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Introduction

In this paper we are interested in the following variational problem1 :

(P) Fix ξ > 0 and (x in , y in , θ in ), (x f in , y f in , θ f in ) ∈ R 2 × S 1 . On the space of (regular enough) planar curves, parameterized by plane-arclength 2 find the solutions of:

x(0) = (x in , y in ), x( ) = (x f in , y f in ), ẋ(0) = (cos(θ in ), sin(θ in )), ẋ( ) = (cos(θ f in ), sin(θ f in )), 0 ξ 2 + K 2 (s) ds → min (here is free.) (1) {?}

Here K = ẋÿ-ẏẍ ( ẋ2 + ẏ2 ) 3/2 is the geodesic curvature of the planar curve x(•) = (x(•), y(•)). This problem comes from a model proposed by Petitot, Citti and Sarti (see [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF][START_REF] Petitot | Vers une Neuro-géomètrie. Fibrations corticales, structures de contact et contours subjectifs modaux[END_REF][START_REF] Petitot | Neurogéomètrie de la vision -Modèles mathématiques et physiques des architectures fonctionnelles[END_REF][START_REF] Sanguinetti | Sarti Image completion using a diffusion driven mean curvature flow in a sub-riemannian space[END_REF] and references therein) for the mechanism of reconstruction of corrupted curves used by the visual cortex V1. The model is explained in detail in Section 2.

It is convenient to formulate the problem (P) as a problem of optimal control, for which the functional spaces are also more naturally specified.

(P curve ) Fix ξ > 0 and (x in , y in , θ in ), (x f in , y f in , θ f in ) ∈ R 2 × S 1 . In the space of integrable controls v(•) : [0, ] → R, find the solutions of:

(x(0), y(0), θ(0)) = (x in , y in , θ in ), (x( ), y( ), θ( )) = (x f in , y f in , θ f in ),  Since in this problem we are taking v(•) ∈ L 1 ([0, ]), we have that the curve q(.) = (x(•), y(•), θ(•)) : [0, ] → R 2 × S 1 is absolutely continuous and the planar curve x(•) := (x(•), y(•))

: [0, ] → R 2 is in W 2,1 ([0, ]).
Remark 1 Notice that the function ξ 2 + K 2 has the same asymptotic behaviour, for K → 0 and for K → ∞ of the function φ(K) introduced by Mumford and Nitzberg in their functional for image segmentation (see [START_REF] Nitzberg | The 2.1-D sketch[END_REF]).

The main issues we address in this paper are related to existence of minimizers for problem (P curve ). More precisely, for (P curve ) the first question we are interested in is the following: Q1) Is it true that for every initial and final condition, the problem (P curve ) admits a global minimum?

In [START_REF] Boscain | Existence of planar curves minimizing length and curvature[END_REF] it was shown that there are initial and final conditions for which (P curve ) does not admit a minimizer. More precisely, it was shown that there exists a minimizing sequence for which the limit is a trajectory not satisfying the boundary conditions. See Figure 1.

Figure 1: Minimizing sequence q n converging to a non-admissible curve q (angles at the beginning/end).

:angoli-inizio

From the modeling point of view, the non-existence of global minimizers is not a crucial issue. It is very natural to assume that the visual cortex looks only for local minimizers, since it seems reasonable to expect that it primarly compares nearby trajectories. Hence, a second problem we address in this paper is the existence of local minimizers for the problem (P curve ). More precisely, we answer the following question: Q2) Is it true that for every initial and final condition the problem (P curve ) admits a local minimum? If not, what is the set of boundary conditions for which a local minimizer exists?

The main result of this paper is the following.

Theorem 2 Fix an initial and a final condition q in = (x in , y in , θ in ) and q f in = (x f in , y f in , θ f in ) in R 2 × S 1 . The only two following cases are possible.

1. There exists a solution (global minimizer) for (P curve ) from q in to q f in .

2. The problem (P curve ) from q in to q f in does not admit neither a global nor a local minimum nor a geodesic.

Both cases occur, depending on the boundary conditions.

t-maini

We recall that a curve q(.) is a geodesic if for every sufficiently small interval [t 1 , t 2 ] ⊂ Dom(q(.)), the curve q(.) |[t 1 ,t 2 ] is a minimizer between q(t 1 ) and q(t 2 ).

One of the main interests of (P curve ) is that it admits minimizers that are in W 1,1 but are not Lipschitz, as we will show in Section 5.2. As a consequence, controls lie in L 1 but not in L ∞ . This is an interesting phenomenon for control theory: indeed, to find minimizers, one usually applies the Pontryagin Maximum Principle (PMP in the following), that is a generalization of the Euler-Lagrange condition. But the standard formulation of the PMP holds for L ∞ controls; this obliges us to use a generalization of the PMP for (P curve ), that we discuss in Section 5.1. Details of this interesting aspect of (P curve ) are given in Section 5.2. This also explains the reason for which we need to define variational problems, global and local minimizers in the space W 1,1 , see Section 3.

The second sentence of Q2 is interesting, since one could compare the limit boundary conditions for which a mathematical reconstruction occurs with the limit boundary conditions for which a reconstruction in human perception experiments is observed. Indeed, it is well known from human perception experiments that the visual cortex V1 does not connect all initial and final conditions, see e.g. [START_REF] Petitot | Neurogéomètrie de la vision -Modèles mathématiques et physiques des architectures fonctionnelles[END_REF]. With this goal, we have computed numerically the configurations for which a solution exists, see Figure 2.

The structure of the paper is as follows. In Section 2 we briefly describe the model by Petitot-Citti-Sarti for the visual cortex V1. We state it as a problem of optimal control (more precisely a sub-Riemannian problem), that we denote by (P projective ). The problem (P curve ) is indeed a modified version of (P projective ). In Section 3 we recall definitions and main results in sub-Riemannian geometry, that is the main tool we use to prove our results. In Section 4 we define an auxiliary mechanical problem (crucial for our study), that we denote with (P MEC ), and study the structure of geodesics for it. In Section 5 we describe in detail the relations between problems (P curve ), (P projective ) and (P MEC ), with an emphasis on the connections between the minimizers of such problems. In Section 6 we prove the main results of the paper, i.e. Theorem 2.

The model by Petitot-Citti-Sarti for V1

s-petitot In this section, we recall a model describing how the human visual cortex V1 reconstructs curves which are partially hidden or corrupted. The goal is to explain the connection between reconstruction of curves and the problem (P curve ) studied in this paper. The model we present here was initially due to Petitot [START_REF] Petitot | Vers une Neuro-géomètrie. Fibrations corticales, structures de contact et contours subjectifs modaux[END_REF][START_REF] Petitot | Neurogéomètrie de la vision -Modèles mathématiques et physiques des architectures fonctionnelles[END_REF], based on previous work by Hubel-Wiesel [START_REF] Hubel | Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[END_REF] and Hoffman [START_REF] Hoffman | The visual cortex is a contact bundle[END_REF], then refined by Citti and Sarti [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF][START_REF] Sanguinetti | Sarti Image completion using a diffusion driven mean curvature flow in a sub-riemannian space[END_REF], and by the authors of the present paper in [START_REF] Boscain | Anthropomorphic Image Reconstruction via Hypoelliptic Diffusion[END_REF][START_REF] Duits | Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores, Part I: Linear Left-Invariant Diffusion Equations on SE(2)[END_REF][START_REF] Duits | Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores, Part II: nonlinear left-invariant diffusions on invertible orientation scores[END_REF]. It was also studied by Hladky and Pauls in [START_REF] Hladky | Minimal Surfaces in the Roto-Translation Group with Applications to a Neuro-Biological Image Completion Model[END_REF].

In a simplified model3 (see [22, p. 79]), neurons of V1 are grouped into orientation columns, fig: Q2 each of them being sensitive to visual stimuli at a given point of the retina and for a given direction on it. The retina is modeled by the real plane, i.e. each point is represented by (x, y) ∈ R 2 , while the directions at a given point are modeled by the projective line, i.e. θ ∈ P 1 . Hence, the primary visual cortex V1 is modeled by the so called projective tangent bundle P T R 2 := R 2 × P 1 . From a neurological point of view, orientation columns are in turn grouped into hypercolumns, each of them being sensitive to stimuli at a given point (x, y) with any direction. In the same hypercolumn, relative to a point (x, y) of the plane, we also find neurons that are sensitive to other stimuli properties, like colors, displacement directions, etc... In this paper, we focus only on directions and therefore each hypercolumn is represented by a fiber P 1 of the bundle P T R 2 . Orientation columns are connected between them in two different ways. The first kind is given by vertical connections, which connect orientation columns belonging to the same hypercolumn and sensible to similar directions. The second is given by the horizontal connections, which connect orientation columns in different (but not too far) hypercolumns and sensible to the same directions. See Figure 3. 

  = u(τ )   cos(θ(τ )) sin(θ(τ )) 0   + v(τ )   0 0 1   for some u, v : [0, T ] → R. (4) eq-contrSR
The new variable θ(.) plays the role of the direction in P 1 of the tangent vector to the curve. Here it is natural to require u(•), v(•) ∈ L 1 ([0, T ]). This specifies also which regularity we need for the planar curve to be able to compute its lift: we need a curve in W 2,1 .

Observe that the lift is not unique in general: for example, in the case in which there exists an interval [τ 1 , τ 2 ] such that dx dτ (τ ) = dy dτ (τ ) = 0 for all τ ∈ [τ 1 , τ 2 ], one has to choose u = 0 on the interval, while the choice of v is not unique. Nevertheless, the lift is unique (modulo L 1 ) in many relevant cases, e.g. if dx dτ (τ ) 2 + dy dτ (τ ) 2 = 0 for a finite number of times τ ∈ [0, T ]. In the following we call a planar curve a liftable curve if it is in W 2,1 and its lift is unique.

Consider now a liftable curve (x(•),

y(•)) : [0, T ] → R 2 which is interrupted in an interval (a, b) ⊂ [0, T ].
Let us call (x in , y in ) := (x(a), y(a)) and (x f in , y f in ) := (x(b), y(b)). Notice that the limits θ in := lim τ ↑a θ(τ ) and θ f in := lim τ ↓b θ(τ ) are well defined, since θ(.) is an absolutely continuous curve. In the model by Petitot, Citti, Sarti and the authors of the present article [START_REF] Boscain | Anthropomorphic Image Reconstruction via Hypoelliptic Diffusion[END_REF][START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF][START_REF] Petitot | The neurogeometry of pinwheels as a sub-Riemannian contact structure[END_REF], the visual cortex reconstructs the curve by minimizing the energy necessary to activate orientation columns which are not activated by the curve itself. This is modeled by the minimization of the functional J = b a ξ 2 u(τ ) 2 + v(τ ) 2 dτ → min, (here a and b are fixed).

(5) e-5

Indeed, ξ 2 u(τ ) 2 (resp. v(τ ) 2 ) represents the (infinitesimal) energy necessary to activate horizontal (resp. vertical) connections. The parameter ξ > 0 is used to fix the relative weight of the horizontal and vertical connections, which have different phisical dimensions. The minimum is taken on the set of curves which are solution of (4) for some u(•), v(•) ∈ L 1 ([a, b]) and satisfying boundary conditions

(x(a), y(a), θ(a)) = (x in , y in , θ in ), (x(b), y(b), θ(b)) = (x f in , y f in , θ f in ).
Minimization of the cost ( 5) is equivalent to the minimization of the cost (which is invariant by reparameterization)

L = b a ξ 2 u(τ ) 2 + v(τ ) 2 dτ = b a ẋ(τ ) ξ 2 + K(τ ) 2 dτ,
where x = (x, y) and with b > a fixed. See a proof of such equivalence in [START_REF] Moiseev | Maxwell strata in sub-Riemannian problem on the group of motions of a plane[END_REF].

We thus define the following problem:

(P projective ): Fix ξ > 0 and (x in , y in , θ in ), (x f in , y f in , θ f in ) ∈ R 2 × P 1 . In the space of integrable controls u(•), v(•) : [0, T ] → R, find the solutions of: (x(0), y(0), θ(0)) = (x in , y in , θ in ), (x(T ), y(T ), θ(T )) = (x f in , y f in , θ f in ),   dx dτ (τ ) dy dτ (τ ) dθ dτ (τ )   = u(τ )   cos(θ(τ )) sin(θ(τ )) 0   + v(τ )   0 0 1   L = T 0 ξ 2 u(τ ) 2 + v(τ ) 2 dτ = T 0 ẋ(τ ) ξ 2 + K(τ ) 2 dτ → min (here T is free)
Observe that here θ ∈ P 1 , i.e. angles are considered without orientation 4 . The optimal control problem (P projective ) is well defined. Moreover, it is a sub-Riemmanian problem, see Section 3. We have remarked in [START_REF] Boscain | Anthropomorphic Image Reconstruction via Hypoelliptic Diffusion[END_REF] that a solution always exists. We have also studied a similar problem in [START_REF] Boscain | Projective Reeds-Shepp car on S 2 with quadratic cost[END_REF], when we deal with curves on the sphere S 2 rather than on the plane R 2 .

One the main interests of (P projective ) is the possibility of associating to it a hypoelliptic diffusion equation which can be used to reconstruct images (and not just curves), and for contour enhancement. This point of view was developed in [START_REF] Boscain | Anthropomorphic Image Reconstruction via Hypoelliptic Diffusion[END_REF][START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF][START_REF] Duits | Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores, Part I: Linear Left-Invariant Diffusion Equations on SE(2)[END_REF][START_REF] Duits | Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores, Part II: nonlinear left-invariant diffusions on invertible orientation scores[END_REF].

However, its main drawback (at least for the problem of reconstruction of curves) is the existence of minimizers with cusps, see e.g. [START_REF] Boscain | Existence of planar curves minimizing length and curvature[END_REF]. Roughly speaking, cusps are singular points in which velocity changes its sign. More formally, we say that a curve trajectory (q(.), (u(.), v(.))) has a cusp at τ ∈ [0, T ] if u(τ ) changes its sign in a neighbourhood5 of τ . Notice that in a neighborhood of a cusp point, the tangent direction (with no orientation) is well defined. A minimizer with cusps is represented in Figure 4. However, to our knowledge, the presence of cusps has not been observed in human perception experiments, see e.g. [START_REF] Petitot | Neurogéomètrie de la vision -Modèles mathématiques et physiques des architectures fonctionnelles[END_REF]. For this reason, people started looking for a way to require that no trajectories with cusps appear as solutions of the minimization problem. In [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF][START_REF] Duits | Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores, Part II: nonlinear left-invariant diffusions on invertible orientation scores[END_REF] the authors proposed to require trajectories parameterizated by spatial arclength, i.e. to impose ẋ = u = 1. In this way cusps cannot appear. Notice that assuming u = 1, directions must be considered with orientation, since now the direction of ẋ is defined in S 1 . In fact, cusps are precisely the points where the spatial arclength parameterization breaks down. By fixing u = 1 we get the optimal control problem (P curve ) on which this paper is focused.

uspdistribuita Remark 3 We also define an "angular cusp" as follows: we say that a pair trajectory-control (q(.), (u(.), v(.))) has an "angular cusp" at τ ∈ [a, b] if there exist a neighbourhood B := (τ -ε, τ +ε) such that u(τ ) ≡ 0 on B and θ(τ -ε) = θ(τ + ε). Angular cusps are of the kind q(τ ) = (x 0 , y 0 , θ 0 + τ 0 v(σ) dσ).

The minimum of the distance between (x 0 , y 0 , θ 0 ) and (x 0 , y 0 , θ 1 ) with arbitrary θ 0 , θ 1 is realized by such kind of trajectories. This is the only interesting case in which we need to deal with such trajectories. Indeed, even assuming that a solution q(.) of (P projective ) satisfies u 1 ≡ 0 on a neighbourhood t only, then analyticity of the solution6 implies that u 1 ≡ 0 on the whole [0, T ], and hence q(.) steers (x 0 , y 0 , θ 0 ) to some (x 0 , y 0 , θ 1 ).

Optimal control

s-sR In this section, we give the fundamental definitions and results from optimal control, and the particular cases of sub-Riemannian problems, that we will use in the following. For more details about sub-Riemannian geometry, see e.g. [START_REF] Bellaiche | The tangent space in sub-Riemannian geometry[END_REF][START_REF] Gromov | Carnot-Caratheodory spaces seen from within[END_REF][START_REF] Montgomery | A Tour of Subriemannian Geometries[END_REF]].

Minimizers, local minimizers, geodesics

In this section, we give main definitions of optimal control. Observe that we deal with curves in the space W 1,1 to deal with the problem (P curve ), see Section 5.2.

? d-vp ? Definition 4 Let M be an n dimensional smooth manifold and f u : q → f u (q) ∈ T q M be a 1parameter family of smooth vector fields depending on the parameter u ∈ R m . Let f 0 : M × R m → [0, +∞) be a smooth function of its arguments. We call variational problem (denoted by (VP) for short) the following optimal control problem

q(τ ) = f u(τ ) (q(τ )), ( 6 
) q1 T 0 f 0 (q(τ ), u(τ )) dτ → min, T free (7) ?q2? q(0) = q 0 , q(T ) = q 1 , ( 8 
) q3 u(•) ∈ ∪ T >0 L 1 ([0, T ], R m ), q(•) ∈ ∪ T >0 W 1,1 ([0, T ], M ) (9) q4
Following [28, Ch. 8], we endow ∪ T >0 W 1,1 ([0, T ], M ) with a topology.

Definition 5 Let q 1 (.), q 2 (.) ∈ ∪ T >0 W 1,1 ([0, T ], M ), with q 1 defined on [0, T 1 ] and q 2 on [0, T 2 ].
Extend q 1 on the whole time-interval [0, max {T 1 , T 2 }] by defining q 1 (t) := q 1 (T 1 ) for t > T 1 , and similarly for q 2 . We define the distance between q 1 (.) and q 2 (.) as

q 1 (.) -q 2 (.) W 1,1 := |q 1 (0) -q 2 (0)| + q1 (.) -q2 (.) L 1 .
From now on, we endow ∪ T >0 W 1,1 ([0, T ], M ) with the topology induced by this distance. It is clear that this distance is induced by the norm in W 1,1 . For more details, see [START_REF] Vinter | Optimal Control[END_REF]Ch. 8].

We now give definitions of minimizers for (VP).

d-minimizers ? Definition 6 We say that a pair trajectory-control

(q(•), u(•)) is a minimizer if it is a solution of (VP).
We say that it is a local minimizer if there exists an open neighborhood B q(•) of q(•) in ∪ T >0 W 1,1 ([0, T ], R m ), endowed with the topology defined above, such that all (q(•), ū(•)) satisfying ( 6)-( 8), with q(•) ∈ B q(•) , have a larger or equal cost. We say that it is a geodesic if for every sufficiently small interval [t 1 , t 2 ] ⊂ Dom(q(•)), the pair

(q(•), u(•))| [t 1 ,t 2 ] is a minimizer of T t 1 f 0 (q(τ ), u(τ )) dτ from q(t 1 ) to q(t 2 ) with T free.
Remark 7 It is interesting to observe that, in general, one can have the same trajectory q(.) realized by two different controls u 1 (.), u 2 (.). For this reason, one has to specifiy the control to have the cost of a trajectory. Nevertheless, for the problems studied in this article, it is easy to prove that, for a given trajectory q(.) 6) for some control u(.), then such control is unique.

∈ W 1,1 ([0, T ], R m ) satisfying (
In this paper we are interested in studying problems that are particular cases of (VP), see Section 5. In particular, we study the problem (P MEC ) defined in Section 4, that is a 3D contact problem (see the definition below). For such problem we apply a standard tool of optimal control, namely the Pontryagin Maximum Principle (described in the next section), and then derive properties for (P curve ) from the solution of (P MEC ).

Sub-Riemannian manifolds

In this section, we recall the definition of sub-Riemannian manifolds and some properties of the corresponding Carnot-Caratheodory distance. We recall that sub-Riemannian problems are special cases of optimal control problems.

Definition 8 A sub-Riemannian manifold is a triple (M, , g), where

• M is a connected smooth manifold of dimension n;

• is a Lie bracket generating smooth distribution of constant rank m < n; i.e., is a smooth map that associates to q ∈ M an m-dim subspace (q) of T q M , and ∀ q ∈ M , we have

span {[X 1 , [. . . [X k-1 , X k ] . . .]](q) | X i ∈ Vec(M ) and X i (p) ∈ (p) ∀ p ∈ M } = T q M.
Here Vec(M) denotes the set of smooth vector fields on M .

• g q is a Riemannian metric on (q), that is, smooth as a function of q.

The Lie bracket generating condition (10) is also known as the Hörmander condition, see [START_REF] Hörmander | Hypoelliptic Second Order Differential Equations[END_REF].

d-distanza Definition 9 A Lipschitz continuous curve q(.) : [0, T ] → M is said to be horizontal if q(τ ) ∈ (q(τ )) for almost every τ ∈ [0, T ]. Given a horizontal curve q(.) : [0, T ] → M , the length of q(.) is l(q(.)) = T 0 g q(τ ) ( q(τ ), q(τ )) dτ. ( 10 
) {?}
The distance induced by the sub-Riemannian structure on M is the function d(q 0 , q 1 ) = inf {l(q(.)) | q(0) = q 0 , q(T ) = q 1 , q(.) horizontal Lipschitz continuous curve} . [START_REF] Duits | Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores, Part I: Linear Left-Invariant Diffusion Equations on SE(2)[END_REF] e-distanza

Notice that the length of a curve is invariant by time-reparametrization of the curve itself. The hypothesis of connectedness of M and the Lie bracket generating assumption for the distribution guarantee the finiteness and the continuity of d(•, •) with respect to the topology of M (Rashevsky-Chow's theorem; see, for instance, [START_REF] Agrachev | Control Theory from the Geometric Viewpoint[END_REF]).

The function d(•, •) is called the Carnot-Caratheodory distance. It gives to M the structure of a metric space (see [START_REF] Bellaiche | The tangent space in sub-Riemannian geometry[END_REF][START_REF] Gromov | Carnot-Caratheodory spaces seen from within[END_REF]).

Observe that (P projective ) and (P MEC ) defined in Section 4 are both sub-Riemannian problems. Indeed, defining

X 1 =   cos θ sin θ 0   , X 2 =   0 0 1   ,
one has that (P projective ) is sub-Riemannian with M = P T R 2 , q = span {X 1 (q), X 2 (q)} and g(q) such that X 1 (q), X 2 (q) is an orthonormal basis. For (P MEC ), simply replace M = SE(2).

The Pontryagin Maximum Principle on 3D contact manifolds

? s-pmp ? In the following, we state some classical results from geometric control theory which hold for the 3D contact case. For simplicity of notation, we only consider structures defined globally by a pair of vector fields, that are sometimes called "trivialized structures".

Definition 10 (3D contact problem) Let M be a 3D manifold and let X 1 , X 2 be two smooth vector fields such that dim(Span{X 1 , X 2 , [X 1 , X 2 ]}(q))=3 for every q ∈ M . The variational problem

q = u 1 X 1 + u 2 X 2 , q(0) = q 0 , q(T ) = q 1 , T 0 (u 1 (τ )) 2 + (u 2 (τ )) 2 dτ → min ( 12 
) ?e:3Dprob?
is called a 3D contact problem.

Observe that a 3D contact manifold is a particular case of a sub-Riemannian manifold, with = span {X 1 , X 2 } and g q(t) is uniquely determined by the condition g q(τ ) (X i , X j ) = δ ij . In particular, each 3D contact manifold is a metric space when endowed with the Carnot-Caratheodory distance.

When the manifold is analytic and the orthonormal frame can be assigned through m analytic vector fields, we say that the sub-Riemannian manifold is analytic. This is the case of the problems studied in this article.

r-Linf Remark 11 In the problem above the final time T can be free or fixed since the cost is invariant by time reparameterization. As a consequence the spaces L 1 and W 1,1 in ( 9) can be replaced with L ∞ and Lip (like in [START_REF] Duits | Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores, Part I: Linear Left-Invariant Diffusion Equations on SE(2)[END_REF]), since we can always reparameterize trajectories in such a way that

u 1 (τ ) 2 + u 2 (τ ) 2 = 1 for every τ ∈ [0, T ]. If u 1 (τ ) 2 + u 2 (τ ) 2 =
1 for a.e. τ ∈ [0, T ] we say that the curve is parameterized by sR-arclength. See [6, Section 2.1.1] for more details.

We now state first-order necessary conditions for our problem.

p-pmp Proposition 12 (Pontryagin Maximum Principle for 3D contact problems) In the 3D contact case, a curve parameterized by sR-arclength is a geodesic if and only if it is the projection of a solution of the Hamiltonian system corresponding to the Hamiltonian

H(q, p) = 1 2 ( p, X 1 (q) 2 + p, X 2 (q) 2 ), q ∈ M, p ∈ T * q M, (13) 
?eq-HH?

lying on the level set

H = 1/2.
This simple form of the Pontryagin Maximum Principle follows from the absence of nontrivial abnormal extremals in 3D contact geometry, as a consequence of the condition dim(Span{X 1 , X 2 , [X 1 , X 2 ]}(q)) = 3 for every q ∈ M , see [START_REF] Agrachev | Exponential mappings for contact sub-Riemannian structures[END_REF]. For a general form of the Pontryagin Maximum Principle, see [START_REF] Agrachev | Control Theory from the Geometric Viewpoint[END_REF].

analytic Remark 13 As a consequence of Proposition 12, for 3D contact problems, geodesics and the corresponding controls are always smooth and even analytic if M, X 1 , X 2 are analytic, as it is the case for the problems studied in this article. Analyticity of geodesics in sub-Riemannian geometry holds for general analytic sub-Riemannian manifolds having no abnormal extremals. For more details about abnormal extremals, see e.g. [START_REF] Agrachev | Introduction to Riemannian and Sub-Riemannian geometry[END_REF][START_REF] Montgomery | A Tour of Subriemannian Geometries[END_REF].

In general, geodesics are not optimal for all times. Instead, minimizers are geodesics by definition.

For 3D contact problem, we have that local minimizers are geodesics. Indeed, first observe that the set of local minimizers is same if we consider the space W 1,1 or W 1,∞ , see Remark 11. Observe now that a local minimizer is a solution of the PMP (see [START_REF] Agrachev | Control Theory from the Geometric Viewpoint[END_REF]), and due to Proposition 12 a curve is a solution of the PMP if and only if it is a geodesic. See more details in [START_REF] Agrachev | Introduction to Riemannian and Sub-Riemannian geometry[END_REF].

A 3D contact manifold is said to be "complete" if all geodesics are defined for all times. This is the case for the problem (P MEC ) defined in Section 4 below. In the following, for simplicity of notation, we always deal with complete 3D contact manifolds.

In the following we denote by (q(t), p(t)) = e t H (q 0 , p 0 ) the unique solution at time t of the Hamiltonian system q = ∂ p H, ṗ = -∂ q H, with initial condition (q(0), p(0)) = (q 0 , p 0 ). Moreover we denote by π : T * M → M the canonical projection (q, p) → q. Definition 14 Let (M, span{X 1 , X 2 }) be a 3D contact manifold and q 0 ∈ M . Let Λ q 0 := {p 0 ∈ T * q 0 M | H(q 0 , p 0 ) = 1/2}. We define the exponential map starting from q 0 as Exp q 0 : Λ q 0 × R + → M, Exp q 0 (p 0 , t) = π(e t H (q 0 , p 0 )). ( 14) ?eq:expmap?

Next, we recall the definition of cut and conjugate time.

? def:cut ? Definition 15 Let q 0 ∈ M and q(.) be a geodesic parameterized by sR-arclength starting from q 0 .

The cut time for q(.) is T cut (q(.)) = sup{t > 0, | q(.)| [0,t] is optimal}. The cut locus from q 0 is the set Cut(q 0 ) = {q(T cut (q(.))) | q(.) geodesic parameterized by sR-arclength starting from q 0 }.

? def:con ? Definition 16 Let q 0 ∈ M and q(.) be a geodesic parameterized by sR-arclength starting from q 0 with initial covector p 0 . The first conjugate time of q(.) is

T conj (q(.)) = min{t > 0 | (p 0 , t) is a critical point of Exp q 0 }.
The conjugate locus from q 0 is the set Con(q 0 ) = {q(T conj (q(.))) | q(.) sR-arclength geodesic from q 0 }.

A geodesic loses its local optimality at its first conjugate locus. However a geodesic can lose optimality for "global" reasons. Hence we introduce the following:

? def:max ? Definition 17 Let q 0 ∈ M and q(.) be a geodesic parameterized by sR-arclength starting from q 0 . We say that t max > 0 is a Maxwell time for q(.) if there exists another geodesic q(.), parameterized by sR-arclength starting from q 0 such that q(t max ) = q(t max )

It is well known that, for a geodesic q(.), the cut time T cut (q(.)) is either equal to the first conjugate time or to the first Maxwell time, see for instance [START_REF] Agrachev | Exponential mappings for contact sub-Riemannian structures[END_REF]. Moreover, we have (see again [START_REF] Agrachev | Exponential mappings for contact sub-Riemannian structures[END_REF]):

• T cut ≤ T conj ;
• γ is globally optimal from t = 0 to T cut and it is not globally optimal from t = 0 to T cut + ε, for every ε > 0;

• γ is locally optimal from t = 0 to T conj and it is not locally optimal from t = 0 to T conj + ε, for every ε > 0.

Remark 19 In 3D contact geometry (and more in general in sub-Riemannian geometry) the exponential map is never a local diffeomorphism in a neighborhood of a point. As a consequence, spheres are never smooth and both the cut and the conjugate locus from q 0 are adjacent to the point q 0 itself, i.e. q 0 is contained in their closure (see [START_REF] Agrachev | Compactness for sub-Riemannian length-minimizers and subanalyticity[END_REF]).

4 Definition and study of (P MEC )

s-pmec In this section we introduce the auxiliary mechanical problem (P MEC ). The study of solutions of such problem is the main tool that we use to prove Theorem 2.

We first define the mechanical problem (P MEC ).

(P MEC ): Fix ξ > 0 and (x in , y in , θ in ), (x f in , y f in , θ f in ) ∈ R 2 × S 1 . In the space of L 1 controls u(•), v(•) : [0, T ] → R, find the solutions of: (x(0), y(0), θ(0)) = (x in , y in , θ in ), (x(T ), y(T ), θ(T )) = (x f in , y f in , θ f in ),   dx dτ (τ ) dy dτ (τ ) dθ dτ (τ )   = u(τ )   cos(θ(τ )) sin(θ(τ )) 0   + v(τ )   0 0 1   T 0 ξ 2 u(τ ) 2 + v(τ ) 2 dτ → min (here T is free) ( 15 
) ?eq-KOST?
This problem (which cannot be interpreted as a problem of reconstruction of planar curves, as explained in [START_REF] Boscain | Anthropomorphic Image Reconstruction via Hypoelliptic Diffusion[END_REF]) has been completely solved in a series of papers by one of the authors (see [START_REF] Moiseev | Maxwell strata in sub-Riemannian problem on the group of motions of a plane[END_REF][START_REF] Sachkov | Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane[END_REF][START_REF] Sachkov | Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane[END_REF]).

remark:xi Remark 20 Observe that (P MEC ) (as well as (P projective ) and (P curve )) depend on a parameter ξ > 0. It is easy to reduce our study to the case ξ = 1. Indeed, consider the problem (P MEC ) with a fixed ξ > 0, that we call (P MEC )(ξ). Given a curve q(.) with cost C ξ , apply the dilation (x, y) → ( 1 ξ x, 1 ξ y) to find a curve q(.). This curve has boundary conditions that are dilations of the previous boundary conditions, and it satisfies the dynamics for (P MEC ). If one considers now its cost C 1 for the problem (P MEC )(1), one finds that C 1 = C ξ . Hence, the problem of minimization for all (P MEC ) is equivalent to the case (P MEC )(1). The same holds for (P projective ), (P curve ), with an identical proof. For this reason, we will fix ξ = 1 from now on.

Remark that (P MEC ) is a 3D contact problem. Then, one can use the techniques given in Section 3 to compute the minimizers. This is the goal of the next section.

Computation of geodesics for (P MEC )

s-geo-pmec In this section, we compute the geodesics for (P MEC ) with ξ = 1, and prove some properties that will be useful in the following. First observe that for (P MEC ) there is existence of minimizers for every pair (q in , q f in ) of initial and final conditions, and minimizers are geodesics. See [START_REF] Moiseev | Maxwell strata in sub-Riemannian problem on the group of motions of a plane[END_REF][START_REF] Sachkov | Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane[END_REF][START_REF] Sachkov | Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane[END_REF]. Moreover, geodesics are analytic, see Remark 13. Since (P MEC ) is 3D contact, we can apply Proposition 12 to compute geodesics. We recall that we have

M = R 2 × S 1 , q = (x, y, θ), p = (p 1 , p 2 , p 3 ), X 1 =   cos(θ) sin(θ) 0   , X 2 =   0 0 1   .
Hence, by Proposition 12, we have

H = 1 2 (p 1 cos θ + p 2 sin θ) 2 + p 2 3 ,
and the Hamiltonian equations are:

ẋ = ∂H ∂p 1 = h(q, p) cos θ, ṗ1 = - ∂H ∂x = 0, ẏ = ∂H ∂p 2 = h(q, p) sin θ, ṗ2 = - ∂H ∂y = 0, θ = ∂H ∂p 3 = p 3 , ṗ3 = - ∂H ∂θ = -h(q, p)(-p 1 sin θ + p 2 cos θ),
where h(q, p) = p 1 cos θ + p 2 sin θ. Notice that this Hamiltonian system is integrable in the sense of Liouville, since we have enough constant of the motions in involution. Moreover, it can be solved easily in terms of elliptic functions. Setting p 1 = P r cos P a , p 2 = P r sin P a one has h(p, q) = P r cos(θ -P a ) and θ(t) is solution of the pendulum like equation θ = 1 2 P 2 r sin(2(θ -P a )). Due to invariance by rototranslations, the initial condition on the q variable can be fixed to be (x in , y in , θ in ) = (0, 0, 0), without loss of generality. The initial condition on the p variable is such that H(0) = 1/2. Hence p(0) must belong to the cilinder

C = {(p 1 , p 2 , p 3 ) | p 2 1 + p 2 3 = 1}. ( 16 
) cilinder
In the following we use the notation of [START_REF] Moiseev | Maxwell strata in sub-Riemannian problem on the group of motions of a plane[END_REF][START_REF] Sachkov | Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane[END_REF][START_REF] Sachkov | Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane[END_REF]. Introduce coordinates (ν, c) on C as follows:

sin(ν/2) = p 1 cos θ + p 2 sin θ, cos(ν/2) = -p 3 , c = 2(p 2 cos θ -p 1 sin θ), ( 17 
) betac with ν = 2θ + π ∈ 2S 1 . Here 2S 1 = R/(4πZ) is the double covering of the standard circle S 1 = R/(2πZ).
In these coordinates, the Hamiltonian system reads as follows:

ν = c, ċ = -sin ν, (ν, c) ∈ (2S 1 ν ) × R c , ( 18 
) ham_vert ẋ = sin ν 2 cos θ, ẏ = sin ν 2 sin θ, θ = -cos ν 2 . ( 19 
) ham_hor
Note that the curvature of the curve (x(.), y(.)) is equal to

K = ẋÿ -ẍ ẏ ( ẋ2 + ẏ2 ) 3/2 = -cot(ν/2).
(20) eq-k

We now define cusps for geodesics of (P MEC ). Recall that both the geodesics and the corresponding controls are analytic.

Definition 21 Let q(.) = (x(•), y(•), θ(•)) be a geodesic of (P MEC ), parameterized by sR-arclength. We say that T cusp is a cusp time for q(.) (and q(T cusp ) a cusp point) if u(.) changes its sign at T cusp . We say that the restriction of q(•) to an interval [0, T ] has no internal cusps if no t ∈]0, T [ is a cusp time.

Given a curve q(.) with a cusp point at T cusp , we have that its projection on the plane x(•), y(•) has a planar cusp at T cusp as well, see Figure 4. More precisely, we have the following lemma. Proof. First observe that γ has an internal cusp at T cusp if, for t → T cusp , it holds u(t) → 0 and v(t) → 0, i.e. using [START_REF] Montgomery | A Tour of Subriemannian Geometries[END_REF] one has u(t) = sin(ν/2) → 0 and v(t) = -cos(ν/2) → 0. This is equivalent to K(t) = -cot(ν/2) → ∞, by using [START_REF] Nitzberg | The 2.1-D sketch[END_REF]. Also observe that one can recover inflection points of the planar curve x(•), y(•) from the expression of q(.). Indeed, at an inflection point of the planar curve, we have that the corresponding q(.) satisfies K = 0 and ν = π + 2πn, with n ∈ Z. There exist 5 types of geodesics corresponding the different pendulum trajectories.

Qualitative form of the geodesics

1. Type S: stable equilibrium of the pendulum: ν ≡ 0. For the corresponding planar trajectory, in this case we have (x(t), y(t)) ≡ (0, 0). These are the only geodesics with angular cusps.

2. Type U: unstable equilibria of the pendulum: ν ≡ π or ν ≡ -π. For the corresponding planar trajectory, in this case we have (x(t), y(t)) = (t, 0) or (x(t), y(t)) = (-t, 0), i.e. we get a straight line.

3. Type R: rotating pendulum. For the corresponding planar trajectory, in this case we have that (x(t), y(t)) has infinite number of cusps and no inflection points (Fig. 6). Note that in this case θ is a monotone function.

4. Type O: oscillating pendulum. For the corresponding planar trajectory, in this case we have that (x(t), y(t)) has infinite number of cusps and infinite number of inflection points (Fig. 7).

Observe that between two cusps we have an inflection point, and between two inflection points we have a cusp.

5. Type Sep: separating trajectory of the pendulum. For the corresponding planar trajectory, in this case we have that (x(t), y(t)) has one cusps and no inflection points (Fig. 8).

The explicit expression of geodesics in terms of elliptic functions are recalled in Appendix A. Recall that, for trajectories of type R, O and Sep, the cusp occurs whenever ν(t) = 2πn, with n ∈ Z, since in this case one has from Lemma 22 that K(t) → ∞ for t → T cusp .

Optimality of geodesics

Let q(.) = (x(.), y(.), θ(.)) be a geodesic parameterized by sub-Riemannian arclength t ∈ [0, T ]. Consider the following two mappings of geodesics7 : S, T : q(.) → q S (.), q T (.), with q(.)

: [0, T ] → R 2 × S 1 where θ S (t) = θ(T ) -θ(T -t), x S (t) = -cos θ(T )(x(T ) -x(T -t)) -sin θ(T )(y(T ) -y(T -t)), y S (t) = -sin θ(T )(x(T ) -x(T -t)) + cos θ(T )(y(T ) -y(T -t)), and 
θ T (t) = θ(T -t) -θ(T ), x T (t) = cos θ(T )(x(T -t) -x(T )) + sin θ(T )(y(T -t) -y(T )), y T (t) = -sin θ(T )(x(T -t) -x(T )) + cos θ(T )(y(T -t) -y(T )).
Modulo rotations of the plane (x, y), the mapping S acts as reflection of the curve (x(.), y(.)) in the middle perpendicular to the segment that connects the points (x(0), y(0)) and (x(T ), y(T )); the mapping T acts as reflection in the midpoint of this segment. See Figures 9 and10. A point q(t) of a trajectory q(.) is called a Maxwell point corresponding to the reflection S if q(t) = q S (t) and q(•) ≡ q S (•). The same definition can be given for T. Examples of Maxwell points for the reflections S and T are shown at Figures 11 and12.

The following theorem proved in [START_REF] Moiseev | Maxwell strata in sub-Riemannian problem on the group of motions of a plane[END_REF][START_REF] Sachkov | Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane[END_REF][START_REF] Sachkov | Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane[END_REF] describes optimality of geodesics.

Theorem 23 A geodesic q(.) on the interval [0, T ], is optimal if and only if each point q(t), t ∈ (0, T ), is neither a Maxwell points corresponding to S or T, nor the limit of a sequence of Maxwell points.

Notice that if a point q(t) is a limit of Maxwell points then it is a Maxwell point or a conjugate point.

Denote by T pend the period of motion of the pendulum [START_REF] Petitot | Vers une Neuro-géomètrie. Fibrations corticales, structures de contact et contours subjectifs modaux[END_REF]. It was proved in [START_REF] Sachkov | Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane[END_REF] that the cut time satisfies the following:

• T cut = 1
2 T pend for geodesics of type R,

• T cut ∈ ( 1 2 T pend , T pend ) for geodesics of type O, • T cut = +∞ = T pend for geodesics of types S, U and Sep.

corr:cuspcut Corollary 24 Let q(.) be a geodesic. Let T cusp , and T cut be the first cusp time and the cut time (possibly +∞).Then T cusp ≤ T cut .

c-1

Proof. For geodesics of types R and O it follows from the phase portrait of pendulum ( 21) that there exists t ∈ (0, 1 2 T pend ) such that ν(t) = 2πn. This implies that K(t) → +∞, and, by Lemma 22, we have a cusp point for such t. Then T cusp ≤ 1 2 T pend ≤ T cut . For geodesics of types S, U and Sep, the inequality T cusp ≤ T cut is obvious since T cut = +∞.

nonapofantic Corollary 25 Let q(.) defined on [0, T ] be a minimizer having an internal cusp. Then any other minimizer between q(0) and q(T ) has an internal cusp.

Proof. It was proved in [START_REF] Sachkov | Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane[END_REF] that for any points q 0 , q 1 ∈ R 2 × S 1 , there exist either one or two minimizers connecting q 0 to q 1 . Moreover, if there are two such minimizers q(.) and q(•), then q(•) is obtained from q(.) by a reflection S or T. So if q(.) has an internal cusp, then q(•) has an internal cusp as well.

5 Equivalence of problems s-problems In this section, we state precisely the connections between minimizers of problems (P curve ), (P projective ) and (P MEC ) defined above. The problems are recalled in Table 1 for the reader's convenience. We also prove that there exists minimizers of (P curve ) that are absolutely continuous but not Lispchitz.

Notation q =   x y θ   , X 1 =   cos θ sin θ 0   , X 2 =   0 0 1   ,
here x := (x, y) ∈ R 2 and θ ∈ S 1 or P 1 as specified below. We denote with s the plane-arclength parameter and with t the sR-arclength parameter. In all problems written below we have the following:

• initial and final conditions (x in , y in , θ in ), (x f in , y f in , θ f in ) are given;

• the final time T (or length ) is free.

Problem (P curve ):

q ∈ R 2 × S 1 q = X 1 + vX 2 , 0 ξ 2 + v 2 ds = 0 ξ 2 + K(s) 2 ds → min Problem (P MEC ): q ∈ R 2 × S 1 q = uX 1 + vX 2 , T 0 ξ 2 u 2 + v 2 dt → min Problem (P projective ): q ∈ R 2 × P 1 q = uX 1 + vX 2 , T 0 ξ 2 u 2 + v 2 dt = T 0 ẋ ξ 2 + K(t) 2 dt → min
Table 1. The different problems we study in the paper.

First notice that the problem (P MEC ) admits a solution, as shown in [START_REF] Moiseev | Maxwell strata in sub-Riemannian problem on the group of motions of a plane[END_REF][START_REF] Sachkov | Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane[END_REF][START_REF] Sachkov | Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane[END_REF]. The same arguments apply to (P projective ), for which existence of a solution is verified as well, see [START_REF] Boscain | Existence of planar curves minimizing length and curvature[END_REF].

Also recall that the definitions of (P projective ) and (P MEC ) are very similar, with the only difference that θ ∈ P 1 or θ ∈ S 1 , respectively. This is based on the fact that R 2 × S 1 is a double covering of R 2 × P 1 . Moreover, both the dynamics and the infinitesimal cost in (P MEC ) are compatible with the projection R 2 × S 1 → R 2 × P 1 . Thus, the geodesics for (P projective ) are the projection of the geodesics for (P MEC ). Then, locally the two problems are equivalent. If we look for the minimizer for (P projective ) from (x in , y in , θ in ) to (x f in , y f in , θ f in ), then it is the shortest minimizer between the minimizing geodesics for (P MEC ): minimizing geodesic q 1 (.) : connecting (x in , y in , θ in ) to (x f in , y f in , θ f in ); minimizing geodesic q 2 (.) : connecting (x in , y in , θ in + π) to (x f in , y f in , θ f in ); minimizing geodesic q 3 (.) : connecting (x in , y in , θ in ) to (x f in , y f in , θ f in + π); minimizing geodesic q 4 (.) : connecting (x in , y in , θ in + π) to (x f in , y f in , θ f in + π);

In reality, these four minizing geodesics are coupled two by two: indeed, q 1 and q 4 are geometrically the same curve, as well as q 2 and q 3 . This is a direct consequence of the fact that one can reparametrize a geodesic backward in time, and as a consequence boudary conditions are transformed from θ to θ+π. More precisely, there exists the following symmetry of geodesics for (P MEC ): (x(t), y(t), θ(t)) → (x(t), y(t), θ(t) + π), by replacing (u(t), v(t)) with (-u(t), v(t)). See Figure 13.

(x in , y in ) θi n θi n + π (x f in , y f in ) θ f i n θ f i n + π q 1 ( . ) q 4 ( . )
q 2 (.) q 3 (.) Figure 13: Minimizing geodesic for (P projective ) from minimizing geodesics for (P MEC ).

fig:2sol

It is also easy to prove that a minimizer of (P MEC ) without cusps is also a minimizer of (P curve ). Indeed, take a minimizer q(.) of (P MEC ) without cusps, thus with ẋ(τ ) > 0 for τ ∈ [0, T ]. Then, reparametrize the time to have a spatial arclength parametrization, i.e. u = ẋ ≡ 1 (this is possible exactly because it has no cusps). This new parametrization of q(.) satisfies the dynamics for (P curve ) and the boundary conditions. Assume now by contradiction that there exists a curve q(.) satisfying the dynamics for (P curve ) and the boundary conditions with a cost that is smaller that the cost for q(.). Then q(.) also satisfies the dynamics for (P MEC ) and boundary conditions, with a smaller cost, hence q(.) is not a minimizer. Contradiction.

Connection between curves of (P curve ) and (P MEC )

s-genpmp In this section, we study in more detail the connection between curves of (P curve ) and (P MEC ).

First of all, observe that (P curve ) and (P MEC ) are defined on the same manifold SE(2). Moreover, each curve Γ(.) = (x(.), y(.), θ(.)) satisfying the dynamics for (P curve ) with a certain control v(.), also satisfies the dynammics for (P MEC ) with controls u(.) ≡ 1 and v(.). For simplicity of notation, we give the following definition.

Definition 26 Let Γ(.) = (x(.), y(.), θ(.)) be a curve in SE(2) satisfying the dynamics for (P curve ) with a certain control v(.). We define the corresponding curve q(.) for (P MEC ) as the same parametrized curve (x(.), y(.), θ(.)), and the corresponding pair as the pair trajectory-control (q(.), (u(.), v(.))) with u(.) ≡ 1.

We define the corresponding reparametrized pair (q 1 (.), (u 1 (.), v 1 (.))) for (P MEC ) the time-reparametrization of the corresponding pair (q(.), (u(.), v(.))) by sR-arclength, and the corresponding reparametrized curve as the curve q 1 (.).

Recall that the time-reparametrization by sR-arclength of an admissible curve for (P MEC ) is always possible. A detailed explanation for time-reparametrization of a curve with controls in L 1 to have controls in L ∞ is given in [6, Section 2.1.1].

We now focus on solutions of the Pontryagin Maximum Principle (PMP). For (P curve ), one cannot apply the standard PMP since one cannot guarantee a priori that optimal controls are in L ∞ . For this reason, we apply a generalized version of the PMP which holds for L 1 controls (see [START_REF] Vinter | Optimal Control[END_REF]Thm 8.2.1]). We have the following result.

t-equiv Theorem 27 Let Γ(.) be a solution of the generalized PMP for (P curve ). Then the corresponding reparametrized curve is a solution of the standard PMP for (P MEC ).

The proof of this Theorem is given in Appendix B. Here we recall the main steps of the proof:

STEP 1: we prove that if (Γ(.), v(.)) is a solution of the generalized Pontryagin Maximum Principle for (P curve ), then, the corresponding pair (q(.), (u(.), v(.))) for (P MEC ) is a solution of the generalized Pontryagin Maximum Principle.

STEP 2: we prove that the corresponding reparametrized pair is a solution of the standard PMP.

We are now ready to discuss the connection between geodesics for (P curve ) and (P MEC ).

p-geodesic Proposition 28 Let Γ(.) be a geodesic for (P curve ). Then the corresponding reparametrized curve is a geodesic for (P MEC ).

Proof. Let Γ(.) be a geodesic for (P curve ). By definition, for every sufficiently small interval its restriction is a global minimizer. Then it is a solution of the generalized PMP for (P curve ). Hence, applying the previous Theorem 27, we have that the corresponding reparametrized trajectory is a solution of the standard PMP for (P MEC ). This implies that it is a geodesic for (P MEC ), due to Proposition 12.

5.2 (P curve ) admits minimizers which are absolutely continuous but not Lipschitz ch:lav We now show that the problem (P curve ) exhibits an interesting phenomenon: there exist absolutely continuous minimizers that are not Lipschitz. Other examples are given in [START_REF] Sarychev | Lipschitzian Regularity of Minimizers for Optimal Control Problems with Control-Affine Dynamics[END_REF]. Consider a geodesic of (P MEC ) defined on [0, T ] having no internal cusp and corresponding to controls u(•) and v(•). From Corollary 24 it follows that it is optimal. Assume now that this geodesic has a cusp at T . Then, by Lemma 22, we have that for t → T it holds u(t) → 0 and K(t) → ∞. Notice that u(τ ) 2 + v(τ ) 2 is integrable on [0, T ], since its integral is exactly the Carnot-Caratheodory distance [START_REF] Duits | Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores, Part I: Linear Left-Invariant Diffusion Equations on SE(2)[END_REF], that is finite, see e.g. [START_REF] Moiseev | Maxwell strata in sub-Riemannian problem on the group of motions of a plane[END_REF]. Since the cost of (P MEC ) and (P curve ) coincide, we have that 0 1 + K 2 (s) ds is finite. In particular, K(.) is a L 1 function that is not L ∞ . Reparametrize time to have an admissible curve Γ(.) for (P curve ), with control ṽ(.). Since ṽ(s) coincides with K(s), then ṽ(.) is a L 1 function that is not L ∞ . This means moreover that the trajectory Γ(.) for (P curve ) has unbounded control and it is not Lipschitz. This phenomenon is extremely interesting in optimal control. Indeed, direct application of standard techniques for the computation of local minimizers, such as the Pontryagin Maximum Principle, would provide local minimizers in the "too small" set of controls L ∞ ([0, T ], R). In other words, the absolutely continuous minimizers that are not Lipschitz are not detected by the Pontryagin Maximum Principle. For this reason, we were obliged to use the generalized PMP for (P curve ) in Theorem 27.

Instead, the auxiliary problem (P MEC ) does not present this phenomenon, since by re-parametrization one can always reduce to the set L ∞ ([0, T ], R).

Existence of minimizing curves

s-main In this section we prove the main results of this paper, proving Theorem 2. We characterize the set of boundary conditions for which a solution of (P curve ) exists. We show that the set of boundary conditions for which a solution exists coincides with the set of boundary conditions for which a local minimizer exists. Moreover, such set coincides with the set of boundary conditions for which a geodesics joining them exists. We also give some properties of such set. After this theoretical result, we show explicitly the set of initial and final points for which a solution exists, computed numerically. For more details on this subject, see [10].

From the following result, Theorem 2 follows.

th:main Theorem 29 (main result) Fix an initial and a final condition q in = (x in , y in , θ in ) and q f in = (x f in , y f in , θ f in ) in R 2 × S 1 . Let q(.) be a minimizer for the problem (P MEC ) from q in to q f in .

The only two possible cases are:

1. q(.) has neither internal cusps nor angular cusps. Then q(.) is a solution for (P curve ) from q in to q f in .

2. q(.) has at least an internal cusp or an angular cusp. Then (P curve ) from q in to q f in does not admit neither a global nor a local minimum nor a geodesic.

? t-strong ?

Proof. We use the notation q(.) to denote trajectories for (P MEC ), and Γ(.) for trajectories for (P curve ). Recall the results of Section 5. Given a Γ(.) = (x(.), y(.), θ(.)) trajectory of (P curve ), this gives naturally a q(.) = (x(.), y(.), θ(.)) trajectory of (P MEC ). On the converse, a q(.) = (x(.), y(.), θ(.)) trajectory of (P MEC ) without cusps gives naturally a Γ(.) trajectory of (P curve ), after reparametrization. Fix an initial and a final condition q in = (x in , y in , θ in ) and q f in = (x f in , y f in , θ f in ). Take a solution q(.) of (P MEC ). If q(.) has no cusps, then one can reparametrize time to have a curve Γ(.) solution of (P curve ). If q(.) has cusps at boundaries, then the same re-parametrization (that can be applied, as explained in Section 5.1) gives the corresponding Γ(.), that is a solution of (P curve ). The first part is now proved.

We prove the second part by contradiction. If q(.) has an internal cusp, then any other solution of (P MEC ) from q in to q f in has an internal cusp, as proved in Corollary 25. By contradiction, assume that there exists Γ(.), either a solution (i.e. a global minimizer) of (P curve ) from q in to q f in , or a local minimizer, or a geodesic. In the three cases, the corresponding reparametrized curve on SE(2) of (P MEC ), that we denote by q1 (.), has no cusps.

We first study the case of geodesics. Let Γ(.) be a geodesic of (P curve ). Then q1 (.) is a geodesic of (P MEC ) between the same boundary conditions of Γ(.), due to Proposition 28. Then, two cases are possible:

• Let q1 (.) be a solution, i.e. a global minimizer, for (P MEC ). Then both q(.) and q(.) are minimizers, one with cusps and the other without cusps. This yelds a contradiction with Corollary 25.

• Let q1 (.) be a geodesic for (P MEC ) that is not a global minimizer. We denote with [0, T ] the time-interval of definition of q1 (.). Then there exists a cut time t cut < T for q1 (.). Then there exists a cusp time t cusp ≤ t cut < T for q1 (.), see Corollary 24. Then q1 (.) has a cusp. Contradiction.

We have a contradiction in both cases. Thus, if q(.) has a internal cusp, there exists no geodesic of (P curve ) from q in to q f in . We now study the case of local minimizers. Let Γ(.) be a local minimizer for (P curve ). Then, it is a solution of the generalized Pontryagin Maximum Principle [START_REF] Vinter | Optimal Control[END_REF]Thm 8.2.1]. Applying Theorem 27, we have that the corresponding reparametrized curve q1 (.) is a solution of the standard Pontryagin Maximum Principle for (P MEC ), and then it is a geodesic by Proposition 12. Since Γ(.) has no cusps, then q1 (.) has no cusps either, thus it is a global minimizer. Then both q(.) and q1 (.) are global minimizers, one with cusps and the other without cusps. This yelds a contradiction with Corollary 25.

Since global minimizers are special cases of local minimizers, we have the result for global minimizers too.

If instead q(.) has an angular cusp, then (x in , y in ) = (x f in , y f in ), see Remark 3. In this case, assume that there exists Γ(.) either a solution of (P curve ) (i.e. a global minimizer), or a local minimizer, or a geodesic. In the three cases, the corresponding reparametrized trajectory of (P MEC ) q1 (.) must be of Type S, since there are no other geodesics steering q in to q f in with (x in , y in ) = (x f in , y f in ). By construction, the solution of (P curve ) is Γ(.) = (x in , y in , θ(.)). Observing the dynamics for (P curve ) in ( 2), one has that x, y constant implies that the planar length is = 0, then we must have θ in = θ f in .

Remark 30 Observe that, as a corollary, we have proved that global minimizers, local minimizers and geodesics for (P curve ) coincide.

Remark 31

The last part of the proof has its practical interest. It shows the non-existence of a solution of (P curve ) in the case of (x in , y in ) = (x f in , y f in ). This means that, under this condition, it is possible to construct a sequence of planar curves γ n (.), each steering (x in , y in , θ in ) to (x in , y in , θ f in ) and such that the sequence of the costs of γ n (.) converges to the infimum of the cost, but that the limit trajectory γ * (.) is a curve reduced to a point, for which the curvature K is not well-defined. See Figure 14.

Characterization of the existence set

In this section, we characterize the set of boundary conditions for which a solution of (P curve ) exists, answering the second part of question Q2. We recall that we just proved that the existence set does not change if we consider global or local minimizers or geodesics.

We prove here some topological properties of such set, and give some related numerical results.

Proposition 32 Let S ⊆ R 2 × S 1 be the set of final conditions q f in = (x f in , y f in , θ f in ) for which a solution of (P curve ) exists, starting from e := (0, 0, 0). We have that S is closed, arc-connected, non-compact.

Proof. Arc-connectedness and non-compactness of S are evident. For arc-connectedness, let q a , q b ∈ S. This means that there exist two curves q 1 (.), q 2 (.) steering e to q a , q b , respectively. Then the Figure 14: Non-existence of a solution of (P curve ) for (x in , y in ) = (x f in , y f in ).
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concatenation of curves (with reversed time for q 1 (.)) steers q a to e to q b . For non-compactness, observe that all points on the half-line (t, 0, 0) are in S.

We now prove that S is closed. Let x n → x * be a sequence of points in S converging to x * ∈ R 2 × S 1 . For each x n , let (p n , t n ) be a pair covector-time such that q n (.) := Exp e (p n , .) is a geodesic connecting e to x n at time t n (i.e. x n = Exp e (p n , t n )) and without internal cusp, i.e. t n ≤ T n cusp , where T n cusp is the cusp time for q n (.). Such pair (p n , t n ) exists because x n ∈ S. The idea of the proof is to pass to a limit pair (p * , t * ) that gives a geodesic without internal cusp steering e to x * . The main problem is to prove that p n is a bounded sequence in the unbounded space Λ e , so that a limit p * exists (eventually passing to a subsequence). This will be a consequence of optimality of q n (.) up to t n .

Observe that, due to Theorem 29, since q n (.) has no internal cusps, then it is globally optimal, and in particular the sub-Riemannian distance d given in Definition 9 on the whole R 2 × S 1 satisfies d(e, x n ) = t n . Since the distance is continuous, then d(e, x * ) = lim n→∞ d(e, x n ) = lim n→∞ t n . In particular, t n is a converging sequence. If such limit is 0, then d(e, x * ) = 0 implies x * = e ∈ S. If instead the limit is finite but non-zero, we prove that the sequence of the corresponding p n is bounded. For each p n , consider its three coordinates p n 1 , p n 2 , p n 3 with respect to the basis described in Section 4.1. Since (p n 1 ) 2 + (p n 3 ) 2 = 1 in Λ e , then p n is unbounded if and only if p n 2 is. We prove that p n 2 is bounded by contradiction. Take a subsequence p n 2 → ∞: using coordinates (ν n , c n ) for Λ e recalled in [START_REF] Hubel | Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[END_REF], we have that sin(ν n /2) bounded for all n ∈ N implies sin(θ n ) → 0, that in turn implies c n unbounded. By passing to a subsequence, we have c n → ±∞. Without loss of generality, we choose +∞. In particular, for each N > 0, one can find M such that, for all n > N it holds c n (0) > M . Take now the dynamics νn = c n , ċn = -sin(ν n ) given in (18): Since | ċn | ≤ 1, then νn ≥ M -t, then ν n (t) -ν t (0) ≥ M t -t 2 /2. Recall that ν n = 2πk on cusp points, and denote with T n cusp the first cusp point for the trajectory q n (.). With a simple estimation, for M > 2 √ π one has that there exists t ∈ 0, M -√ M 2 -4π such that ν n (t) -ν t (0) ≥ 2π, then there exists a cusp time The convergence of p n also implies the convergence of ν n , c n , since they are coordinates8 on the cylinder [START_REF] Hörmander | Hypoelliptic Second Order Differential Equations[END_REF]. Without loss of generality, we assume ν ∈ [0, 2π]. Since a trajectory has a cusp when ν reaches 2πk and q n (.) has no internal cusps, then ν n ((0, t n )) ⊂ (0, 2π), hence ν * ([0, t * ]) ⊂ [0, 2π]. If ν * ((0, t * )) ⊂ (0, 2π), then q * (.) has no internal cusps, thus x * ∈ S. We now prove that the other possibility does not occur, by contradiction. Assume that there exists t * < t * such that q * (.) has a cusp in t * . Linearize the dynamics (18) around t * , that gives ν = c, ċ = -ν and apply the implicit function theorem: this gives a sequence tn → t * such that ν n ( tn ) = 0 or 2π, hence q n has a cusp point in tn . Since t * < t * , then for n sufficiently large we have tn < t n , i.e. q n (.) is a trajectory with an internal cusp. Contradiction. Other properties of S (which are evident numerically9 ) are the following:

T n cusp ≤ M - √ M 2 -4π. Observe now that for N → ∞ one has M → ∞, thus M - √ M 2 -4π → 0.
1. all points of S satisfy x f in ≥ 0; 2. if q f in ∈ S satisfies θ f in = π, then it also satisfies x f in = 0; similarly, if q f in ∈ S satisfies

x f in = 0, then it also satisfies θ f in = π. The solutions of a problem with q f in = (0, y f in , π) have a cusp in q f in . Remark 33 The characterization of S is, in some sense, the continuation of the main results of the authors in [START_REF] Boscain | Existence of planar curves minimizing length and curvature[END_REF]. There, we proved that there exist boundary conditions such that (P curve ) did not admit a minimizer, i.e. that S is not the whole space SE(2). Here we have described in bigger detail the set of boundary conditions S such that (P curve ) admits a minimizer, together with proving that, given boundary conditions, the existence of a minimizer is equivalent to the existence of a local minimizer or a geodesic.

• Geodesics of type Sep have the following expression : cos θ(t) = 1/(cosh ϕ cosh(ϕ + t)) + tanh ϕ tanh(ϕ + t), sin θ(t) = sgn (cos(ν/2))(tanh ϕ/ cosh(ϕ + t) -tanh(ϕ + t)/ cosh ϕ),

x(t) = sgn (cos(ν/2))sgn (c)[(1/ cosh ϕ)(1/ cosh ϕ -1/ cosh(ϕ + t)) + tanh ϕ(t + tanh ϕ -tanh(ϕ + t))], y(t) = sgn (c)[tanh ϕ(1/ cosh ϕ -1/ cosh(ϕ + t)) -(1/ cosh ϕ)(t + tanh ϕ -tanh(ϕ + t))].

Pictures of geodesics of type R, O, Sep are given in Figures 6, 7 and 8, respectively.

B Proof of Theorem 27

a-pmp In this appendix, we prove Theorem 27. The structure of the proof is given in Section 5.1. We are left to prove STEP 1 and STEP 2.

STEP 1: If (Γ(.), v(.)) is a solution of the generalized Pontryagin Maximum Principle for (P curve ), then, the corresponding pair (q(.), (u(.), v(.))) is a solution of the generalized Pontryagin Maximum Principle for (P MEC ).

Proof. Without loss of generality, we provide the proof for ξ = 1.

Apply the generalized PMP both to problems (P curve ) and (P MEC ). For (P MEC ), the unmaximised Hamiltonian is H M := p 1 cos(θ)u+p 2 sin(θ)u+p 3 v+λ √ u 2 + v 2 . For (P curve ), replace u with 1: we denote such Hamiltonian with H C . We denote the maximised Hamiltonians with H M , H C , respectively. Recall that we study free time problems, thus both the maximised Hamiltonians satisfy H M ≡ 0 and H C ≡ 0, see [START_REF] Agrachev | Control Theory from the Geometric Viewpoint[END_REF]Sec. 12.3].

We observe that for both problems there are no strictly abnormal extremals (i.e. solutions with λ = 0). Indeed, for (P curve ) abnormal extremals are straight lines, that can be realized as normal extremals too. The same holds for (P MEC ). Thus we fix from now on λ = -1 without loss of generality.

Let now ( Γ(.), p(.), v(.)) be a trajectory vector-covector-control satisfying the generalized PMP for (P curve ). We prove that the corresponding trajectory vector-covector-controls (q(.), p(.), (1, v(.))) satisfies the generalized PMP for (P MEC ). The main point here is that H M depends on two parameters (u, v), while H C depends on v only. Thus, to maximise Hamiltonians, one has more degrees of freedom for H M than for H C . We need to prove that such additional degree of freedom u does not improve maximisation of the Hamiltonian.

We first prove that, if v(.) maximises 10 H C (q(.), p(.), v(.)), then the choice u(.) ≡ 1, v(.) = v(.) maximises the Hamiltonian H M (q(.), p(.), (u(.), v(.))). First observe that both H M and H C are C ∞ (except for H M in (0, 0)), and concave with respect to variables u, v and v, respectively. Moreover, we have no constraints on the controls. Thus, maximisation of the Hamiltonian is equivalent to have ∇ u H = 0.

We are reduced to prove that ∂H M ∂u = ∂H M ∂v = 0 when evaluated in (q(.), p(.), (1, v(.))). Observe that ∂H M ∂v = ∂H C ∂v for u = 1; thus, since v(.) maximises H C , then ∂H C ∂v = 0. Hence ∂H M ∂v = 0. A simple computation also shows that ∂H M ∂u evaluated in u(.) ≡ 1, v(.) = v(.) is p1 cos( θ) + p2 sin( θ) -1 √ 1+v 2 , whose expression coincides with H C when replacing p 3 with its expression with respect to 10 i.e., it maximises HC along the trajectory (q(.), p(.)). 
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Figure 2 :

 2 Figure 2: Configurations for which we have existence of minimizers with ξ = 1. For other ξ = 1, one can recover the corresponding figure via dilations, as explained in Remark 20. Due to invariance of the problem under rototranslations on the plane, one can always assume that q in = (0, 0, 0). Left: We study the cases x 2 f in + y 2 f in = 1 and x 2 f in + y 2 f in = 4, with y ≥ 0. The case y ≤ 0 can be recovered by symmetry. In the case x 2 f in + y 2 f in = 1 minimizing curves are also shown. Right: For each point on the right half-plane, we give the set of configurations for which we have existence of minimizers.

Figure 3 :

 3 Figure 3: A scheme of the primary visual cortex V1.

Figure 4 :

 4 Figure 4: A minimizer with two cusps.

  l-cusps Lemma 22 A geodesic γ (without angular cusps) has a cusp at T cusp if and only if lim t→Tcusp |K(t)| = ∞.

  s-qualitative Equation (18) is the pendulum equation ν = -sin ν, ν ∈ 2S 1 = R/(4πZ), (21) eq-pend whose phase portrait is shown in Figure 5.
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 5 Figure 5: Phase portraits of the pendulum equation, with the 5 types of trajectories.
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 678 Figure 6: Trajectory of type R.

Figure 9 :Figure 10 :

 910 Figure 9: Action of S on t → (x(t), y(t)).
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 1112 Figure 11: Maxwell point for reflection S.

Figure 15 :

 15 Figure 15: Geodesics reaching x = 0, upper plane.

  Since t n ≤ T n cusp because of optimality, we have t n → 0. Contradiction. Thus p n is a bounded sequence. Passing to a subsequence, we have that (p n , t n ) → (p * , t * ). By continuous dependence of the solution of the Hamiltonian systems with respect to the initial datum p and the time t, we have that x * = Exp e (p * , t * ).We are left to prove that x * = Exp e (p * , t * ) ∈ S, in particular proving that the cusp time T * cusp for Exp e (p * , .) satisfies t * ≤ T * cusp .
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In this paper, by S 1 we mean R/ ∼ where θ ∼ θ if θ = θ +

2nπ, n ∈ Z. By P 1 we mean R/ ≈ where θ ≈ θ if θ = θ + nπ, n ∈ Z.[START_REF] Agrachev | Exponential mappings for contact sub-Riemannian structures[END_REF] Here by plane-arclength we mean the arclength in R 2 , for which we use the variable s. Later on, we consider also parameterizations by arclength on R 2 × S 1 or R 2 × P 1 , that we call sub-Riemannian arclength (sR-arclength for short), for which we use the variable t. We will also use the variable τ for a general parametrization.

For example, in this model we do not take into account the fact that the continuous space of stimuli is implemented via a discrete set of neurons.

Notice that the vector field (cos θ, sin θ, 0) is not continuous on P T R 2 . Indeed, a correct definition of (P projective ) needs two charts, as explained in detail in[START_REF] Boscain | Anthropomorphic Image Reconstruction via Hypoelliptic Diffusion[END_REF] Remark 12]. In this paper, the use of two charts is implicit, since it plays no crucial role.

More precisely, it exists ε > 0 such that u(a)u(b) < 0 for almost every a ∈ (τ -ε, τ ) , b ∈ (τ , τ + ε).

Analyticity of the solution is proved below, seeRemark 13. 

? corr:1 ? Theorem 18 Let γ be a geodesic starting from q 0 and let T cut and T conj be its cut and conjugate times (possibly +∞). Then

Such mappings are denoted by ε 2 , ε 5 in[START_REF] Moiseev | Maxwell strata in sub-Riemannian problem on the group of motions of a plane[END_REF][START_REF] Sachkov | Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane[END_REF][START_REF] Sachkov | Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane[END_REF], respectively.

More precisely, since ν is an angle, we can always choose a sequence ν n that is converging.

Formal proofs are given in [10].
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A Explicit expression of geodesics in terms of elliptic functions app:A In this section, we recall the explicit expressions of the geodesics for (P MEC ). They were first computed in [START_REF] Moiseev | Maxwell strata in sub-Riemannian problem on the group of motions of a plane[END_REF]. The geodesics are expressed in sub-Riemannian arc-length t, and they are written in terms of Jacobian functions cn , sn , dn , E . For more details, see e.g. [START_REF] Whittaker | A Course of Modern Analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of principal transcendental functions[END_REF]. Here (ν, c) are the variables for the pendulum equation ( 18) and (ϕ, k) are the corresponding action-angle coordinates that rectify its flow: φ = 1, k = 0. See detailed explanations in [START_REF] Moiseev | Maxwell strata in sub-Riemannian problem on the group of motions of a plane[END_REF]Sec. 4].

Since (P MEC ) is invariant via rototranslations, we give geodesics starting from (0, 0, 0) only.

Recall that we have classified geodesics of (P MEC ) via the classification of trajectories of the pendulum Eq. ( 21), see Section 4.2. We have the following 5 cases.

• The geodesic of type S has the simple expression q(t) = (0, 0, t). The projection on the plane gives the line reduced to the point (0, 0).

• The geodesic of type U has the simple expression q(t) = (t, 0, 0). The projection on the plane is the straight half-line (t, 0).

• Geodesics of type R have the following expression :

• Geodesics of type O have the following expression :

the optimal control, that is

Thus we have that H M = H C on this trajectory. Then, since H C = 0, then it clearly holds H M (q(.), p(.), (1, v(.))) ≡ 0 and it is also clear that (q(.), p(.)) is a solution of the Hamiltonian system with Hamiltonian H M . Then, (q(.), p(.)) is a solution of the generalized PMP for (P MEC ). STEP 2: Let (q(.), (u(.), v(.))) with u(.) ≡ 1 be a solution of the generalized Pontryagin Maximum Principle for (P MEC ). Then, the curve reparametrized by sR-arclength is a solution of the standard Pontryagin Maximum Principle.

Proof. Recall that for (P MEC ) one can always reparametrize curves by sR-arclength. This also transforms trajectoires with L 1 controls in trajectories with L ∞ controls without changing the cost, as explained in Remark 11. Choose such reparametrization.

As a consequence, a solution to the generalized PMP can be reparametrized to have controls in L ∞ . Since the expression of the equations are the same for the standard and generalized PMP, then this reparametrized curve is a solution to the standard PMP.