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Université Claude Bernard, Lyon I,

69622 Villeurbanne Cedex

genieys@maply.univ­lyon1.fr, massot@maply.univ­lyon1.fr

Abstract

We propose a unified asymptotic approach in order to derive the Oberbeck-Boussinesq approxi-

mation from the compressible Navier-Stokes equations coupled to a heat equation with an eventual

source term. We point out, in the configuration of a horizontal infinite layer, the conditions for the

density changes to be small, first for an ideal gas and then for a fluid with a divariant state law.

We identify two small parameters. The original equations are then non-dimensionalized with different

characteristic pressures and different linearized state laws for ideal gases and for a general fluid. We can

either let the two small parameters go to zero and formally derive the asymptotic system of equations

whereas in the gaseous case, we can directly use the Low Mach Number asymptotics. The coherence

between the two approaches is provided and the link with the entropy production is established. It is

emphasized that, in some situations, the work of the static pressure forces has to be retained in the

final set of equation with both strategies since it involves the ratio of the two small parameters. It is

related to the static pressure stratification of the fluid and can not be eliminated directly even if it is

usually neglected in the Oberbeck-Boussinesq approximation. This original result proves the necessity

to start from a divariant state law instead of the usual assumption that the density only depends on

the temperature. Finally we prove, using a linear stability analysis and numerical simulations that

this term has a stabilizing effect on the Rayleigh-Bénard problem and can even suppress the onset of

natural convection for some values of the parameters.
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1 Introduction

There has been several attempts at deriving the Oberbeck–Boussinesq approximation from the

full Navier-Stokes equations. This approximation is often mentioned to be valid for a “mechanically

incompressible but thermally compressible” fluid. It is generally used in the framework of the

natural convection problems such as the Rayleigh–Bénard configuration, and provides a simplified

set of equations which is much more tractable for both numerical and analytical purposes, since all

the acoustic scales have been eliminated. There exists various studies devoted to the justification

of this approximation from more general models, which we think are not entirely satisfactory, and

this is the aim of the present paper to provide a general and unified approach.

As there are too numerous papers devoted to the present subject, we are going to present only

a few of them, a cursory discussion of the quintessential contribution of which is going to both

justify the re-examination of the subject in the present paper as well as the chosen framework and

asymptotics. We have chosen to present the state of the art in the domain using four representative

papers. The first paper to be published was written by Spiegel and Veronis [1]. They considered

an ideal gas with the usual state law; an asymptotics was derived from the compressible Navier-

Stokes equations. However, for the study of their thin layer of an ideal gas, they only introduced

one small parameter related to the density variation. Consequently, in their discussion about the

terms in the compressible equations to be retained, they had to use an adhoc argument in order

to obtain the usual system of equations. The second one, often referred to as the “rigorous basis”

for the derivation of the Oberbeck–Boussinesq equations, is the paper of Mihaljan [2]. Two small

parameters were identified using the Buckingham Pi-theorem. Nevertheless, they assumed, from

the starting point, that the density is a function of the only temperature of the fluid. It will be

made clear by our study that such an assumption does not allow to take into account the work

of the pressure forces in the temperature equations, an additional term which can change the

stability limit in the Rayleigh-Bénard problem. It is worth to notice that the criticism expressed

by Rajagopal et al. [3], that one of the parameter is exploding when the other is approaching zero

is not correct since one of the two parameters is related to the temperature changes in the fluid

layer and the other one to the acoustic scales; they are independent. A beautiful piece of work is

to be found in Gray and Giorgini [4] where an extensive study of the validity of the Oberbeck–
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Boussinesq approximation was provided. A general divariant fluid was considered and the final set

of equations obtained. However, they did not conduct a rigorous asymptotic analysis and did not

study the difference between ideal gases and general fluids. The relation of their approach to the

Low Mach number asymptotics for ideal gases was not conducted and the influence of the work

of the pressure force not studied. Part of our study can be considered as the rigorous exposition

of the ideas present in this paper. Finally a more recent work by Rajagopal et al. [3] intends

to provide a rigorous derivation of the Oberbeck–Boussinesq approximation in the framework of

a full thermodynamical theory of the Navier-Stokes equations. They make the same assumption

as Mihaljan; density is a function of the temperature only and the motion of fluid at constant

temperature is isochoric. Besides, they pretend to relate the system of equations to the second

law of thermodynamics. Since the work of the viscous forces is eliminated from the temperature

equation in the limit of an incompressible fluid, the resulting system of equations is not compatible

any more with the entropy production in the system. As a consequence of eliminating the pressure

ab initio from the state law, they have to re-introduce it as the trace of the stress tensor; it is

not the thermodynamical pressure any more but a “mechanical pressure”. Since then it is difficult

to follow the use of classical thermodynamics arguments when the functional dependencies of the

various state function such as the free energy and the entropy are not explicitly given. Finally, they

relate the choice of the free fall characteristic velocity in their asymptotics to the thickness of the

layer which is then very large, and artificially let the reader think that the asymptotics depends

on this characteristic velocity. The issue of the influence of the chosen characteristic velocity on

the asymptotics will be discussed in the following.

In this paper we conduct two strategies, one for general divariant fluids which is based on

two small parameters (close to the one used in [4]) and one based on the Low Mach Number

asymptotics for ideal gases. In the present study, gases will always be assumed ideal, and for the

sake of physical intuition, the first strategy will be considered to be well-suited for liquids, even if

it is also valid for real divariant gases. For the sake of clear presentation, we focus on the generic

infinite horizontal layer under gravity conditions.

The fundamental difference in terms of scales between liquids and gases is identified. The two

strategies are then applied and yield asymptotic systems of equations. They are then proved to

be compatible and provide the usual system of the Oberbeck-Boussinesq equations except that
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there is a residual compressibility term in the heat equation. It is due to a static pressure gradient

related to the stratification of the fluid and correspond to the work of the static pressure forces. It

can only be eliminated under some precise assumption on the ratio of free fall velocity and velocity

of sound.

In previous papers, this term is either neglected in the Oberbeck-Boussinesq approximation

since the authors start from a simplified state law [2] [3] or it is mentioned but not derived in the

framework of a rigorous asymptotics [1] [4]. The fact that the final system is not self consistent

from the entropy conservation point of view is then discussed. Finally we make the link between

the choice of various typical velocities as the characteristic velocity of the problem.

The influence of this residual compressibility term on the onset of natural convection for the

Rayleigh–Bénard problem is studied through a linear stability analysis. Some numerical simulation

confirm the theoretical analysis : the compressibility term can stabilize the layer and even prevent

the onset of natural convection.

2 Original equations, characteristic pressure and density variations

The purpose of this first section is to introduce the reference system of equations. It is

constituted of the compressible Navier-Stokes equations coupled to the heat equation with an

eventual source term and a general divariant state law. This system of equations is the basis in

order to derive weakly compressible models. By weakly compressible models, we mean that the

density variations are supposed to be small in the fluid around a reference value.

In this context, we consider the configuration of an infinite horizontal layer. We assume that

the 1D heat equation in the vertical direction for the static fluid admits a stationary solution such

that the temperature variations around one of the boundary conditions T0, are small. We then

precisely describe the pressure and density variation in the presence of gravity as well as the small

parameters involved in the problem. We distinguish the treatment of ideal gases and divariant

liquids and finally derive linearized state laws in both cases.
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2. 1 The general framework of compressible Navier-Stokes Equations

The general system of equations we are going to start from is the system of the conservative

Navier-Stokes equations with only one specific force acting on the fluid, the gravity. These equations

of motion of the fluid are coupled to the enthalpy equation. The system reads:

∂tρ + ∂x · (ρv) = 0, (2.1)

∂tρv + ∂x ·(ρv ⊗ v) = −∂x ·P − ρ gez, (2.2)

∂tρh
tot + ∂x ·

(
ρhtotv

)
= −∂x ·q − ∂x ·(Π.v) + ∂tp− ρ g v ·ez, (2.3)

where x is the space coordinates vector, ρ denotes the density, v, the velocity, htot = h(p, T )+v·v/2

the total specific enthalpy and h(p, T ) the specific enthalpy of the fluid, p, the thermodynamic

pressure, Π the shear stress tensor, P = pI+Π, the pressure tensor, with I the unit second order

tensor and q, the heat flux; g is the norm of the gravity force and ez the unit vector in the vertical

direction.

The dissipative fluxes Π and q are given by:

Π =
(
2
3η − ηb

)
(∂x ·v)I − η

(
∂xv + (∂xv)

t
)
, (2.4)

q = −λ∂xT, (2.5)

where η denotes the shear viscosity, ηb, the bulk viscosity and λ, the heat conductivity.

For the system to be closed, we need to consider an equation of state relating the density to

pressure and temperature:

ρ = ρ(p, T ). (2.6)

We assume that ρ is a strictly increasing function of pressure and strictly decreasing function of

temperature (we are not too close to the 4◦C point for water). We finally assume that the density

is a smooth function. We also express the specific enthalpy :

h = h(p, T ), h = e+ p/ρ, (2.7)

where e(p, T ) is the specific internal energy. We also assume the smoothness of h as a function

of (p, T ). It is important to notice here that we do not assume that the density is a function of
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the temperature only as it is often done [2] [3]. We only suppose the fluid to be divariant, a fairly

general basis. Let us then define:

α(p, T ) = − 1

ρ0

(
∂ρ

∂T

)
P

, α0 = α(p0, T0), (2.8)

where α is the coefficient of thermal expansion at constant pressure and ρ0, p0 and T0 are reference

density, pressure and temperature. It is interesting to relate the isothermal compressibility

coefficient to the sound velocity in the fluid through :

c(p, T ) =

√(
∂p

∂ρ

)
S

, c0 = c(p0, T0),

(
∂ρ

∂p

)
T

=
γ

c2
, γ(p, T ) = cp(p, T )/cv(p, T ). (2.9)

where c denotes the sound velocity, S, the entropy, γ the ratio of the heat capacity at constant

pressure over the heat capacity at constant volume and γ0 = γ(p0, T0), its value at the reference

temperature and pressure.

We can then derive a general equation for the temperature of the fluid :

ρ cp (∂tT + v ·∂xT ) = ∂x(λ∂xT )−Π : ∂xv +
ρ0
ρ
αT (∂tp+ v · ∂xp). (2.10)

Before going into the core of the paper, let us make the following assumptions which can be

easily relaxed, for the sake of clearness of the presentation.

[S1 ] The heat capacity at constant pressure of the fluid is assumed constant cp(p, T ) =

cp(p0, T0) = cp0.

[S2 ] The shear viscosity as well as the thermal conductivity are supposed to be constant, λ = λ0,

µ = µ0. We neglect the bulk viscosity ηb.

The purpose of the paper is to rigorously derive the Oberbeck–Boussinesq approximation from

the previous system of equations for both liquids and gases, thus providing a unified approach.

This approximation intends to retain in the final model the small density variations in the gravity

terms without taking into account the acoustic scales. This model is essentially used for the

determination of the onset of natural convection (which correspond to the stability limit of a given

static configuration, by static we mean without fluid motion).

In order to derive the model and present the underlying ideas, we consider the usual configura-

tion of a infinite horizontal layer as in the Rayleigh-Bénard problem ([5] [6] [7] [8]) and characterize,

in the following sub-section, the characteristic density variations of the static stationary solution.
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2. 2 Horizontal layer : Static stationary solution

We consider a horizontal layer of thickness L, the bottom line of which is located at the vertical

coordinate z = 0 and the top line at z = L. We look for a static solution (vS = 0, pS , TS) of the

system of equations (2.1), (2.2), (2.10).

The system of equations defining the static stationary solution is then given by :

−dz pS − ρ(pS , TS) g = 0 (2.11)

dz(λ dzTS) +Q(TS) = 0, (2.12)

with boundary conditions :

pS(z = 0) = p0, TS(z = 0) = T0, TS(z = L) = T1. (2.13)

For the sake of generality, we have added a heat source term Q(T ) in the temperature equation

which can correspond to a chemical heat source term as in the thermal explosion problem treated

in [9] [10] [11] [12]. For this system of two equations, we assume, firstly, that equation (2.12)

with boundary conditions (2.13) on the temperature, admits a unique smooth solution TS(z); and

secondly that equation (2.11) also admits a unique smooth solution pS(z).

The final Oberbeck–Boussinesq approximation is valid for a fluid density, the changes of which

around a constant value ρ0 = ρ0(p0, T0) are supposed to be small throughout the process and

particularly for the static solution. It is then necessary to identify the conditions on the static

temperature and static pressure such that the density changes inside the layer are small, as well

as the corresponding small parameters.

2. 3 Small parameters

We identify in this paragraph, under the form of a proposition, the proof of which is given in

Appendix I, the conditions for the density variations in the layer to be small both in the isothermal

case and in the varying temperature case. The reason why the isothermal case is emphasized will

be made clear in Remark 2.2 at the end of this subsection, and also in the following subsection.
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Let us first treat the isothermal case. We assume that T1 = T0 and Q = 0 in such a way that

the solution of problem (2.12) is TSI(z) = T0. Let pSI(z) denote the isothermal pressure field

solution of (2.11) with TSI(z) = T0.

Let us now introduce two non-dimensional parameters:

ΥP (p, T ) =
γ(p, T )gL

c2(p, T )
, ΥT (p, T ) = α(p, T )∆T, ∆T = max

z∈[0,L]
|T (z)− T0|, (2.14)

where ∆T is the maximal temperature difference in the layer. We also define, for convenience,

ΥP
0 = ΥP (p0, T0) and ΥT

0 = ΥT (p0, T0). We then define the maximum of this quantities in both

the isothermal and the non-isothermal cases :

Υj
max = max

z∈[0,L]
{Υj(pSI(z), TSI(z)),Υ

j(pS(z), TS(z))}, j = P, T. (2.15)

PROPOSITION 2.1

Let us assume that ΥP
max << 1, then for the isothermal case, we have the following estimate :

|pSI − (p0 − ρ0gz)

ρ0gL
| << 1, |ρ0 − ρSI(pSI(z), TSI)

ρ0
| << 1, (2.16)

and even, more precisely :

0 ≤ pSI − (p0 − ρ0gz)

ρ0gL
≤ ΥP

max

(z/L)2

2
, 0 ≤ ρ0 − ρSI

ρ0
≤ ΥP

max (z/L). (2.17)

Let us then assume ΥT
max << α0T0 ≤ 1, then, for the non-isothermal case, we have :

|pS − (p0 − ρ0gz)

ρ0gL
| << 1, |pS − pSI

ρ0gL
| << 1, |ρ0 − ρS(pS(z), TS)

ρ0
| << 1. (2.18)

However, these estimates can be made more precise :

−ΥT
max (z/L) ≤

pS − (p0 − ρ0gz)

ρ0gL
≤ ΥT

max (z/L) + ΥP
max

(z/L)2

2
, (2.19)

−ΥT
max (z/L)−ΥP

max

(z/L)2

2
≤ pS − pSI

ρ0gL
≤ ΥT

max (z/L) + ΥP
max

(z/L)2

2
, (2.20)

−ΥT
max+ΥP

max (z/L) (1−ΥT
max−ΥP

max

(z/L)

2
) ≤ ρ0 − ρS(pS(z), TS)

ρ0
≤ ΥT

max+ΥP
max (z/L) (1+ΥT

max).

(2.21)

⋄
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In the way the problem was formulated, for the sake of generality, we have made no assumptions

on the variations of α and γ/c2 as functions of (p, T ). However, out of the two conditions, we mainly

retain the associated assumptions on ∆T and L. Besides, ΥT
max and ΥP

max have been defined over

the range of variation of pS and TS . In the following, we will consider the dynamical problem and

linearize around the static solution so that the range of variations of pressure and temperature

will change. Consequently, since we do not want to derive a priori estimates on p and T , we will

consider a stronger assumption on α and γ/c2 :

[S3 ] The coefficient of thermal expansion at constant pressure α as well as the ratio γ/c2 are

uniformly bounded as functions of p and T :

0 < α < αmax, 0 <
γ

c2
<

( γ
c2

)
max

,

with the assumption that :

ΥT
max = αmax ∆T << α0T0 ≤ 1, ΥP

max =
( γ
c2

)
max

g L << 1, (2.22)

as well as, αmax/α0 = O(1) with respect to ΥT
max and

(
γ
c2

)
max

/
(

γ0

c20

)
= O(1) with respect

to ΥP
max.

Remark 2.1.

This is the point where ideal gases and divariant fluids (and especially liquids) differ; for ideal

gases, the inequality ΥP
max << 1 implies ρ0gL

p0
<< 1 since c20 = γ0p0/ρ0, which means that the

pressure changes are small compared to p0, a condition which is going to allow the use of the

Low Mach Number approximation for the dynamical set of equations as well as a linearization

of the state law around (p0, T0). This is not the case for a liquid where the pressure changes

can be of the order of p0, even if ρS−ρ0

ρ0
<< 1 is satisfied.

Proposition 2.1 states that in both cases, the characteristic pressure drop due to gravity at the

static level is ρ0gL, and it is almost linear as a function of the vertical coordinate.
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Remark 2.2.
Similarly for a divariant fluid, if its thermal expansion coefficient is small, the temperature

variations does not have to be small for the density variations to be small. However, for the

sake of simplicity, we assume that we are in the framework of assumption S3 so that the

temperature variations are small compared to T0. This is reasonable even in the configuration

of thermal explosion where the temperature increase is of the order of the Frank-Kamenetskii

temperature and is then small in comparison to T0 in the large activation energy asymptotics

[11]. The whole study can be extended to the case of a small thermal expansion coefficient

to the cost of much more complicated notations since the linearization on the temperature are

going to take place around the eventually non-linear stationary temperature profile TS .

2. 4 Linearized state law, difference between gases and liquids

The state law can be linearized around (p0, T0):

ρ(pS , TS)− ρ0
ρ0

≈ γ0 p0
c20 ρ0

pS − p0
p0

− α0 (TS − T0), (2.23)

under the condition that (TS−T0)
T0

<< 1, as well as pS−p0

p0
<< 1. In the case of an ideal gas,

the two conditions invoked in Proposition 2.1 are sufficient in order to insure the validity of the

linearization, since p0 = ρ0rT0, with r the universal gas constant divided by the molar mass of the

fluid, α0 = 1/T0 and c20 = γ0 p0/ρ0. We then retrieve that the density variations are small.

In the case of a liquid it is different in that pS−p0

p0
does not have to be small for the density

variations to be small; actually if ρ0 g L/p0 is of order one then, the pressure variations are also of

order one. On the other hand, from Remark 2.2, the temperature variations around T0 are small.

In this case the linearization has to take place around the profile pSI . In the following we will use

the following notations : ρ̄S = ρ(pS ,TS)
ρ0

, ρ̂ = ρ(pSI ,T0)
ρ0

, and p̄S = pS−pSI

ρ0 g L . We then obtain:

ρ̄S ≈ ρ̂+ΥP
0 p̄S −ΥT

0

T − T0
∆T

, (2.24)

which is justified because p̄S << 1 from Proposition 2.1.

Finally just by examining the static mechanical equilibrium, we come to the conclusion that

the state law can be linearized under the two conditions

ΥT
max << α0T0 ≤ 1, ΥP

max << 1, (2.25)

so that the two small parameters are identified.
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3 Non-dimensional form of the equations, characteristic quantities

In this section, we are going to obtain non-dimensional forms of the system of equation

considered in the previous section. The plural is due to the fact that ideal gases and general

divariant liquids can be treated using different approximations and also due to the fact that there

is no natural characteristic velocity for the Rayleigh-Bénard problem.

3. 1 Non-dimensional quantities and state laws for gases and liquids

Let us first focus on the characteristic quantities which do not depend on the fact that the fluid

is a liquid or a gas. The characteristic density is ρ0, the characteristic temperature T0 α0 ∆T , and

the characteristic velocity will be denoted by v0. We will see that there exist several choices for v0.

The space characteristic length is L and the characteristic time scale is L/v0, in such a way that :

x̄ = x/L, t̄ = tv0/L, v̄ = v/v0, ρ̄ = ρ/ρ0, , θ =
1

ΥT
0

T − T0
T0

. (3.1)

Finally, we define Q̄(θ) = Q(T ).

In the case of an ideal gas, we simply consider the characteristic pressure p0 and define

p̂ = (p− p0)/p0. (3.2)

The linearized state law then takes the expression :

ρ̄ ≈ 1 + p̂−ΥT
0 θ, (3.3)

In the case of a liquid, we have to distinguish the static pressure from the dynamic one and

define :

p̄ = (p− pSI)/pDO, p̃ = (pSI − p0)/pSO. (3.4)

where the characteristic dynamic and static pressures are taken to be :

pDO = ρ0 v
2
0 , pSO = ρ0 g L. (3.5)

In these equations, pSO stands for the static change of pressure due to gravity around p0, PDO for

the dynamical change of pressure around pSI . The linearized state law then reads :

ρ̄ ≈ ρ̂+ΥT
0

(
ΥP

0

Fr2

ΥT
0

p̄− α0 T0 θ

)
, ρ̂ = ρ(pSI , T0)/ρ0, (3.6)

11
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where Fr = v0/
√
gL is the Froude number. Let us notice that ΥP

0 Fr2 = γ0 Ma
2, where Ma = v0/c0

is the Mach number. In the following, the non-dimensional numbers will always denote the ratio

of quantities with a zero index.

3. 2 Non-dimensional equations for ideal gases

Using the non-dimensional variables introduced in the previous sub-section, we finally get for

the non-dimensional form of the system of equations :

∂t̄ρ̄ + v̄ ·∂x̄ρ̄ = −ρ̄ ∂x̄ ·v̄, (3.7)

ρ̄ (∂t̄v̄ + v̄ ·∂x̄v̄) = − 1

γ0 Ma
2 ∂x̄p̂+

Pr

Pe
(∂x̄x̄v̄ + ∂x̄(∂x̄ ·v̄)− 2

3∂x̄ ·(∂x̄ ·v̄)I)− ρ̄
1

Fr2
ez, (3.8)

ρ̄ (∂t̄θ+ v̄ ·∂x̄θ) =
1

Pe
∂x̄x̄θ +

(γ0 − 1)Ma
2

ΥT
0

Pr

Pe

(
∂x̄v̄ + (∂x̄v̄)

t − 2
3∂x̄ ·v̄I

)
: ∂x̄v̄

+
α0 T0
ρ̄ΥT

0

γ0 − 1

γ0
(∂t̄p̂+ v̄ ·∂x̄p̂) +

Q̄(θ)L2

q0 κ0

1

Pe
, (3.9)

where we have used

p0
ρ0T0cp0

=
r

cp0
=
γ0 − 1

γ0
.

and where Pe = Lv0/κ0 is the Péclet number, Pr = ν0/κ0 the Prandtl number (with ν0 = η0/ρ0

the kinematic viscosity and κ0 = λ0/ρ0 cp0 the thermal diffusivity) and q0 = ρ0cp0∆T a reference

enthalpy.

3. 3 Non-dimensional equations for divariant fluids

In the case of a divariant fluid, the system takes the form:

∂t̄ρ̄ + v̄ ·∂x̄ρ̄ = −ρ̄ ∂x̄ ·v̄, (3.10)

ρ̄ (∂t̄v̄ + v̄ ·∂x̄v̄) = −PDO

ρ0v20
∂x̄p̄−

pSO

ρ0v20
∂x̄p̃+

Pr

Pe
(∂x̄x̄v̄ + ∂x̄(∂x̄ ·v̄)− 2

3∂x̄ ·(∂x̄ ·v̄)I)− ρ̄
1

Fr2
ez,(3.11)

ρ̄ (∂t̄θ+ v̄ ·∂x̄θ) =
1

Pe
∂x̄x̄θ −

PDO

q0 α0 T0

Pr

Pe

(
∂x̄v̄ + (∂x̄v̄)

t − 2
3∂x̄ ·v̄I

)
: ∂x̄v̄

+
PDO

ρ̄ q0
(1 + ΥT

0 θ)
ΥT

ΥT
0

(∂t̄p̄+ v̄ ·∂x̄p̄) +
pSO

ρ̄ q0
(1 + ΥT

0 θ)
ΥT

ΥT
0

(v̄ ·∂x̄p̃) +
Q̄(θ)L2

q0 κ0

1

Pe
. (3.12)
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Remark 3.1.
The system for the divariant fluid is also valid for an ideal gas. Therefore, it can be shown that

(3.11-3.12) is equivalent to (3.8-3.9) for an ideal gas.

3. 4 Characteristic velocity and associated non-dimensional equations

We have come to the point where a choice has to be made. The characteristic velocity v0 is

still to be defined. There are basically two choices which are more natural : either v0 = κ0/L or

v0 = ν0/L, a diffusion velocity [6] [8] [2], or v0 =
√
g Lα0∆T the free fall velocity [4] [3].

It is interesting to note that this choice has no influence on the stability boundary defining the

onset of convection from a linear stability analysis point of view. The influence of the choice of

the characteristic velocity on the derivation of the asymptotics is discussed in section 7. In the

present subsection, we use the free fall velocity. The non-dimensional equations for the choice of a

diffusion velocity are provided in Appendix II.

−∂x̄ · v̄ =
1

1 + p̂
(∂t̄p̂+ v̄ ·∂x̄p̂)−

ΥT
0

1 + ΥT
0 θ

(∂t̄θ + v̄ ·∂x̄θ), (3.13)

ρ̄ (∂t̄v̄ + v̄ ·∂x̄v̄) = − 1

γ0Ma
2 ∂x̄p̂+

Pr

Pe
(∂x̄x̄v̄ + ∂x̄(∂x̄ ·v̄)− 2

3∂x̄ ·(∂x̄ ·v̄)I)−
ρ̄

ΥT
0

ez, (3.14)

ρ̄ (∂t̄θ+ v̄ ·∂x̄θ) =
1

Pe
∂x̄x̄θ + Υ̃P

0

Pr

Pe

(
∂x̄v̄ + (∂x̄v̄)

t − 2
3∂x̄ ·v̄I

)
: ∂x̄v̄

+
α0 T0
ΥT

0

γ0 − 1

γ0
(∂t̄p̂+ v̄ ·∂x̄p̂) +

Q̄(θ)L2

q0 κ0

1

Pe
, (3.15)

where Υ̃P
0 = γ0−1

γ0
ΥP

0 and with the linearized state law:

ρ̄ = 1 + p̂−ΥT
0 θ, p̂ << 1, ΥT

0 θ << α0 T0 ≤ 1.

In the case of a liquid, the system takes the form:

−∂x̄ · v̄ =
ΥP

ρ̄

(
ΥT

0 (∂t̄p̄+ v̄ ·∂x̄p̄) + v̄ ·∂x̄p̃
)
− α0 T0 Υ

T (∂t̄θ + v̄ ·∂x̄θ), (3.16)

ρ̄ (∂t̄v̄ + v̄ ·∂x̄v̄) = −∂x̄p̄+
Pr

Pe
(∂x̄x̄v̄ + ∂x̄(∂x̄ ·v̄)− 2

3∂x̄ ·(∂x̄ ·v̄)I)−
1

ΥT
0

(∂x̄p̃+ ρ̄ ez) , (3.17)

ρ̄ (∂t̄θ+ v̄ ·∂x̄θ) =
1

Pe
∂x̄x̄θ +

Υ̃P
0

(α0 T0)2
Pr

Pe

(
∂x̄v̄ + (∂x̄v̄)

t − 2
3∂x̄ ·v̄I

)
: ∂x̄v̄ +

Q̄(θ)L2

q0 κ0

1

Pe

+
Υ̃P

0

α0 T0
(1 + ΥT

0 θ)
1

ρ̄

ΥT

ΥT
0

(∂t̄p̄+ v̄ ·∂x̄p̄) +
Υ̃P

0

ΥT
0

1

α0 T0
(1 + ΥT

0 θ)
1

ρ̄

ΥT

ΥT
0

(v̄ ·∂x̄p̃), (3.18)

with the linearized state law:

ρ̄ = ρ̂+ΥT
0

(
ΥP

0 p̄− α0T0 θ
)
, 0 ≤ 1− ρ̂ ≤ ΥP

max z̄ << 1, ΥT
0 θ << 1, ΥP

0 p̄ << 1. (3.19)

13
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We have used the fact that

α0

cp0
=

γ0 − 1

c20 α0T0
,

so that

PDO

q0
=

Υ̃P
0

α0 T0
,

pSO

q0
=

Υ̃P
0

α0 T0

1

ΥT
0

.

3. 5 First approximation, link with the entropy production

At this level of the study, it is clear that a first approximation can be conducted using

assumption S3 on the two parameters ΥP
0 and ΥT

0 on system (3.16-3.18). It yields a divergence

free velocity field, and allows to neglect the work of the dynamical pressure and viscous forces in

the temperature equation.

The first idea is to express the particular derivative of the density as in (3.16) and to see that

the divergence of the velocity is constituted of two terms, the first one multiplied by ΥP
0 and the

second one by ΥT
0 . This yields :

∂x̄ ·v̄ ≈ 0.

Besides, the source term in the momentum equation reads :

∂x̄p̃+ ρ̄ ez
ΥT

0

≈ (ΥP
0 p̄− α0 T0 θ)ez, (3.20)

so that we can conclude on this point, with the complementary fundamental assumption :

[S4 ] The Péclet number and the Prandtl number are of order zero with respect to both small

parameters ΥP
0 and ΥT

0 :

Pe = O(1), Pr = O(1). (3.21)

The meaning of the previous statement is that the three velocities, the diffusion velocities and

the free fall velocity have to be at the same order in the asymptotics. The same conclusion could

be drawn from the study by Rajagopal et al. [3] where they choose the free fall velocity and assume

the Reynolds number to be order one in their asymptotics. We will come back on this matter in

the discussion section at the end of the paper.

Assuming Q̄(θ)L2

q0 κ0
= O(1) with respect to both ΥP

0 and ΥT
0 , the last term to be examined

takes into account the ratio of the two small quantities. Either
ΥP

0

ΥT
0

≈ 1 then the term v̄z is to be

14
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retained :

∂x̄ · v̄ = 0, (3.22)

∂t̄v̄ + v̄ ·∂x̄v̄ = −∂x̄p̄+
Pr

Pe
∂x̄x̄v̄ + α0T0 θ ez, (3.23)

∂t̄θ+ v̄ ·∂x̄ ·θ =
1

Pe
∂x̄x̄θ −

Υ̃P
0

ΥT
0

ΥT

ΥT
0

1

α0 T0
v̄z +

Q̄ L2

q0 κ0

1

Pe
, (3.24)

or
ΥP

0

ΥT
0

<< 1 so that this terms does not play any role at the zeroth order and the final equations

read :

∂x̄ · v̄ = 0, (3.25)

∂t̄v̄ + v̄ ·∂x̄v̄ = −∂x̄p̄+
Pr

Pe
∂x̄x̄v̄ + α0 T0 θez, (3.26)

∂t̄θ+ v̄ ·∂x̄ ·θ =
1

Pe
∂x̄x̄θ +

Q̄ L2

q0 κ0

1

Pe
, (3.27)

a system of equations which corresponds to the usual Oberbeck-Boussinesq approximation.

Remark 3.2.
It is especially important here to emphasize that the model of a fluid “mechanically incom-

pressible but thermally compressible” can be obtained from (3.16-3.18) by letting ΥP
0 go to

zero. We then rigorously obtain the model presented by Rajagopal et al. as the limit of the full

compressible model and justify it. However, we do not proceed with this part since we realize

that, doing so, the possible interaction between the two scales of the problem disappears. By

performing successively ΥP
0 → 0 and then ΥT

0 → 0, the only possible result of the asymptotics

is the usual Oberbeck-Boussinesq approximation and the term
Υ̃P

0

ΥT
0

ΥT

ΥT
0

1

(α0 T0)2
v̄z can not be

attained. This is the reason why we conduct an asymptotics with both scales involved and

qualify the obtained model of “weakly compressible”.

Before going into the link with the Low Mach Number asymptotics, let us come back on the

problem of the entropy production for the previous system of equations in reference to system

(3.16-3.18). It has to be noticed that, neglecting the work of the viscous forces, the entropic

structure of the compressible and conservative original equation is destroyed. In order to visualize

it, let us recall the entropy conservation equation related to system (2.1-2.3) :

∂tρ s+ ∂x ·(ρ s v) = −∂x ·q + λ
∂xT ·∂xT

T 2
− Π : ∂xv

T
, (3.28)

15
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where s denotes the specific entropy and where −Π:∂xv
T can be shown to be non-negative. The

work of the viscous forces can then be interpreted as the entropy production due to the viscous

dissipation phenomenon. Neglecting this terms yields the decoupling of the hydrodynamic part

of the equations from the thermal one. However, even if the equations are simpler, the resulting

system of equation has lost, for example, the symmetrizability property as a system of mixed

hyperbolic-parabolic equations. We refer to [13] [14] for precise results on the entropic structure

and symmetrizability of the compressible Navier-Stokes equations.

4 Low Mach Number asymptotics for ideal gases

We have seen that the pressure variations at the scale L of the layer can not be considered as

small in comparison to p0 for a liquid. For this reason, we have introduced two separate pressure

scales in sub-section 3.1. However, for an ideal gas, the pressure variation, under the assumptions

of Proposition 2.1 can be considered as small in comparison to p0. In this context, we can use the

low Mach number asymptotics [15]. To that purpose, we introduce a small parameter and derive

in a first sub-section the system of equations. We prove, in a second sub-section that it can be

seen as equivalent to the systems derived in the previous section.

4. 1 Principle and Asymptotics

In the case of a gaseous phase, it can be shown from the previous developments that :

p = p0(1 + p̂), p̂ << 1, p̂ = O(ΥP
0 ). (4.1)

The idea is then to put the two small parameters into a unique scale, and to distinguish between

two cases.

We consider system (3.13-3.15) and define the small parameter ε = ΥT
0 ; we assume :

ΥP
0 = O(εj+1), j ≥ 0. (4.2)

This yields γ0 Ma
2 = ΥT

0 Υ
P
0 = O(εj+2). We further assume

1

Pe
= O(1), Pr = O(1),

Q̄ L2

q0 κ0
= O(1). (4.3)
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It can be noticed that j can not be negative from equation (3.15). Besides, the arguments presented

in Remark 3.2 are also valid in this section where both scales are considered at the same time and

their possible interaction described through the integer j.

From there, the pressure and gravity terms in the momentum equation can be rewritten

− 1
γ0 Ma2

∂x̄p̂− ρ̄
εez, which means that the perturbation of the pressure is going to be O(εj+1).

If we then expand p̄ and ρ̄ in ε, we get:

p̂ = εj+1p̂j+1 + εj+2p̂j+2 +O(εj+3), (4.4)

ρ̄ = 1 + ε1ρ̄1 +O(ε2), (4.5)

We then have to consider the linearized equation of state which states that :

ρ̄1 = −εj p̂j+1 − θ +O(ε), (4.6)

and recalling that ∂x̄ p̂j+1 = − ΥP
0

εj+1 ez, we finally get :

ρ̄ = 1− ΥP
0

ε
z̄ − ε θ +O(ε2). (4.7)

Let us consider the first case when j = 0; we denote χ̃0 =
ΥP

0

ΥT
0

, so that χ̃0 = O(1). In this case, the

system at the zeroth order reads :

∂x̄ · v̄ = 0, (4.8)

∂tv̄ + v̄ ·∂x̄v̄ = − 1

χ̃
∂x̄p̂2+

Pr

Pe
∂x̄x̄v̄ + θez + χ̃ z̄ez, (4.9)

∂t̄θ + v̄ ·∂x̄ ·θ =
1

Pe
∂x̄x̄θ −

γ0 − 1

γ
χ̃ v̄z +

Q̄(θ)L2

q0 κ0

1

Pe
, (4.10)

If j > 0, we denote χ̃j =
ΥP

0

ΥT
0

, so that χ̃j = O(εj). In this case, the system at the zeroth order

reads

∂x̄ · v̄ = 0, (4.11)

∂t̄v̄ + v̄ ·∂x̄v̄ = − 1

χ̃j
∂x̄p̂j+2+

Pr

Pe
∂x̄x̄v̄ + θez, (4.12)

∂t̄θ + v̄ ·∂x̄ ·θ =
1

Pe
∂x̄x̄θ +

Q̄(θ)L2

q0 κ0

1

Pe
, (4.13)
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which is the usual form of the Oberbeck–Boussinesq approximation [8] [9] [10] [11] [12].

4. 2 Coherence between the two approaches

It is interesting to note that both approaches yield the same systems of equations (3.24-3.26)

and (4.12-4.14), if ΥP
0 << ΥT

0 . However, in the situation where ΥP
0 ≈ ΥT

0 , equations (3.22) and

(4.9) differ.

The two equation can be related by considering the two expressions of the pressure :

p− p0
p0

= −ε χ̃0 z̄ + ε2 p̂2 +O(ε3) = ε χ̃0 (ε p̄+ p̃), (4.14)

so that, at the leading order,

−z̄ + ε p̂2
χ̃0

= ε p̄+ p̃

Besides |p̃+ z̄| ≤ ΥP
max

z̄2

2
, so that finally :

p̂2 = χ̃0 (p̄+
p̃+ z̄

ε
), | p̃+ z̄

ε
| ≤ ΥP

max z̄
2

2 ε
= O(1), (4.15)

thanks to assumption S3. Finally, we can relate the pressure p̂2 to its equivalent in the other

derivation p̄ through a constant coefficient of order one modulo an other part which can be

calculated easily :

χ̃0
p̃+ z̄

ε
= χ̃0

z̄2

2
. (4.16)

The conclusion to be drawn from this is the fact that both forms are equivalent through a change

of pressure and that the low Mach number asymptotics is a little more precise since it provides, at

the second order, the exact pressure corrections.

The models have been completely identified; we are now going to evaluate the influence of the

work of the pressure forces when j = 0. We first consider the linear stability analysis and then

compare to numerical simulations.

5 Rayleigh–Bénard problem for an ideal gas : Linear stability analysis

18
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The system of equations we are going to use for the linear stability analysis is the one used

usually, which means the one with v0 = κ0/L given in Appendix II, without the heat source term.

There has been a vast literature on the linear stability analysis of this type of equations for the

Rayleigh-Bénard problem (See for example [5] [6] [7] [16] [8]) and we shortly reproduce the leading

ideas in this section.

The aim is the computation of Rac (the critical value of the Rayleigh number Ra for the onset

of convection in the layer) as a function of the coefficient related to the work of the static pressure

forces χ =
Υ̃P

0

ΥT
0

= γ0−1
γ0

χ̃0. We should retrieve the usual values for the critical Rayleigh number as

χ→ 0.

5. 1 System of equations

The system with v0 = κ0/L for a gas reads :

∂x̄ · v̄ = 0, (5.1)

∂t̄v̄ + v̄ ·∂x̄v̄ = −∂x̄ ¯̄p− Pr ∂x̄x̄v̄ +RaPr θ ez, (5.2)

∂t̄θ+ v̄ ·∂x̄θ = ∂x̄x̄θ − χw, (5.3)

where ¯̄p can be easily related to p̂2 and where we omit, in the following, the double bar on

the pressure. Problem (5.1-5.3) is considered in a 2D square domain (x̄ = (y, z)t, 0 ≤ y ≤ 1,

0 ≤ z ≤ 1), where u and w represent the horizontal and vertical coordinates of the velocity and

with the boundary conditions:

y = 0, 1 : ∂yθ = 0, u = 0, ∂yw = 0; z = 0 : θ = 1, w = 0, ∂zu = 0; z = 1 : θ = 0, w = 0, ∂zu = 0.

(5.4)

5. 2 Linear stability analysis

Problem (5.1-5.4) is linearized about a static solution θS(z), u = w = 0, (in the configuration

considered in the present paper, static solutions depend only on the vertical coordinate). In the

following we still use the notation θ for the linearized temperature around θS . Using simple algebra,

pressure can be eliminated to yield:

∂t̄θ = ∂x̄x̄θ − (θ
′

S + χ)w, (5.5)
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∂t̄∂x̄x̄w = Pr ∂x̄x̄∂x̄x̄w + PrRa ∂yyθ. (5.6)

with boundary conditions:

y = 0, 1 : ∂yθ = 0, ∂yw = 0; z = 0, 1 : θ = 0, w = 0, ∂zzw = 0. (5.7)

We look for the solution of (5.5-5.7) of the form θ(y, z, t) = θ̃(z)e−λt cos(ky), w(y, z, t) =

w̃(z)e−λt cos(ky) where k = πm, m = 1, 2, ... which yields the eigenvalue problem:

−λθ̃ = θ̃
′′
− k2θ̃ − (θ

′

S + χ)w̃, (5.8)

−λ(w̃
′′
− k2w̃) = Pr (w̃(4) − 2k2w̃

′′
+ k4w̃)− PrRa k2θ̃, (5.9)

with the boundary conditions

z = 0, 1 : θ̃ = 0, w̃ = w̃
′′
= 0. (5.10)

The convective instability boundary can be found from the condition that the eigenvalue λ with

the maximal real part is zero. Eliminating θ̃ from equations (5.8-5.9) and setting λ = 0 yields

w̃(6) − 3 k2 w̃(4) + 3 k4 w̃
′′
− k6 w̃ = Ra k2(θ

′

S + χ)w̃. (5.11)

with boundary conditions

z = 0, 1 : w̃ = w̃
′′
= w̃(4) = 0. (5.12)

In the present configuration the static solution θS(z) is linear θS(z) = 1−z. Setting w̃(z) = sin(πnz),

we get ((πn)2 + k2)3 = Ra k2(χ− 1), which defines

(Ra)j =
((πj)2 + k2)3

k2(1− χ)
. (5.13)

The minimum of (Ra)1(k
2) is attained for k2 = π2/2 and is equal to 27π4

4(1−χ) ≈
657.5
1−χ . In the square

domain where k = πm the minimum of (Ra)1(k
2) is attained form = 1 and is equal to 8π4

(1−χ) ≈
780
1−χ .

6 Comparison with numerical simulations

A 2D vorticity-stream function formulation of system (5.1-5.3) is used:

∂x̄x̄ψ = −ω, (6.1)
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∂t̄ω + u ∂yω + w ∂zω = Pr∂x̄x̄ω − PrRa ∂zθ (6.2)

∂t̄θ+ u ∂yθ + w ∂zθ = ∂x̄x̄θ − χw (6.3)

where ψ is the stream function, ω the vorticity, u = ∂zψ, w = −∂yψ. The Prandtl number has

no influence on the critical value of the Rayleigh number and is taken to be 1. System (6.1-6.3)

has been considered in a square domain with boundary conditions: ψ = ω = 0, ∂yθ = 0 on the

vertical boundaries and θ = 0 on the horizontal ones. It is solved by using finite differences and

an alternate directions method: the discretization of equation (6.3) on the first and on the second

time half steps is, respectively,

2(θ
n+1/2
ij − θnij)/τ + unij (θ

n+1/2
i+1,j − θ

n+1/2
i−1,j )/2h+ vnij

(
(θni,j+1 − θni,j−1)/2h+ χ

)
=

(θ
n+1/2
i+1,j − 2θ

n+1/2
i,j + θ

n+1/2
i−1,j )/h2 + (θni,j+1 − 2θni,j + θni,j−1)/h

2

and

2(θn+1
ij − θ

n+1/2
ij )/τ + unij (θ

n+1/2
i+1,j − θ

n+1/2
i−1,j )/2h+ vnij

(
(θn+1

i,j+1 − θn+1
i,j−1)/2h+ χ

)
=

(θ
n+1/2
i+1,j − 2θ

n+1/2
i,j + θ

n+1/2
i−1,j )/h2 + (θn+1

i,j+1 − 2θn+1
i,j + θn+1

i,j−1)h
2.

Here τ is the time step and h the space step. Other equations are discretized similarly.

We examine the effect of the term χw. Recall that this term has to be retained in the equation

if γ0 g L
c20 α0 ∆T

≈ 1 which means that the density changes due to temperature variations and the density

changes due to the static pressure variations have the same order of magnitude.

This term is seen to have a stabilizing effect which confirms the linear stability analysis. On

Figure 1, we have plotted the maximum of the stationary stream function as a function of the

Rayleigh number, for various values of χ. For each curve a continuation based on the Rayleigh

number has been performed. This bifurcation diagram is classical for χ = 0. On Figure 2, we have

plotted Rac as a function of χ, as well as the curve Rac =
8π4

(1−χ) predicted by the stability analysis,

for comparison. It is shown to perfectly match.

We have also performed the numerical simulations in the configuration of no-slip boundary

conditions. In this case, the domain was taken rectangular (0 ≤ y ≤ 3.117 and 0 ≤ z ≤ 1. The

value 3.117 corresponds to the wave length leading to the minimal critical Rayleigh number on

the marginal stability curve : Rac = 1708 [7] [8]). Figure 3 shows the behavior of the stationary
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maximal stream function with the Rayleigh number as a bifurcation parameter for various values

of the compressibility parameter. Finally, Figure 4 presents Rac as a function of χ as well as the

curve Rac = 1708
(1−χ) . As in the case of the free surface boundary conditions, the agreement is very

good.

7 Discussion and Conclusion

Three main directions of discussion can be drawn from the previous study. The first point to be

underlined is the necessity to start from general enough equations, i.e. from the full compressible

system of equation with a divariant state law in order to rigorously justify the Oberbeck-Boussinesq

approximation. The mathematical representation of a mechanically incompressible but thermally

compressible fluid, should only be obtained as the limit ΥP
0 → 0 for the systems of equation derived

in sub-section 3.4. This leads in some cases to the additional term involving the compressibility

parameter χ which can not be attained by just assuming the density to depend only on the

temperature as in [2] [3]. As stated in the previous two sections, the influence of this term can be of

importance since it can completely stabilize the layer. A physical explanation for this phenomenon

can be given. In the asymptotic limit where the compressibility of the medium is negligible at

the scale L, but where the work of the static pressure forces due to the pressure stratification

can bring a temperature difference of the order of the temperature difference imposed on the fluid

layer, convection is prevented.

The second point is related to the typical order of magnitude of the compressibility parameter

χ. In the case of a gaseous layer of air at usual temperature and pressure, the thickness of the layer

has to be between a hundred and a thousand meters for χ to be in the range where is stabilizes the

layer, whereas for water, is is of the order of 104 m. We have assumed in the previous evaluation

that δT ≈ 5 K. We then refer at this level to the study of Gray and Giorgini [4] where the regions

of validity of the approximation are provided. It is clear that for such thick layers, the associated

Rayleigh numbers will be sufficient for turbulence to appear. However, even if the equations are

then not valid any more, the problem of the stability of the stationary solution is still relevant

and the stabilizing effect of the work of the static pressure forces should be kept in the governing

equations.
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The third point to be discussed is related to the choice of the characteristic velocity in order

to non-dimensionalize the equations. We have presented the case v0 =
√
g LΥT

0 of the free fall

velocity. In this case, the bifurcation parameter can still be taken as the Rayleigh number, or more

precisely as the square root of it since Pe/
√
Pr =

√
Ra. Instead of having the bifurcation parameter

in front of the source term in the momentum equation as usual when v0 = κ0/L, it is in front of the

viscous second order term as the denominator. From a theoretical point of view, it yields of course

the same results. From the asymptotics point of view, let us underline that it has no implication

since Ra = O(1) for both small parameters. In order to check the validity of such a result, we have

represented on Fig. 5 three characteristic velocities involved in the Rayleigh-Bénard problem with

χ = 0. The first one is the ratio of the free fall velocity to the diffusion velocity. In our case, since

Pr = 1, this ratio is equal to the square root of the Rayleigh number. The second velocity is the

diffusion one, v0 = κ0/L which corresponds in our study to the non-dimensionalizing velocity and

is represented on Fig. 5 with the horizontal line |v̄| = 1. Finally, we have plotted the maximum

of the norm of the stationary velocity as a function of the Rayleigh number. It is particularly

interesting to note that this last velocity is always in between the previous two velocities, that

the diffusion velocity is adapted to the numerical detection of the critical value of the Rayleigh

number but gets especially small as the Rayleigh number is increased whereas the maximum of

the velocity is closer to the free fall velocity. In this case, the Péclet number is linearly increasing

which is known to yield the appearance of a thermal boundary layer.

Finally we have provided a rigorous framework for the derivation of the Oberbeck-Boussinesq

approximation from a full compressible model. The difference between general divariant liquids and

ideal gases has been pointed out and two asymptotics derived. The asymptotics is not dependent

on the choice of the characteristic velocity. The presence of a residual term in the temperature

equation due to the work of the static pressure forces due to stratification has been discussed and

justified; besides the influence of this term on the stability of the layer has been studied both

theoretically and numerically. We think that our work brings a unified approach to this problem

and provides the basis for further mathematical investigation and justification of the presented

asymptotics.
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8 Appendix I

In this Appendix, we give the proof of Proposition 2.1. Let us first recall the result. Under the

assumption that ΥP
max << 1, then for the isothermal case, we have the following estimate :

0 ≤ pSI − (p0 − ρ0gz)

ρ0gL
≤ 1

2Υ
P
max z̄

2 << 1, 0 ≤ ρ0 − ρSI

ρ0
≤ ΥP

max z̄ << 1,

where z̄ = z/L, L is the characteristic length.

Let us then assume ΥT
max << α0T0 ≤ 1, then

−ΥT
max z̄ ≤

pS − (p0 − ρ0gz)

ρ0gL
≤ ΥT

max z̄ +
1
2Υ

P
max z̄

2 << 1,

−ΥT
max z̄ −ΥP

max

z̄2

2
≤ pS − pSI

ρ0gL
≤ ΥT

max z̄ +ΥP
max

z̄2

2
,

−ΥT
max +ΥP

max z̄ (1−ΥT
max −ΥP

max

z̄

2
) ≤ ρ0 − ρS(pS(z), TS)

ρ0
≤ ΥT

max +ΥP
max z̄ (1 + ΥT

max),
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We first consider a non dimensional form of the pressure equation, the characteristic pressure

drop is taken to be ρ0gL, and the non dimensional pressure will then be denoted p̃ = (pSI −

p0)/(ρ0gL). The static equation at constant temperature on the pressure p̃ reads:

dz̄ p̃+ 1 = −ρ(p0 + p̃ρ0gL, T0)− ρ0
ρ0

.

Since ρ is a strictly increasing function of p at constant temperature, it is clear that p̃ is then a

decreasing and convex function of z̄ which belongs to the interval [−1, 0]; besides, from Rolle’s

theorem applied to the application p → ρ(p, T0), there exists p(z = L) < p∗ < p0 such that,

denoting ρ̂ = ρ/ρ0, we get :

1− ρ̂ =
γ(p∗, T0)

c2(p∗, T0)
g L(−p̃(z)) < ΥP

max (−p̃(z))

but

−p̃ = z̄ −
∫ z̄

0

(1− ρ̂)dz

so that

0 ≤ −p̃ ≤ z̄, 0 ≤ 1− ρ̂ ≤ ΥP
max z̄.

this also yield

0 ≤ p̃+ z̄ ≤ 1
2Υ

P
max z̄

2.

Let us now turn to the non-isothermal case and denote p̃S = pS(z)−p0

ρ0gL
and ρ̂S = ρS(pS(z),T0)

ρ0
.

ρ0 − ρS(pS(z), TS(z))

ρ0
= ρ̂S − ρS(pS(z), TS(z))

ρ0
+ 1− ρ̂S ;

however, at constant pressure, ρ is a smooth decreasing function of T so that there exists

T0 −∆T ≤ T ∗ ≤ T0 +∆T , such that

ρ̂S − ρS(pS(z), TS(z))

ρ0
= α(pS(z), T

∗)(T0 − TS(z)), |ρ̂S − ρS(pS(z), TS(z))

ρ0
| ≤ ΥT

max;

but

−p̃S = z̄ −
∫ z̄

0

(1− ρ̂S) dz +

∫ z̄

0

(ρ̂S − ρS(pS(z), TS)

ρ0
)dz.

Besides, there exists p∗∗ such that

1− ρ̂S =
γ(p∗∗, T0)

c2(p∗∗, T0)
g L (−p̃S),
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so that

−ΥT
max z̄ ≤ p̃S + z̄ ≤ ΥT

max z̄ +ΥP
max

z̄2

2
,

and finally

−ΥT
max +ΥP

max z̄ (1−ΥT
max −ΥP

max

z̄

2
) ≤ ρ0 − ρS(pS(z), TS)

ρ0
≤ ΥT

max +ΥP
max z̄ (1 + ΥT

max).

9 Appendix II

We give the system of non-dimensional equations in the case when we chose v0 = κ0

L as the

characteristic velocity of the problem. The final system then reads, for the gaseous case:

−∂x̄ · v̄ =
1

1 + p̂
(∂t̄p̂+ v̄ ·∂x̄p̂)−

ΥT
0

1 + ΥT
0 θ

(∂t̄θ + v̄ ·∂x̄θ),

ρ̄ (∂tv̄ + v̄ ·∂x̄v̄) = − RaPr

ΥP
0 ΥT

0

∂x̄p̂− Pr(∂x̄x̄v̄ + ∂x̄(∂x̄ ·v̄)− 2
3∂x̄ ·(∂x̄ ·v̄)I)−

RaPr

ΥT
0

ρ̄ez,

ρ̄ (∂t̄θ+ v̄ ·∂x̄θ) = ∂x̄x̄θ −
Υ̃P

0

Ra

(
∂x̄v̄ + (∂x̄v̄)

t − 2
3∂x̄ ·v̄I

)
: ∂x̄v̄

+
1

ΥT
0

γ0 − 1

γ0
(∂t̄p̂+ v̄ ·∂x̄p̂) +

Q̄(θ)L2

q0 κ0
,

where Ra = gL3α0∆T/κ0 ν0 is the Rayleigh number, and with the linearized state law:

ρ̄ = 1 + p̂−ΥT
0 θ, p̂ << 1, ΥT

0 θ << 1.

In the case of a liquid, the system takes the form:

−∂x̄ · v̄ =
ΥP

ρ̄

(
ΥT

0 (∂t̄p̄+ v̄ ·∂x̄p̄) + v̄ ·∂x̄p̃
)
− α0 T0 Υ

T (∂t̄θ + v̄ ·∂x̄θ),

ρ̄ (∂t̄v̄ + v̄ ·∂x̄v̄) = −∂x̄p̄+ Pr (∂x̄x̄v̄ + ∂x̄(∂x̄ ·v̄)− 2
3∂x̄ ·(∂x̄ ·v̄)I)−

RaPr

ΥT
0

(∂x̄p̃+ ρ̄ ez) ,

ρ̄ (∂t̄θ+ v̄ ·∂x̄θ) = ∂x̄x̄θ − Υ̃P
0

1

(α0 T0)2
1

Ra

(
∂x̄v̄ + (∂x̄v̄)

t − 2
3∂x̄ ·v̄I

)
: ∂x̄v̄ +

Q̄(θ)L2

q0 κ0

+
Υ̃P

0

α0 T0

(1 + ΥT
0 θ)

ρ̄RaPr

ΥT

ΥT
0

(∂t̄p̄+ v̄ ·∂x̄p̄) +
Υ̃P

0

ΥT
0 α0 T0

(1 + ΥT
0 θ)

ρ̄RaPr

ΥT

ΥT
0

(v̄ ·∂x̄p̃),

with the linearized state law:

ρ̄ = ρ̂+ΥT
0

(
ΥP

0

Fr2

ΥT
0

p̄− α0 T0 θ

)
, ΥT

0 α0 T0 θ << 1, Fr2 ΥP
0 p̄ << 1.
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Captions

Figure 1. : Behavior of the stationary maximal stream function depending on the Rayleigh

number for various values of the compressibility parameter χ with free surface

boundary conditions.

Figure 2. : Symbols : Critical Rayleigh number as a function of the compressibility

parameter χ, solid line : theoretical value of the critical Rayleigh number with

free surface boundary conditions.

Figure 3. : Behavior of the stationary maximal stream function depending on the Rayleigh

number for various values of the compressibility parameter χ with no-slip

velocity boundary conditions.

Figure 4. : Symbols : Critical Rayleigh number as a function of the compressibility

parameter χ with no-slip velocity boundary conditions, solid line : curve

Rac =
1708
1−χ , where 1708 is the theoretical value of the critical Rayleigh number

for χ = 0.

Figure 5. : Comparison of the various characteristic velocities in the Rayleigh-Bénard

problem with χ = 0 : solid line is the square root of the Rayleigh number

√
Ra = Pe since Pr = 1, dashed line is the maximum of the velocity in the layer,

and the dotted line corresponds to the diffusion velocity v0 = κ0/L = ν0/L.
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