1 F36

1 F37

1 F39

1 F41

1 F38

P: “Insurance claims”
B: “Motor”

V: 1.1 – “beta”
Propagation: “Delayed”

Shared fragments

1 F40

1 F42

11

Fig. 6. Sharing fragments across different process model

branches.

Users can lock indi-

vidual fragments, upon

which, any subsequent

locking requests to those

fragments will be denied.

When a lock is requested

for a fragment, we need to

consider the lock granted

for that fragment, as well

as the locks of its ancestor

and descendant fragments.

To illustrate this, let us as-

sume that a user requests a

lock for F3 in Fig. 6 and that a lock has already been granted for its child fragment F6.

If the requested lock is granted for F3, both F3 and F6 can be edited concurrently. As

F3 contains F6, the user editing F3 can also edit the content of F6, which may result in

a conflict with the edits done by the other user on F6. Thus, in this situation a lock for

F3 cannot be granted. The same situation holds for the ancestor fragments of F3. If any

ancestor fragment of F3 (e.g. F2) is locked, a lock for F3 cannot be granted. Thus, a

fragment can only be locked if a lock has not yet been granted for that fragment and for

any of its ancestor or descendant fragments. For example, two users can lock F3 and

F7 at the same time. Concurrent updates to these two fragments do not cause conflicts,

as neither of these fragments contain the other fragment. In this case, any subsequent

lock request for fragments F3 and F7, and for their descendant and ancestor fragments

will be denied.

This fragment-based locking mechanism is realized by associating two locking at-

tributes with each fragment: a boolean direct lock and an integer indirect lock counter.

Fragment-based Version Management for Repositories of Business Process Models 7

A direct lock is assigned to a fragment that is directly locked by a user and gives the

user the actual right to edit that fragment. The indirect lock counter is used to prevent

conflicting lockings to descendant fragments. It is set to zero and incremented by one

every time a descendant of the fragment in question is directly locked. A direct lock

can only be placed if a fragment is not directly locked, its indirect lock counter is zero

and none of its ancestor fragments is directly locked either. If so, the fragment is locked

and the indirect lock counters of all its ancestors are incremented. Once a request for

removing a lock is issued, the direct lock for that fragment is removed and the indirect

lock counters of all its ancestor fragments are decremented. The indirect lock counter is

required as multiple descendant fragments of a given fragment may be directly locked

at the same time. In such situations, the counter of that fragment should not be reset

until all direct locks of its descendant fragments have been released.

4 Controlled change propagation

In current process model repositories, similarity relations between different process

models are not kept, so an update to a section of a process model remains confined

to that process model, without affecting all process models of the repository that share

(parts of) that section. This problem where two or more process models become “out-of-

synch” is currently rectified manually, through maintenance cycles which are laborious

and error-prone. For example, a team of business analysts at Suncorp was recently in-

volved in a process consolidation effort between two of their insurance products, due to

an update to one of the two products. However, it took them 130 man-hours to identify

25% of the shared fragments between the process models for these two products [23].

In fact, our experience tells us that real-life collections suffer from frequent mismatches

among similar process models.

Since we reuse fragments across multiple process models, this provides a great

opportunity to simplify the maintenance of the repository. For example, if a possible

improvement is identified for fragment F3 of Fig. 6, that improvement can be made

available immediately to both the Home and Motor insurance process models, since

this fragment is shared by both these models. However, propagating fragment changes

immediately to all affected process models may not be always desirable. Let us assume

that the current version of the Motor insurance process model has been deployed in

an active business environment. If an update to F3 has introduced an error, that error

will immediately affect the Motor insurance process model, which could potentially

impact important business operations. In order to prevent such situations, we support a

flexible change propagation mechanism, where change propagations are controlled by

a propagation policy associated with process model branches. The propagation policy

of a process model branch can be set as either instant propagation or delayed propa-

gation. If instant propagation is used in a branch, any change to any fragment in the

current version of that branch is recursively propagated to all ascending fragments of

that fragment in the current version, until the root fragment. Since the root fragment

changes, a new version for that branch will be created, which will become the current

version. If delayed propagation is used in a branch, changes to a fragment will not be

immediately propagated throughout the current version. Instead, such changes will cre-

ate pending updates for the current version. Then owners of the affected process model

8 C.C. Ekanayake et al.

are notified of all pending updates for that model. They can then review the pending

updates and only trigger the necessary ones. Once a pending update is triggered, it will

be propagated and a new version of the interested process model will be created.

Coming back to the example in Fig. 6, let us assume that the change propagation

policy of the Home insurance branch is set to instant while that of the Motor insurance

branch is set to delayed. If fragment F6 is updated (i.e. version 2 of F6 is created), new

versions will instantly be created for all the ancestor fragments of F6 in the current ver-

sion of Home (i.e. F3, F2 and F1, shown with a thicker border Fig. 6). As a new version

is created for F1, which is the root fragment of Home, a new version of this process

model will also be created, say version 1.3. On the other hand, since the Motor branch

has a delayed propagation policy, new versions will not be created for the ancestor frag-

ments of F6 in the current version of this branch. This means that F3 in Motor will still

point to version 1 of F6, F36 to version 1 of F3 and F35 to version 1 of F36. Thus, the

current version of Motor will still use version 1 of F6 and remain the same. However,

the pending updates will be notified to the owner of the current version of Motor, who

can decide whether or not to implement them.

Sometimes it is not required to create a new fragment version/process model version

when a fragment is modified, e.g. after a fixing a minor error. Our technique supports

such in-place editing of fragments, where the edited fragment version and all its an-

cestor fragments are updated without creating new versions. Changes performed in this

mode will be available to all ancestor fragments instantly, irrespective of the change

propagation policies.

5 Conceptualization of the storage structure

We now describe the conceptual model used to store our versioning system on top of a

relational DBMS. The algorithms to populate and use this data structure, e.g. inserting

or updating a fragment, are presented in Section 6.

An Object Role Modeling diagram of the storage structure is shown in Fig. 7. For

illustration purposes, we populated this model with information from two process mod-

els: “Insurance claims” (the example used so far) and “Order processing”. Each process

has two branches (e.g. Insurance claims has branches “Home” and “Motor”). Further,

each branch has a root process model (i.e. the root Node), representing the first version

of that branch. For example, the root process model of the Motor branch of the insurance

claims process has node identifier N4 and refers to version number 1.0 having version

name “alpha”. Each branch has a sequence of nodes where each node represents one

version of a process model. Each node can have at most one immediate predecessor.

For example, node N5 refers to version number 1.1 of its branch, and is the successor

of node N4. The root node of a primary branch may optionally be derived from a node

of an external process model branch (none in the sample population). The root node

of a non-primary branch is always derived from a node of an internal process model

branch. For example, the root node of the Motor branch (node identifier N4) is derived

from node N2 of the Home branch.

Each node in a branch (i.e. each process model version) has an associated fragment

version tree. In our example, the root fragment versions of process model versions 1.0

and 1.1 of the Home branch (i.e. nodes N1 and N2) are FV1 and FV6. FV1 and FV6

Fragment-based Version Management for Repositories of Business Process Models 9

Process

(.id)
ProcessName

/ has

Branch

(.id)
BranchName

/ has

Node

(.id)

VersionNumber

/ refers to

has as primary

has as immediate predecessor
is derived from

intransitive,

acyclic

has as root

FragmentVersionNumber

/
re

fe
rs

 t
o

Fragment

(.id)
c
o

n
ta

in
s

U

u
p

d
a

te
s
 a

re
 g

o
v
e
rn

e
d
 b

y

FragmentVersion

(.id)

ProcessElement

(.id)
Pocket

is
 c

o
n

n
e

c
te

d
 t

o

NonPocket

/
h

a
s

Label

/
b
e

lo
n
g
s
 t

o

ElementType

(name)

has a structural

pocket...in fragment version...refers to fragment version...

{‘Task’, ‘Event’,
‘Gateway’, ‘Pocket’}

has as immediate parent

VersionName

/ has

Insurance claims P1

Order processing P2

Home B1

Motor B2

Bulk B3

Special B4

draft N1

signed N2

released N3

alpha N4

beta N5

... ...

PE1 Determine if ...

PE9 Investigate error

PE15 XOR-split

PE70 Inspect goods

... ...

P1 B1

P2 B3

B1 N1

B2 N4

B3 N6

B4 N9

N2 N1

N3 N2

N5 N4

... ...

N4 N2

N9 N7

N1 FV1

N2 FV6

N4 FV24

... ...

FV2 FV1

FV3 FV2

FV4 FV2

FV5 FV2

FV7 FV6

FV3 FV7

... ...

FV1 1

FV6 2

FV24 1

... ...

F1 FV1

F1 FV6

F35 FV24

... ...

PE34 FV1 FV2

PE34 FV6 FV7

PE35 FV2 FV3

...

1.0 N1

1.1 N2

1.2 N3

1.0 N4

1.1 N5

... ...

has as root / is root of

is associated with
Structure

(.id)

contains

FV1 S5

FV6 S5

... ...

S5 PE1

S5 PE34

S5 PE35

... ...

StructuralCode
{‘Instant’, ‘Delayed’}ChangePropagationPolicy

(.name)

DirectLock

(.boolean)
/ indicates the direct lock status of

IndirectLockCounter

(.nr)

/ records the indirect lock count of

Each Pocket is a ProcessElement that is of ElementType ‘Pocket’
Each NonPocket is a ProcessElement that is not of ElementType ‘Pocket’

Fig. 7. Object-Role Modeling diagram of the storage structure.

are both contained in fragment F1 according to the sample population. Thus, FV1 and

FV6 are two versions of the same fragment. In fact, FV1 is mapped to fragment version

number 1 whilst FV6 is mapped to fragment version number 2 of F1. A fragment ver-

sion can have multiple parents and children. For example, FV2 is the parent fragment

of FV3, FV4 and FV5, while FV3 is the child of both FV2 and FV7. Hence, FV3 is

shared between FV2 and FV7. A fragment version is associated with a structure which

stores all process elements contained only in that fragment version. A structure is asso-

ciated with a structural code, which is computed by considering its elements and their

interconnections. The structural code is used to efficiently compare structures of frag-

ments. Furthermore, two fragments can be efficiently compared by considering both

structural codes and composition relationships. Process elements within structures can

be of type non-pocket (i.e. tasks, events, gateways) and pocket. A pocked is a place

holder for a child fragment. Continuing our running example, in fragment version FV1,

pocket PE34 is mapped to fragment version FV2 while in FV6, PE34 is mapped to FV7.

Thus, FV1 and FV6 share the structure S5 with different mapping for pocket PE34. Fi-

nally, the diagram models the association of change propagation policies with process

branches and locking attributes with fragment versions.

As shown in the diagram of Fig. 7, we use a directed attributed graph of vertices (i.e.

process elements) and edges (i.e. flow relations) to represent process models and frag-

ments. Process elements can be tasks, events (e.g. timer or message events), gateways

(e.g. AND-split, XOR-split, OR-join) and pockets. This meta-model is an extension of

the canonical format used in the AProMoRe repository [24], where we introduced a new

process element, namely the Pocket, to act as a placeholder for dynamically-computed

child fragments. This abstract representation allows us to apply version control to pro-

10 C.C. Ekanayake et al.

cess models developed in multiple business process modeling languages (e.g. BPMN,

YAWL, EPCs, BPEL), as well as to facilitate change propagation and concurrency con-

trol on those process models, regardless of their modeling language. For example, in

order to version EPC models, we only have to convert EPCs to our representation for-

mat and vice versa. A full mapping between AProMoRe’s canonical format and various

process modeling languages is provided in [24]. We observe that in order to achieve

language-independence, AProMoRe’s canonical format covers only a set of concepts

which are common to most process modeling languages.

6 Algorithms

In this section we describe the algorithms used in our repository for inserting, updating,

retrieving and deleting process models and fragments.

6.1 Inserting and retrieving fragments

Process model insertion, retrieval and update methods of the repository depend on two

main algorithms: AddFragment() (i.e. Algorithm 1) and FillFragment() (i.e. Algorithm

2). First, we will explain these two algorithms, which lay the foundation for the de-

scription of the other algorithms. AddFragment() method takes a process fragment as

the input, stores the fragment and its child fragments in the repository and returns a

unique identifier for the fragment. First, the AddFragment() method calls itself recur-

sively to decompose the child fragments of the given fragment and to obtain identifiers

for those child fragments. Then it replaces the subgraphs of all child fragments with

pockets in order to obtain the structure of the given fragment. For each replaced child

fragment, it adds a mapping from the added pocket identifier to its corresponding child

fragment identifier. Thus, a fragment is represented in the repository as an structure and

a set of (pocket Id, child Id) mappings.

Once the structure and the (pocket Id, child Id) mappings are obtained, we have to

check whether there are similar components already stored in the repository, in order

to prevent redundancies. First, the algorithm checks if a matching structure is already

stored by invoking the GetMatchingStructureId() function. If a matching structure is

found, we can check whether the same fragment is already stored, by searching for

both the structure and the (pocket Id, child Id) mappings. This is achieved through

application of the GetMatchingFragmentId() function. If a matching fragment identifier

is found, the AddFragment() method returns the matched identifier without storing any

information about the new fragment. If a matching structure is found and a matching

fragment is not found, we can reuse the matched structure. Therefore, in that case,

the algorithm adds a new fragment with the identifier of the matched structure and new

(pocket Id, child Id) mappings. If a matching structure is also not found in the repository

(which also implies that there are no matching fragments as well), the algorithm adds a

new fragment with a new structure and new (pocket Id, child Id) mappings.

The FillFragment() method (listed in algorithm 2) is used to retrieve process frag-

ments from the repository. It takes three parameters: fragment identifier, pocket iden-

tifier and a process model graph. This method retrieves the fragment identified by the

given fragment identifier (i.e. first parameter) and fills the given process model graph

Fragment-based Version Management for Repositories of Business Process Models 11

Algorithm 1: AddFragment

procedure AddFragment(Fragment f)
begin

fragmentId ⇐ null

childFragments ⇐ GetChildFragments(f)
foreach childFragment in childFragments do

pocketId ⇐ MakePocket(f, childFragment)
childId ⇐ AddFragment(childFragment)
pocketChildMappings ⇐ pocketChildMappings ∪ {(pocketId , childId)}

matchingStructureId ⇐ GetMatchingStructureId(f)
if matchingStructureId not null then

matchingFragmentId ⇐
GetMatchingFragmentId(matchingStructureId , pocketChildMappings)
if matchingFragmentId not null then

fragmentId ⇐ matchingFragmentId

else
fragmentId ⇐
InsertFragment(matchingStructureId , pocketChildMappings)

else
structureId ⇐ AddStructure(f)
fragmentId ⇐ InsertFragment(structureId , pocketChildMappings)

returnfragmentId

end

(i.e. third parameter) with the content of the fragment. The purpose of the second pa-

rameter (i.e. pocket identifier) will be explained later. It is possible to invoke the Fill-

Fragment() method either by providing a valid process model graph or by providing an

empty process model graph (i.e. null). If an empty process model graph is provided, the

fragment will be constructed as a new process model graph. If a process model graph

is provided, the fragment will be composed into a pocket of the given process model

graph. The pocket to be used for the composition is identified by the pocket identifier

given as the second parameter of the FillFragment() method. When the FillFragment()

method is invoked to compose a fragment, it is invoked by providing an empty process

model graph, which forces it to construct the fragment as a new process model graph.

Once the FillFragment() method is invoked, it retrieves the structure of the requested

fragment and assigns it to the given empty process model graph. Then the FillFrag-

ment() method retrieves the (pocket Id, child Id) mappings of the requested fragment

from the repository. Now all the pockets in the structure of the requested fragment have

to be filled with process model graphs of its child fragments. For this, the FillFrag-

ment() method invokes itself recursively for each (pocket Id, child Id) mapping. In each

such invocation, the process model graph of the requested fragment and the identifier of

the pocket to be replaced with the child fragment are provided as an input, in addition

to the identifier of the child fragment. This forces the method to replace pockets of the

graph with child fragments. Such recursive invocations replaces all pockets in the graph

with descendant fragments, thus completing the process model graph of the requested

fragment.

12 C.C. Ekanayake et al.

Algorithm 2: FillFragment

procedure FillFragment(fragmentId , pocketId ,ProcessModel p)
begin

ProcessModel f ⇐ GetStructure(fragmentId)
if p not null then

ReplacePocket(p, pocketId , f)

else
p ⇐ f

pocketChildMappings ⇐ GetPocketChildMappings(fragmentId)
foreach (childPocketId , childId) in pocketChildMappings do

FillFragment(childId , childPocketId , p)

end

6.2 Inserting a new process model

Next, we will explain the algorithms for manipulating process models and fragments

with reference to the FillFragment() and AddFragment() methods. The AddProcess-

Model() method adds a new process model to the repository, which takes the process

model graph and the name of a new process model. As this method adds a new process

model, first it creates the main branch of the process model using the CreateMain-

Branch() method. Then the RPST fragment tree of the given process model is cre-

ated using the ComputeRPST() method. The ComputeRPST() method returns the root

fragment of the computed fragment tree. Once the root fragment is available, the Ad-

dProcessModel() method invokes the AddFragment() method to store the root fragment

and it descendant fragments in the repository. The AddFragment() method returns an

identifier for the root fragment as mentioned in section 6.1. Once the identifier of the

root fragment is available, the AddProcessModel() method adds a tuple (process model

name, branch name, root fragment identifier) to the repository to represent the new

process model using the InsertProcessModel() method.

Algorithm 3: Add Process Model

procedure AddProcessModel(ProcessModel p, processModelName)
begin

branchName ⇐ CreateMainBranch(processModelName)
rootFragment ⇐ ComputeRPST(p)
rootFragmentId ⇐ AddFragment(rootFragment)
InsertProcessModel(processModelName, branchName, rootFragmentId)

end

6.3 Checking out process models and fragments

Now we will go through the algorithms for checking out process models and fragments

from the repository. In fact, there is no difference between checking out a fragment and

Fragment-based Version Management for Repositories of Business Process Models 13

checking out a process model. As any process model is stored as a fragment tree, check-

ing out a process model is equivalent to checking out its root fragment. Therefore, we

will only discuss the CheckoutFragment() method, which is used to retrieve the frag-

ment identified by a given fragment identifier. The CheckoutFragment() method first

initializes an empty process model graph, which is used to hold the process model graph

of the requested fragment. Before checking out a fragment, the requested fragment and

its ancestor fragments have to be locked in order to prevent possible conflicts (see sec-

tion 3). First, we have to check whether the requested fragment is directly locked, as

we can’t place a direct lock if the fragment is already locked directly. This check is

performed by invoking the IsDirectLocked() method, which returns true if the given

fragment is directly locked, and returns false if it is not directly locked. Then the Incre-

mentAncestorIndirectLocks() method is invoked to recursively increment indirect locks

of all ancestor fragments of the given fragment. This method (listed in Algorithm 5) re-

turns true if the indirect locks could be incremented in all ancestors, and returns false

if an indirect lock of any ancestor fragment could not be incremented. If both IsDirect-

Locked() and IncrementAncestorIndirectLocks() methods return true for the given frag-

ment, the CheckoutFragment() method places a direct lock on the requested fragment

(by calling the PlaceDirectLock() method) and invokes the FillFragment() method to

recursively construct the process model graph of the requested fragment as mentioned

in section 6.1.

Algorithm 4: Checkout Fragment

procedure CheckoutFragment(fragmentId)
begin

ProcessModel p ⇐ null

if not IsDirectLocked(fragmentId) and

IncrementAncestorIndirectLocks(fragmentId) then
PlaceDirectLock(fragmentId)
FillFragment(rootFragmentId ,null , p)

return p

end

6.4 Updating process models and fragments

We can now discuss the algorithms for updating (i.e. checking in) process models and

fragments. As we did in the previous section, describing only the algorithm for checking

in a fragment is sufficient, as checking in a process model is equivalent to checking in

its root fragment. First, we have to study the procedure for updating a fragment. A

user checks out a fragment (using the CheckoutFragment() method) for updating by

providing its fragment identifier. The repository returns the process model graph of the

requested fragment. Then the user can update the process model graph as necessary.

Once the required modifications to the process model graph are completed, the user can

check in the fragment using the CheckinFragment() method, discussed in this section.

14 C.C. Ekanayake et al.

Algorithm 5: Increment Ancestor Indirect Locks

procedure IncrementAncestorIndirectLocks(fragmentId)
begin

parentIds ⇐ GetCurrentParentFragmentIds(fragmentId)
foreach parentId in parentIds do

if not IsDirectLocked(parentId) and

IncrementAncestorIndirectLocks(parentId) then
IncrementIndirectLock(parentId)
return true

else
return false

return true
end

The CheckinFragment() method takes the fragments identifier used to check out

the fragment and the modified process model graph as inputs. First the CheckinFrag-

ment() method decomposes the modified process model graph using the AddFragment()

method, which stores all fragments of the modified graph and returns an identifier for

the modified fragment. If the updated fragment is used as the root fragment of process

models, new versions have to be created for those process models with the updated root

fragment. The CheckinFragment() method does this by invoking the CreateNewVer-

sion() method for each affected process model. Then the direct lock placed on the up-

dated fragment is cleared using the RemoveLock() method.

Now the CheckinFragment() method should create new fragments for ancestor frag-

ments of the updated fragment. However, we only have to consider the ancestor frag-

ments in which the indirect lock count is greater than zero. There could be ancestor

fragments with zero indirect locks, as ancestor fragments will not be indirectly locked

if they do not belong to a current version of a process model. In order to perform this

propagation, the CheckinFragment() method calls the PropagateToParents() method for

each indirectly locked parent fragment, which in turn recursively invokes itself to prop-

agate changes to all ancestor fragments and decrement their indirect locks.

The PropagateToParents() method (listed in Algorithm 7) takes three parameters:

identifier of the parent to which the changes have to be propagated, identifier of the

old version of the changed child fragment and the identifier of the new version of the

changed child fragment. We have to create a new version of the given parent fragment,

as one of its children was changed. However, all other details of the parent fragment

remains the same between its old and new version except the updated child relationship.

Therefore, the new version of the parent fragment is created by copying its version

using the CopyFragment() method. This method copies all details of the old parent

fragment, including its structure, child relationships, direct lock status and indirect lock

count. Then the PropagateToParents() method decrements the indirect lock count of the

new parent fragment (which has the indirect lock count of the old parent fragment) by

calling the DecrementIndirectLock() method. After that, the child relationships of the

new parent fragment are updated by replacing the old child fragment identifier (given

as the second input parameter) with the new child fragment identifier (given as the third

Fragment-based Version Management for Repositories of Business Process Models 15

input parameter). As the given parent fragment can be the root fragment of some process

models, the algorithm retrieves all affected process models and creates new versions

for all those process models using the CreateNewVersion() method. Once a new parent

fragment is created, all child fragments of the old parent fragment consider the new

parent fragment as the current version. Therefore, the indirect lock count associated

with the old parent fragment is cleared using the ClearIndirectLock() method, as it is

no longer used by existing transactions. Once these steps are performed, propagation of

changes of one ancestor level is completed. Then the algorithm retrieves all indirectly

locked parent fragments of the given parent fragment and calls itself for all those parent

fragments in order to propagate changes recursively until root fragments are reached.

Algorithm 6: Checkin Fragment

procedure CheckinFragment(oldFragmentId ,ProcessModel p)
begin

newFragmentId ⇐ AddFragment(p)
processModelIds ⇐ GetUsedProcessModelIds(oldFragmentId)
foreach processModelId in processModelIds do

CreateNewVersion(processModelId ,newFragmentId)

RemoveLock(oldFragmentId)
lockedParentIds ⇐ GetIndirectlyLockedParentIds(oldFragmentId)
foreach parentId in lockedParentIds do

PropagateToParents(parentId , oldFragmentId ,newFragmentId)

end

Algorithm 7: Propagate To Parents

procedure PropagateToParents(parentId , oldFragmentId ,newFragmentId)
begin

newParentId ⇐ CopyFragment(parentId)
DecrementIndirectLock(newParentId)
ReplaceChild(newParentId , oldFragmentId ,newFragmentId)
processModelIds ⇐ GetUsedProcessModelIds(oldFragmentId)
foreach processModelId in processModelIds do

CreateNewVersion(processModelId ,newFragmentId)

ClearIndirectLock(oldFragmentId)
lockedParentIds ⇐ GetIndirectlyLockedParentIds(oldFragmentId)
foreach parentId in lockedParentIds do

PropagateToParents(parentId , oldFragmentId ,newFragmentId)

end

16 C.C. Ekanayake et al.

6.5 Deleting process models and fragments

Similar to the other operations, deletion is also similar for process models and fragments

(i.e. deleting a process model is equivalent to deleting the root fragment of the process

model). The DeleteFragment() method takes the identifier of a fragment as the input.

First, it checks whether the given fragment is used as the root fragment of any process

model or as a child fragment of any other fragment. If the given fragment is used in

any of the above, it will not be deleted and the algorithm returns false to indicate that

the deletion is not successful. If it does not have any usages, its (pocket Id, child Id)

mappings are deleted. However, the structure of the fragment is deleted, only if it is

not shared by any other fragment. After deleting the (pocket Id, child Id) mappings

and the structure, the DeleteFragment() method calls itself recursively for each child

fragment to delete all unshared child fragments of the given fragment. Return values of

these recursive invocations of the DeleteFragment() method are ignored as deletion of

some child fragments may not be successful if child fragments have multiple parents.

Therefore, deletion of child fragments continues even if some child fragments could

not be deleted. Once all possible child fragments of the given fragment are deleted, the

DeleteFragment() method returns true to indicate the success of the deletion.

Algorithm 8: Delete Fragment Version

procedure DeleteFragment(fragmentId)
begin

if GetNumberOfUsedProcessModels(fragmentId) = 0 and

GetNumberOfParents(fragmentId) = 0 then
structureId ⇐ GetStructure(fragmentId)
childIds ⇐ GetChildIds(fragmentId)
RemovePocketChildMappings(fragmentId)
if GetNumberOfUsedFragments(structureId) = 0 then

RemoveStructure(structureId)

foreach childId in childIds do
DeleteFragment(childId)

return true

else
return false

end

7 Evaluation

We implemented the proposed versioning model and associated storage structure in Java

on top of the MySQL DBMS, and used this prototype to evaluate our technique. We

conducted the experiments on two industrial process model collections: 595 EPC mod-

els from the SAP R/3 reference model and 248 EPC models from IBM’s BIT library.5

5 http://www.zurich.ibm.com/csc/bit/downloads.html

Fragment-based Version Management for Repositories of Business Process Models 17

First, we measured the gain induced by vertical sharing. We took a set of models with

varying size (ranging from 25 to 107 nodes for the SAP dataset and from 10 to 40 nodes

for the IBM dataset), and for each of them we created 100 subsequent versions by ran-

domly updating a set of adjacent nodes (i.e. localized changes). We allowed four types

of basic change operations with corresponding probabilities: change task label (33%),

delete task (33%), insert a task between two adjacent nodes (17%) and insert a task in

parallel to another task (17%). These probabilities were chosen to balance insertions

and deletions so as to prevent excessive growth or shrinkage of a process model, thus

simulating localized changes. For each model, we repeated the experiment by changing

5%, 20% and 50% of the models’ size. After creating a new version, we calculated the

vertical storage gain Gv compared to storing full process model versions. Let N be the

number of nodes for storing full versions and Nv the number of nodes stored if sharing

fragments vertically. Then Gv = (N −Nv) · 100/N . Fig. 8 reports the average Gv for

each dataset, by aggregating the values of all changed process models. Our technique

incurs a slight initial overhead due to storing pockets and edges connecting pockets.

However, the vertical storage gain rapidly increases as we add new versions. For the

SAP dataset it levels off at 82% for small updates (5% of model size), and 55% for

larger updates (50% of size) whilst for the IBM dataset it levels off at 78% for small

updates and 46% for larger updates. This confirms our intuition that storing duplicate

fragments only once across different process model versions can dramatically reduce

the overall repository size.

-5

5

15

25

35

45

55

65

75

85

95

1 11 21 31 41 51 61 71 81 91

A
v

e
ra

g
e

 s
to

ra
g

e
 g

a
in

 (
%

)

Version number

Average storage gain for vertical sharing - SAP

5%

20%

50%

-5

5

15

25

35

45

55

65

75

85

1 11 21 31 41 51 61 71 81 91

A
v

e
ra

g
e

 s
to

ra
g

e
 g

a
in

 (
%

)

Version number

Average storage gain for vertical sharing - IBM

5%

20%

50%

Fig. 8. Average storage gain when sharing fragments across versions of the same process model.

Second, we measured the gain Gh induced by horizontal sharing. For each dataset,

we randomly inserted all process models in the repository, and as we increased the size

of the repository, we compared the size of storing duplicate fragments only once with

the size of storing full process models. We only counted the size of maximal fragments

across different process models, i.e. we excluded child fragments within shared frag-

ments. Let N be the number of nodes for storing full process models, F the set of frag-

ments, Nf the number of nodes of fragment f and Of the number of its occurrences.

Then Gh =
∑

f∈F Nf · (Of − 1)/N · 100. Fig. 9a shows the results of this exper-

iment. As expected, the horizontal gain increases with the number of process models

reaching a final value of 35.6% for the SAP dataset and 21% for the IBM dataset. This

trend is determined by the increasing number of shared fragments as the total size of

the repository increases. For example, for the SAP dataset there are 98 shared fragments

18 C.C. Ekanayake et al.

when the repository is populated with 100 process models and this number increases to

840 fragments with the full dataset. This gives an indication of the reduction in main-

tenance effort, as any update to any of those fragments or their child fragments, will be

automatically reflected onto all process models containing those fragments.

Following from the results of the previous experiment, we tested the effects of

change propagation onto the repository. We populated the repository with the SAP

dataset and performed 100 updates on randomly selected fragments. An update to a

fragment consists of a combination of the following operations with associated proba-

bilities: label change (33%), serial node insertion (17%), parallel node insertion (33%)

and node deletion (33%). The total number of operations performed in an update is

proportional to the number of nodes in the fragment being updated. In these tests we

set the operations-to-nodes ratio to one. For example, when updating a fragment with

10 nodes, 10 operations were performed consisting of approximately 3 label changes, 3

node deletions, 2 serial node insertions and 2 parallel node deletions.

The change propagation policy of all process models was set to instant propagation

during these tests as we wanted all changes to be immediately propagated to all affected

models. After each update, we measured the total number of automatically propagated

changes in the repository. We repeated the same experiment for the IBM dataset. The

average results for 10 test runs with both datasets are shown in Fig. 9b. Accordingly,

the number of propagated changes increases with the number of updates performed on a

process model collection. For example, on average 20 automatic changes were applied

by the repository across different process models when 100 updates were performed on

the SAP dataset. If our change propagation method is not used, process modelers have

to analyze the entire process model collection and apply all these changes to relevant

process models manually, which could be a time consuming and error-prone activity.

Thus, automatic change propagation provides indeed a significant benefit in maintaining

the consistency of the repository.

0

5

10

15

20

25

30

35

40

1 51 101 151 201 251 301 351 401 451 501 551

S
to

ra
g

e
 g

a
in

 (
%

)

Process models in the repository

Storage gain for horizontal sharing

SAP

IBM

0

5

10

15

20

25

1 11 21 31 41 51 61 71 81 91

P
ro

p
a

g
a

te
d

 c
h

a
n

g
e

s

Number of updates

Effect of change propagation with the number of

updates

SAP

IBM

Fig. 9. Vertical storage gain (a) and change propagation (b) with the growth of the repository.

Finally, we measured the effectiveness of our fragment-based locking by comparing

it with the model-based locking available in current process model repositories. In this

experiment, we used software agents to randomly lock fragments of a given process

model collection in order to simulate random updates. We first generated a sequence

of locking actions for each agent and saved it in a file. An action is a tuple (process

model identifier, fragment identifier, locking duration). For example action (12, 25, 560)

Fragment-based Version Management for Repositories of Business Process Models 19

forces an agent to lock fragment 25 of process model 12 for 560 milliseconds. For each

action, the process model was selected using a uniform probabilistic distribution over all

process models in a given collection. The fragment was selected based on a Gaussian

distribution over the sizes of the fragments of the selected process model, where the

mean size of the distribution was set to 10% of the size of the selected process model.

The locking duration was determined based on an inverse exponential distribution with

mean of 5 seconds, in order to speed up the tests.

Once all action files were generated, we executed two tests for each file: i) each

agent attempted to lock only the specified fragment; ii) each agent attempted to lock

the entire process model for each action, to simulate the traditional model-based lock-

ing. We executed these tests for two process model collections, with 10 and 30 process

models, chosen with uniform size distribution from the SAP dataset. We used these

small numbers of process models as in an average BPM project multiple users typically

work collaboratively on a small set of process models. For each collection, we per-

formed three tests by varying the number of concurrent agents from 10, to 20 and 30,

and we computed the success rate for each test as the ratio of the number of successful

operations over the number of total operations. The results are shown in Fig. 10.

0

20

40

60

80

100

10 20 30

S
u

cc
e

ss
 r

a
te

 (
%

)

Concurrent agents

Success rate for 10 process models

Fragment level

Process level

0

20

40

60

80

100

10 20 30

S
u

cc
e

ss
 r

a
te

 (
%

)

Concurrent agents

Success rate for 30 process models

Fragment level

Process level

Fig. 10. Success rate of locking operations in 10 process models (a) and 30 process models (b).

As expected, the fragment-based locking mechanism scored the highest success rate in

all tests. We also observed that the gain of this locking compared to that of model-based

locking increases with the increase of concurrent agents (for example, when using 10

agents on 30 process models, fragment level locking facilitated 15% more operations

than process level locking, while fragment level locking facilitated 110% more opera-

tions for 30 agents). Further, this gain is higher when agents are competing for a smaller

number of process models. Thus, we can conclude that our fragment-based locking

mechanism is more effective than the traditional model-based locking.

8 Related work

In this section we discuss related work in the field of BPM as well as in other fields,

such as software engineering and computer aided design. Our discussion is categorized

under version control, repositories, process model changes and concurrency control.

20 C.C. Ekanayake et al.

8.1 Version control

Version control has been extensively studied in at least three different fields: Temporal

Databases (TDBs), Software Engineering (SE) and Computer Aided Design (CAD).

TDBs [34, 13] deal with issues that arise when data evolution and histories of tempo-

ral models have to be managed. In SE, Source Code Control System (SCCS) [33] was

probably one of the precursors of version control systems. Here a revision of a file is

created each time the file is modified. Revision Control Systems (RCS) [37] extended

SCCS by introducing the concept of variant to capture branching evolution (e.g. in

SCCS, evolutions are represented as a sequence, while in RCS they are represented as

a tree). Space consumption is optimized by only storing textual differences (deltas) be-

tween subsequent versions. This is the same approach used by popular version control

systems such as CVS and SVN. It is possible to use textual deltas to version control pro-

cess models by considering XML based serializations of process models (e.g. EPML,

XPDL, YAWL). However, such deltas only serve as a method to reconstruct different

versions and do not facilitate other essential aspects of process model repositories as

mentioned later in this section.

Within SE, approaches in the area of Software Configuration Management [8], pro-

pose to use database technology to enhance the underlying data model and make the

notion of version explicit. Damokles [12] is probably one of the first database-based ver-

sioning environment for SE. It offers the notion of revision as a built-in datatype and a

version-aware data modeling language. In [29] the authors present an object graph ver-

sioning system (HistOOry) which allows applications to store and efficiently browse

previous states of objects. This approach keeps history of object graphs, while ours

deals with version control of graphs. Moreover, our goals are different: we focus on

graph fragment reusability and update propagation.

A version control method specifically designed for process models is proposed in

[1]. This method is based on change operations: the differences between two process

model versions are specified as a set of insert, delete and modify operations on tasks,

links and attributes. The version history of a process model is stored as the initial ver-

sion plus the set of change operations required to derive all subsequent versions. When

a new process model version is checked in, the change operations required to derive

this version from the last version of the same process model are computed and stored

as the delta of the new version. Similarly, when a process model version is checked

out, all change operations required to derive the requested version from the initial ver-

sion are retrieved and applied to the initial version to construct the requested version.

Another method for process model version control is to store all versions of a process

model in a single graph by annotating the graph’s nodes and edges with version num-

bers [43]. Once such a graph is built, one can derive any version of its process model

by following a set of derivation rules. Thus, deltas between process model versions are

captured as a set of graph elements (i.e. nodes and edges). However, the types of deltas

proposed in the above two methods, as well as the textual deltas used in SCCS, RCS,

CVS and SVN discussed earlier, do not have any other purpose than reconstructing dif-

ferent versions. In contrast, we use process fragments as deltas, which are meaningful

components of process models. In addition to reconstructing different versions, we use

fragments to automatically propagate changes across process model versions and across

different process models, and to reduce conflicting edit operations over these models.

Fragment-based Version Management for Repositories of Business Process Models 21

Further, fragments can be used as queries for searching specific process models in large

repositories, as done in [38], or as compositional units to create new process models.

For example, a fragment used in an old process model version can be reused in a new

version of another process model. Hence, we argue that our fragment-based approach is

better-suited for the management of process models, specially when other requirements

such as change propagation, concurrency control and search are considered, in addition

to pure version control.

Thomas [36] presents an architecture for managing different versions of reference

process models. However this approach focuses on high-level aspects of versioning

such as integration with different enterprise databases, inter-connections with external

applications, attributes to be associated with versions and user interface design. Thus,

this work is complementary to our research as our methods can be embedded in such

an architecture.

8.2 Repositories

Repositories provide a shared database for artifacts produced or used by an enterprise,

and also facilitate functions such as version control, check-in, check-out and configura-

tion management [5]. The use of repositories for managing artifacts in different domains

has been studied and different storage mechanisms have been proposed. The concept of

managing complex artifacts as aggregations of lower level components has been dis-

cussed in the literature (e.g. [8, 16, 18, 17]). In particular, version control and change

propagation of such composite artifacts have been studied in the context of CAD repos-

itories [16, 18, 17]. Accordingly, the highest degree of sharing is obtained when all soft-

ware components are versioned including composite and atomic components, and their

relationships. The storage technique that we propose extends such concepts in the con-

text of process model management. Most of the research on composite artifact storage

mechanisms assumes that lower level objects and their composition relationships are ex-

plicitly stated by users. In our technique, we use the RPST algorithm to automatically

decompose process models into lower level fragments in linear time. Further, when

storing process models we always decompose them into the smallest possible RPST

fragments, thus increasing the advantages of space utilization, change propagation and

concurrency control. We also share the structures and composition relations between

such process models. This allows us to maximize the sharing of fragments among pro-

cess models (i.e. identical structures are shared even if child mappings are not the same).

Further, we share components (i.e. fragments) and structures across multiple versions

(i.e. vertically) as well as across different process models (i.e. horizontally).

Business process model repositories stemming from research initiatives support

process model-specific features in addition to basic insert, retrieve, update and delete

functions [26, 35, 27, 7, 42], such as searching stored process models based on differ-

ent parameters. For example, the semantic business process repository [27] focuses on

querying business processes based on ontologies while the process repository proposed

in [7] also focuses on the lifecycle management of process models. Similar features

can be found in commercial process model repositories, such as the ARIS platform

[9]. However, both academic and commercial process model repositories only support

basic version control at the level of process nodes. Moreover, none of these solutions

22 C.C. Ekanayake et al.

adequately addresses the problems of change management and concurrency control. For

example, in ARIS one can only propagate updates to node attributes.

Redundant process fragments are identified as an issue when managing large pro-

cess model repositories in [40]. If these fragments are not kept in synch, changes to the

repository may lead to inconsistencies. Since we share redundant fragments only once,

and we propagate changes across them, our technique can be seen as a way of solving

the “redundant process fragments” issue described in [40].

8.3 Process model changes

Different classifications of process model changes have been proposed in the literature

[41, 10, 11]. Weber et al. [41] propose a set of change patterns that can be applied to

process models and process instances, in order to align these artifacts with changing

requirements. These change patterns focus on fragment-level operations (e.g. inserting

a new fragment into a process model, deleting a fragment or moving a fragment to a

different position) as well as on control-flow changes (e.g. adding a new control-flow

dependency and changing the condition of a conditional branch). The classification pro-

posed by Dijkman [10, 11] focuses on finer-grained changes including the insertion and

removal of an activity, the refinement of an activity into a collection of activities and

the modification of an activity’s input requirements. This classification also includes

changes performed on resource-related aspects, such as allocating an activity to a dif-

ferent human role. These classifications are useful for many areas, such as developing

and evaluating process model editors, identifying differences between process models,

designing change operation based concurrency control techniques and developing ver-

sion control systems. However, our storage and version control technique considers the

final states of process models, and the operations applied to derive different process

models are not required for our approach. As such, this work is complementary to ours.

In fact, we do not impose any restriction on the type of changes that can be performed

on our process models.

8.4 Concurrency control

Fine-grained locking of generic objects and CAD objects has been studied in [28, 2,

3]. However, the possibility of fine-grained locking of process models at the process

fragment level has not been studied in the literature. The issue of resolving conflicts in

different process model versions has been explored both at design-time and at run-time.

At run-time, the propagation of process model changes to running process instances

without causing errors and inconsistencies has been extensively studied in the litera-

ture [32, 31, 15, 20]. Since our process models are design-time artifacts, this work is

complimentary to ours. At design-time, Küster et al. [22, 21, 14] propose a method for

merging two versions of the same process model based on the application of change

operations which can be automatically identified without the need for a change log.

Similar to our approach, this solution relies on the decomposition of process models

into SESE fragments. However, this approach focuses on resolving conflicts once over-

lapping modifications are detected, while our approach prevents conflicts before they

occur through selective locking. Thus, it may be possible to combine both approaches

in order to develop flexible collaborative environments.

Fragment-based Version Management for Repositories of Business Process Models 23

9 Conclusion

This paper presents a novel versioning model and associated storage structure specifi-

cally designed to deal with (large) process model repositories. The focal idea is to store

and version single SESE process fragments, rather than entire process models. The mo-

tivation comes from the observation that process model collections used in practice

feature a great deal of redundancy in terms of shared process fragments.

The contribution of this technique is threefold. First, repository users can effectively

keep track of the relations among different process models (horizontal sharing) and

process model versions (vertical sharing). Second, sophisticated change propagation is

achieved, since changes in a single fragment can be propagated to all process models

and process model versions that share that fragment. This goes well beyond the change

propagation provided by current process model repositories. This in turn allows users to

automatically ensure consistency, and maximize standardization, in large process model

repositories. Finally, locking can also be defined at the granularity of single fragments,

thus fostering concurrent updates by multiple users, since it is no longer required to lock

entire process models. To the best of our knowledge, fragment-based concepts have not

been adopted to study these aspects of process model collections to date.

An important application of our technique is the management of variability in pro-

cess model repositories. In fact, variants of a same process model, e.g. the “Home” and

“Motor” variants of an “Insurance claim” process model, are never that dissimilar from

each other, i.e. they typically share various fragments [23]. These variants can either be

explicitly modeled as different branches of the same process, or their commonalities can

be automatically detected when these variants are inserted into the repository. In both

cases, our technique will trace these links among the variants, and keep the variants

synchronized whenever they undertake changes.

This technique was implemented and its usefulness was evaluated on two industrial

process model collections. In future work, we plan to combine our fragment-based lock-

ing method with operational merging [25] to provide more flexible conflict resolution

in concurrent fragment updates. We also plan to version process’ data and resources,

and to further evaluate our technique by conducting usability tests with process model

repository users.

Acknowledgments This research is funded by the Smart Services Cooperative Re-

search Centre (CRC) through the Australian Government’s CRC Programme.

References

1. H. Bae, E. Cho, and J. Bae. A version management of business process models in bpms. In

APWeb/WAIM Workshops, pages 534–539, 2007.

2. F. Bancilhon, W. Kim, and H. F. Korth. A model of cad transactions. In A. Pirotte and

Y. Vassiliou, editors, VLDB, pages 25–33. Morgan Kaufmann, 1985.

3. N. S. Barghouti and G. E. Kaiser. Concurrency control in advanced database applications.

ACM Comput. Surv., 23(3):269–317, 1991.

4. B. Berliner and I. Prisma. CVS II: Parallelizing software development. In Proceedings of

the USENIX Winter 1990 Technical Conference, volume 341, page 352, 1990.

5. P. A. Bernstein and U. Dayal. An overview of repository technology. In J. B. Bocca, M. Jarke,

and C. Zaniolo, editors, VLDB, pages 705–713. Morgan Kaufmann, 1994.

24 C.C. Ekanayake et al.

6. J. Cardoso. Poseidon: a Framework to Assist Web Process Design Based on Business Cases.

Int. J. Cooperative Inf. Syst., 15(1):23–56, 2006.

7. I. Choi, K. Kim, and M. Jang. An xml-based process repository and process query lan-

guage for integrated process management. Knowledge and Process Management, 14:303–

316, 2007.

8. R. Conradi and B. Westfechtel. Version models for software configuration management.

ACM Computing Surveys, 30(2):232–282, 1998.

9. R. Davis and E. Brabänder. ARIS design platform: getting started with BPM. Springer-Verlag

New York Inc, 2007.

10. R.M. Dijkman. A classification of differences between similar BusinessProcesses. In edoc,

page 37. IEEE Computer Society, 2007.

11. R.M. Dijkman. Diagnosing differences between business process models. In BPM, pages

261–277, 2008.

12. K.-R. Dittrich. The damokles database system for design applications: its past, its present,

and its future. pages 151–171. Ellis Horwood Books, 1989.

13. M. Dumas, M.-C. Fauvet, and P.-C. Scholl. TEMPOS: a platform for developing temporal

applications on top of object DBMS. IEEE TKDE, 16(3), 2004.

14. C. Gerth, J.-M. Kster, M. Luckey, and G. Engels. Precise detection of conflicting change

operations using process model terms. In Proc. of MODELS, volume 6395 of LNCS, 2010.

15. G. Joeris and O. Herzoz. Managing evolving workflow specifications. In Proc. of IFCIS,

pages 310–321. IEEE, 1998.

16. R.-H. Katz. Towards a unified framework for version modeling in engineering databases.

ACM Comput. Surv., 22(4):375–408, 1990.

17. R. H. Katz and E. E. Chang. Managing change in a computer-aided design database. In

VLDB, pages 455–462. 1987.

18. R. H. Katz, E. E. Chang, and R. Bhateja. Version modeling concepts for computer-aided

design databases. In C. Zaniolo, editor, SIGMOD Conference, pages 379–386. ACM Press,

1986.

19. G. Keller and T. Teufel. SAP R/3 Process Oriented Implementation: Iterative Process Pro-

totyping. Addison-Wesley, 1998.

20. D. Kim, M. Kim, and H. Kim. Dynamic business process management based on process

change patterns. In Proc. of ICCIT, pages 1154–1161. IEEE, 2007.

21. J.-M. Küster, C. Gerth, and G. Engels. Dependent and conflicting change operations of

process models. In Proc. of ECMDA-FA, pages 158–173, 2009.

22. J.-M. Küster, C. Gerth, A. Förster, and G. Engels. Detecting and resolving process model

differences in the absence of a change log. In Proc. of BPM, volume 5240 of LNCS, pages

244–260, 2008.

23. M. La Rosa, M. Dumas, R. Uba, and R.M. Dijkman. Merging business process models. In

Proc. of OTM, volume 6426 of LNCS, pages 96–113, 2010.

24. M. La Rosa, H.A. Reijers, W.M.P. van der Aalst, R.M. Dijkman, J. Mendling, M. Dumas,

and L. Garcia-Banuelos. Apromore: An advanced process model repository. ESWA, 2011.

25. E. Lippe and N. van Oosterom. Operation-based merging. SIGSOFT Software Engineering

Notes, 17(5):78–87, 1992.

26. C. Liu, X. Lin, X. Zhou, and M. E. Orlowska. Building a repository for workflow systems.

In TOOLS (31), pages 348–357. IEEE Computer Society, 1999.

27. Z. Ma, B. Wetzstein, D. Anicic, S. Heymans, and F. Leymann. Semantic business process

repository. In M. Hepp, K. Hinkelmann, D. Karagiannis, R. Klein, and N. Stojanovic, editors,

SBPM, volume 251 of CEUR Workshop Proceedings. CEUR-WS.org, 2007.

28. J. P. Munson and P. Dewan. A concurrency control framework for collaborative systems. In

CSCW, pages 278–287, 1996.

29. F. Pluquet, S. Langerman, and R. Wuyts. Executing code in the past: efficient objet graph

versioning. In OOPSLA 2009, Orlando, Florida, USA, 2009.

Fragment-based Version Management for Repositories of Business Process Models 25

30. H. A. Reijers, S. van Wijk, B. Mutschler, and M. Leurs. BPM in Practice: Who Is Doing

What? In Proc. of BPM, pages 45–60. Springer, 2010.

31. S. Rinderle, M. Reichert, and P. Dadam. Disjoint and overlapping process changes: Chal-

lenges, solutions, applications. In R. Meersman and Z. Tari, editors, CoopIS/DOA/ODBASE

(1), volume 3290 of Lecture Notes in Computer Science, pages 101–120. Springer, 2004.

32. S. Rinderle, M. Reichert, and P. Dadam. Flexible support of team processes by adaptive

workflow systems. Distributed and Parallel Databases, 16(1):91–116, 2004.

33. M.-J. Rochkind. The source code control system. IEEE TSE, 1(4):364–370, 1975.

34. R. T. Snodgrass. Temporal databases. In Proc. of GIS, 1992.

35. M. Song, J. A. Miller, and I. B. Arpinar. Repox: An xml repository for workflow designs

and specifications. Technical report, Univeristy of Georgia, USA, 2001.

36. O. Thomas. Design and implementation of a version management system for reference

modeling. JSW, 3(1):49–62, 2008.

37. W.-F. Tichy. Design implementation and evaluation of a revision control system. In Proc. of

the 6th Int. Conf. on Software Engineering, Tokyo, Japan, 1982.

38. R. Uba, M. Dumas, L. Garcia-Banuelos, and M. La Rosa. Clone detection in repositories of

business process models. In BPM. Springer, 2011.

39. Jussi Vanhatalo, Hagen Völzer, and Jana Koehler. The refined process structure tree. Data

Knowl. Eng., 68(9):793–818, 2009.

40. B. Weber, M. Reichert, J. Mendling, and H. A. Reijers. Refactoring large process model

repositories. Computers in Industry, 62(5):467–486, 2011.

41. B. Weber, M. Reichert, and S. Rinderle-Ma. Change patterns and change support features -

enhancing flexibility in process-aware information systems. Data Knowl. Eng., 66(3):438–

466, 2008.

42. Z. Yan, R. M. Dijkman, and P. W. P. J. Grefen. Business process model repositories - frame-

work and survey. Technical report, Eindhoven University of Technology, The Netherlands,,

2009.

43. X. Zhao and C. Liu. Version management in the business process change context. In Proc.

of BPM, volume 4714 of LNCS, pages 198–213, 2007.

