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Factorization Method for Electromagnetic Inverse Scattering from Biperiodic Structures

This paper is concerned with the inverse scattering problem of electromagnetic waves from penetrable biperiodic structures in three dimensions. We study the Factorization method as a tool for reconstructing the periodic media from measured data consisting of scattered electromagnetic waves for incident plane electromagnetic waves. We propose a rigorous analysis for the method. A simple criterion is provided to reconstruct the biperiodic structures. We also provide three-dimensional numerical experiments to indicate the performance of the method.

Introduction

We consider inverse scattering of electromagnetic waves from penetrable biperiodic structures in three dimensions. By biperiodic, we mean that the structure is periodic in the, say, x 1 -and x 2 -direction, while it is bounded in the x 3 direction. The inverse problem that we treat in this paper is the shape reconstruction of a biperiodic medium from measured data consisting of scattered electromagnetic waves. We consider plane electromagnetic waves as incident fields. The problem that we study here is motivated by the important applications of periodic structures in optics. Applications include diffractive optical filters and organic light-emitting diodes, and non-destructive testing is an important issue to guarantee the functioning of such devices.

Inverse scattering from periodic structures has been an active field of research in the last years. Uniqueness theorems for determining periodic scattering objects from the knowledge of scattered fields can be found in e.g. [START_REF] Ammari | Uniqueness theorems for an inverse problem in a doubly periodic structures[END_REF][START_REF] Bao | Unique determination of periodic polyhedral structures scattered electromagnetic fields[END_REF][START_REF] Bao | An inverse problem for scattering by a doubly periodic structure[END_REF][START_REF] Kirsch | Uniqueness theorems in inverse scattering theory for periodic structures[END_REF][START_REF] Yang | A inverse transmission scattering problem for periodic media[END_REF]. In the general context of acoustic and electromagnetic inverse scattering, qualitative methods has been received much considerable attentions, see Chapter 5 of [START_REF] Kirsch | The Factorization Method for Inverse Problems[END_REF]. Among those methods, the most developed is the linear sampling method which was first introduced in [START_REF] Colton | A simple method for solving inverse scattering problems in the resonance region[END_REF] for the scalar case of obstacle inverse scattering. It aims to compute a picture of the shape of the scattering object from measured data. Since the method is relatively rapid and does not need a-priori knowledge, it has attracted much research in recent years. One can find recent developments of the linear sampling method in [START_REF] Cakoni | Qualitative Methods in Inverse Scattering Theory[END_REF][START_REF] Cakoni | The Linear Sampling Method in Inverse Electromagnetic Scattering[END_REF]. The linear sampling method has been extended to inverse scattering involving periodic media, in [START_REF] Hu | A linear sampling method for inverse problems of diffraction gratings of mixed types[END_REF][START_REF] Hu | The linear sampling method for the inverse electromagnetic scattering by a partially coated bi-periodic structure[END_REF][START_REF] Yang | A sampling method for the inverse transmission problem for periodic media[END_REF]. However, in spite of the advantages of the method, a full mathematical justification still remains open, see [START_REF] Cakoni | Qualitative Methods in Inverse Scattering Theory[END_REF]. Some results on the justification of the linear sampling method have been recently obtained in [START_REF] Arens | Why linear sampling works[END_REF][START_REF] Arens | The linear sampling method revisited[END_REF].

As an attempt to improve the linear sampling method, the so-called Factorization method has been developed in [START_REF]Characterization of the shape of a scattering obstacle using the spectral data of the far field operator[END_REF][START_REF] Kirsch | A linear sampling method for inverse scattering from an open arc[END_REF]. The latter method has rigorous justification, keeps the previous advantages and of course is an interesting tool for reconstruction problems in inverse scattering. However, there is only a restricted class of scattering problems to which the Factorization method can be applied, see [START_REF] Kirsch | The Factorization Method for Inverse Problems[END_REF]. Recently this method has been extended to periodic inverse scattering problems. In [START_REF] Arens | A complete factorization method for scattering by periodic structures[END_REF][START_REF] Arens | The factorization method in inverse scattering from periodic structures[END_REF] the authors studied the Factorization method for the imaging problem of impenetrable periodic structures with Dirichlet and impedance boundary 1 conditions. The paper [23] considered imaging of penetrable periodic interfaces between two dielectrics in two dimensions.

In the present work we aim to study the Factorization method as a tool for reconstructing three dimensional biperiodic structures for data consisting of scattered electromagnetic waves. More specific, the measured data that we consider here are the coefficients of evanescent and propagating modes of the scattered fields in the radiation condition. Given those coefficients of tangential components of the electromagnetic scattered fields, the inverse problem is then to determine the three-dimensional penetrable biperiodic scatterer. As presented in the rest of the paper, the Factorization method is shown to be an efficient tool to our imaging problem. From a full mathematical justification of the method, a simple criterion for imaging is shown to work accurately in the three-dimensional numerical experiments which, to the best of our knowledge, are the first numerical examples for this method in a biperiodic setting.

Our analysis extends approaches in [START_REF] Arens | A complete factorization method for scattering by periodic structures[END_REF][START_REF] Kirsch | The Factorization Method for Inverse Problems[END_REF][START_REF] Lechleiter | The Factorization method is independent of transmission eigenvalues[END_REF] to Maxwell's equations in a biperiodic setting. We adapt the special plane incident fields introduced in [START_REF] Arens | A complete factorization method for scattering by periodic structures[END_REF] for the periodic scalar case to the vectorial problem, which allows us to suitably factorize the near field operator. Further, a modified version of the method studied in [START_REF] Lechleiter | The Factorization method is independent of transmission eigenvalues[END_REF] treats the case that the imaginary part of the middle operator in the factorization is just semidefinite. Since this generalization is of some importance for the problem under consideration, we give a complete proof. Finally the necessary properties of the middle operator are obtained by the approach in [START_REF] Kirsch | The Factorization Method for Inverse Problems[END_REF] for obstacle inverse scattering of electromagnetic waves.

The paper is organized as follows: In Section 2 we introduce the direct problem and set up the corresponding inverse problem. Section 3 is dedicated to study the factorization of the near field operator. Section 4 contains an abstract result on range identity theorem with complete proof. We derive the necessary properties of the middle operator in the factorization in Section 5 while a characterization of the biperiodic structure is given in Section 6. Finally, section 7 is devoted to numerical experiments to examine the performance of the method

Problem Setting

We consider scattering of time-harmonic electromagnetic waves from a biperiodic structure. The electric field E and the magnetic field H are governed by the time-harmonic Maxwell equations at frequency ω > 0

in R 3 , curl H + iωεE = σE in R 3 , (1) curl 
E -iωµ 0 H = 0 in R 3 . (2) 
Here the electric permittivity ε and the conductivity σ are real bounded measurable function which are 2π-periodic in x 1 and x 2 , and µ 0 is the positive constant magnetic permeability. Further, we assume that ε equals ε 0 > 0 and that σ vanishes outside the biperiodic structure. As usual, the problem (1)-( 2) has to be completed by a radiation condition that we set up using Fourier series. Let us denote the relative material parameter by

ε r := ε + iσ ε 0 .
Note that ε r equals 1 outside the biperiodic structure. Recall that the magnetic permeability µ 0 is constant which motivates us to work with the divergence-free magnetic field, that is, div H = 0. Hence, introducing the wave number k = ω(ε 0 µ 0 ) 1/2 , and eliminating the electric field E from (1)-( 2), we find that

curl ε -1 r curl H -k 2 H = 0 in R 3 . (3) 
Now we define that a function u : R

3 → C 3 is called α-quasiperiodic if, for α := (α 1 , α 2 , 0) and (x 1 , x 2 , x 3 ) ⊤ ∈ R 3 , u(x 1 + 2π, x 2 , x 3 ) = e 2πiα1 u(x 1 , x 2 , x 3 ), u(x 1 , x 2 + 2π, x 3 ) = e 2πiα2 u(x 1 , x 2 , x 3 ).
Assume that the biperiodic structure is illuminated by α-quasiperiodic incident electric and magnetic fields E i and H i , respectively, satisfying

curl H i + iωε 0 E i = 0, curl E i -iωµ 0 H i = 0 in R 3 .
Simple examples for such α-quasiperiodic fields are certain plane waves that we introduce below. We wish to reformulate (3) in terms of the scattered field H s , defined by

H s := H -H i . Straightforward computations show that curl curl H i -k 2 H i = 0, and curl ε -1 r curl H s -k 2 H s = -curl q curl H i in R 3 , ( 4 
)
where q is the contrast defined by q := ε -1 r -1. Since ε r is 2π-periodic in x 1 and x 2 , and the right-hand side is α-quasiperiodic, we seek for an α-quasiperiodic solution H s . Hence the problem is reduced to the domain (0, 2π) 2 × R. We complement this problem by a radiation condition that is set up using Fourier techniques. Since the scattered field H s is α-quasiperiodic, the function e -iα•x H s is 2π-periodic in x 1 and x 2 , and can hence be expanded as

e -iα•x H s (x) = n∈Z 2 Ĥn (x 3 )e i(n1x1+n2x2) , x = (x 1 , x 2 , x 3 ) ⊤ ∈ R 3 . (5) 
Here the Fourier coefficients Ĥn (x 3 ) ∈ C 3 are defined by

Ĥn (x 3 ) = 1 4π 2 2π 0 2π 0 H s (x 1 , x 2 , x 3 )e -iαn•x dx 1 dx 2 , (6) 
where

α n := (α 1,n , α 2,n , 0) = (α 1 + n 1 , α 2 + n 2 , 0).
We define, for n ∈ Z 2 ,

β n := k 2 -|α n | 2 , k 2 ≥ |α n | 2 , i |α n | 2 -k 2 , k 2 < |α n | 2 ,
and for some technical reason we assume in the following that

β n = 0 for all n ∈ Z 2 .
Recall that ε -1 r equals one outside the structure. This means ε -1 r = 1 and q = 0 for |x 3 | > h where h > sup{|x 3 | : (x 1 , x 2 , x 3 ) ⊤ ∈ supp(q)}. Thus it holds that div H s vanishes for |x 3 | > h, and equation ( 4) becomes (∆ + k 2 )H s = 0 in {|x 3 | > h}. Using separation of variables, and choosing the upward propagating solution, we set up a radiation condition in form of a Rayleigh expansion condition, prescribing that H s can be written as

H s (x) = n∈Z 2 Ĥ± n e i(αn•x+βn|x3-h|) for x 3 ≷ ±h, (7) 
where ( Ĥ± n ) n∈Z 2 are the Rayleigh sequences given by

Ĥ± n := Ĥn (±h) = 1 4π 2 2π 0 2π 0 H s (x 1 , x 2 , ±h)e -iαn•x dx 1 dx 2 , n ∈ Z 2 .
Note that we require that the series in [START_REF] Bao | Variational approximation of Maxwell's equations in biperiodic structures[END_REF] converges uniformly on compact subsets of {|x 3 | > h}. Further, note that only a finite number of terms in [START_REF] Bao | Variational approximation of Maxwell's equations in biperiodic structures[END_REF] are propagating plane waves which are called propagating modes, the rest are evanescent modes which correspond to exponentially decaying terms. Denote by D the support of the contrast q in one period Ω := (0, 2π) 2 × R. We make an assumption which is necessary for the subsequent factorization frame work. Assumption 2.1. We assume that the support D ⊂ Ω is open and bounded with Lipschitz boundary and that there exists a positive constant c such that Re (q) ≥ c > 0 and Im (q) ≤ 0 almost everywhere in Ω.

Considering a more general source term on the right hand side of (4), we have the following direct problem: Given f ∈ L 2 (D) 3 , find u : Ω → C 3 in a suitable function space such that

curl ε -1 r curl u -k 2 u = -curl q/ |q|f ) in Ω, (8) 
and u satisfies the Rayleigh expansion condition [START_REF] Bao | Variational approximation of Maxwell's equations in biperiodic structures[END_REF]. In the following, a function which satisfies ( 7) is said to be radiating. It is also seen that if u is a solution of (4) then u solves (8) for the right hand side of

f = curl H i / |q|.
For a variational formulation of the problem, we define, for any Lipschitz domain O,

H(curl, O) = {v ∈ L 2 (O) 3 : curl v ∈ L 2 (O) 3 }, H loc (curl, R 3 ) = {v : R 3 → C 3 : v| B ∈ H(curl, B) for all balls B ⊂ R 3 }, H α,loc (curl, Ω) = {u ∈ H loc (curl, Ω) : u = U | Ω for some α-quasiperiodic U ∈ H loc (curl, R 3 )},
and

Ω h = (0, 2π) 2 × (-h, h) for h > sup{|x 3 | : (x 1 , x 2 , x 3 ) ⊤ ∈ supp(q)},
with boundaries Γ ±h := (0, 2π) 2 ×{±h}. The variational formulation to the problem ( 8) is to find a radiating solution u ∈ H α,loc (curl, Ω) such that

Ω (ε -1 r curl u • curl ψ -k 2 u • ψ) dx = - Ω q/ |q|f • curl ψ dx , (9) 
for all ψ ∈ H α,loc (curl, Ω) with compact support. Existence and uniqueness of this problem can be obtained for all but possibly a discrete set of wave numbers k, see e.g. [START_REF] Bao | Variational approximation of Maxwell's equations in biperiodic structures[END_REF][START_REF] Dobson | A variational method for electromagnetic diffraction in biperiodic structures[END_REF][START_REF] Schmidt | On the diffraction by biperiodic anisotropic structures[END_REF]. In the sequel we assume that (9) is uniquely solvable for any f ∈ L 2 (D) 3 and fixed k > 0. Then we define a solution operator G : L 2 (D) 3 → ℓ 2 (Z 2 ) 4 which maps f to the Rayleigh sequences (û + 1,j , û-1,j , û+ 2,j , û-2,j ) j∈Z 2 of the first two components of u ∈ H α,loc (curl, Ω), solution to [START_REF] Bao | An inverse problem for scattering by a doubly periodic structure[END_REF]. Note that the Rayleigh sequences û±

(1,2),j are given by

û± (1,2),j = 1 4π 2 2π 0 2π 0 u (1,2) (x 1 , x 2 , ±h)e -iαj •x dx 1 dx 2 , j ∈ Z 2 . ( 10 
) Now we introduce the notation b = (b 1 , b 2 , -b 3 ) ⊤ for b = (b 1 , b 2 , b 3 ) ⊤ ∈ C 3 .
To obtain the data for the factorization method we consider the following α-quasiperiodic plane waves

ϕ (l)± j = p (l) j e i(αj •x+βjx3) ± p(l) j e i(αj•x-βjx3) , l = 1, 2, j ∈ Z 2 , (11) 
where p

(l) j = (p (l) 1,j , p (l) 2,j , p (l) 
3,j ) ∈ C 3 \ {0} are polarizations chosen such that, for all j ∈ Z 2 , i) p

(1)

j × p (2) j = c j (α 1,j , α 2,j , β j ) ⊤ , for c j ∈ C \ {0}. (12) 
ii) |p

(1)

j | = |p (2) j | = 1. ( 13 
)
Together with the assumption that β j = 0 for all j ∈ Z 2 , such polarizations are linear independent. One possible choice is

p (1) j = (0, β j , -α 2,j )/(|β j | 2 + α 2 2,j ) 1/2 , p (2) 
j = (-β j , 0, α 1,j )/(|β j | 2 + α 2 1,j ) 1/2 .
Note that ϕ (l)± j are hence divergence-free functions for all j ∈ Z 2 , l = 1, 2. Due to the linearity of the problem, a linear combination of several incident fields will lead to a corresponding linear combination of the resulting scattered fields. We obtain such linear combination using sequences (a j ) j∈Z 2 = a

(1)+ j , a

(1)j , a

(2)+ j , a

(2)j j∈Z 2 ∈ ℓ 2 (Z 2 ) 4 and define the corresponding operator by

H(a j ) = |q| j∈Z 2 1 β j w j a (1)+ j curl ϕ (1)+ j + a (2)+ j curl ϕ (2)+ j + a (1)- j curl ϕ (1)- j + a (2)- j curl ϕ (2)- j , (14) 
where

w j := i, k 2 > α 2 j , exp(-iβ j h), k 2 < α 2
j . Note that we divide by β j w j to make later computations easier.

In our inverse problem the data that we measure are the Rayleigh sequences defined in [START_REF] Cakoni | Qualitative Methods in Inverse Scattering Theory[END_REF]. We know that only the propagating modes are measurable far away from the structure. However, it follows from [START_REF] Kirsch | Uniqueness theorems in inverse scattering theory for periodic structures[END_REF] that we need all the modes to be able to uniquely determine the periodic structure. Hence the operator that models measurements from the periodic inhomogeneous medium of scattered fields caused by the incident fields ( 14) is referred to be the near field operator, denoted by N . We define N : 4 to map a sequence (a j ) j∈Z 2 to the Rayleigh sequences of the first two components of the scattered field generated by the incident field H(a j ) defined in [START_REF] Dobson | A variational method for electromagnetic diffraction in biperiodic structures[END_REF]

ℓ 2 (Z 2 ) 4 → ℓ 2 (Z 2 )
, i.e. [N (a j )] n := (û + 1,n , û- 1,n , û+ 2,n , û- 2,n ) n∈Z 2
, where u ∈ H α,loc (curl, Ω) is the radiating solution to [START_REF] Bao | An inverse problem for scattering by a doubly periodic structure[END_REF] for the source f = H(a j ). Then from the definition of the solution operator we have

N = GH. (15) 
The inverse scattering problem is now to reconstruct the support D of the contrast q = ε -1 r -1 when the near field operator N is given. Note that it is not clear yet that N is a bounded linear operator, but we will prove this in the next section.

Factorization of the Near Field Operator

We study the inverse problem of the previous section using the factorization method. One of the important steps of the latter method that this section is devoted to is factorizing the near field operator. Before doing that, in the next lemma, we show some properties of the operator H : 3 and its adjoint H * . We need the sequence

ℓ 2 (Z 2 ) 4 → L 2 (D)
w * j := exp(-iβ j h), k 2 > α 2 j , i, k 2 < α 2 j . Lemma 3.1. For p (l) j = (p (l) 1,j , p (l) 2,j , p (l) 
3,j ), j ∈ Z 2 , l = 1, 2, defined as in ( 12) and (13), the operator H : 3 is compact and injective, and its adjoint

ℓ 2 (Z 2 ) 4 → L 2 (D)
H * : L 2 (D) 3 → ℓ 2 (Z 2 ) 4 satisfies (H * f ) j = 8π 2 w * j        p (1) 1,j (û + 1,j + û- 1,j ) + p (1) 2,j (û + 2,j + û- 2,j ) p (2) 1,j (û + 1,j + û- 1,j ) + p (2) 2,j (û + 2,j + û- 2,j ) p (1) 1,j (û + 1,j -û- 1,j ) + p (1) 2,j (û + 2,j -û- 2,j ) p (2) 1,j (û + 1,j -û- 1,j ) + p (2) 2,j (û + 2,j -û- 2,j )        ⊤ , j ∈ Z 2 , (16) 
where (û + 1,j , û-1,j , û+ 2,j , û-2,j ) j∈Z 2 are the Rayleigh sequences of the first two components of u ∈ H α,loc (curl, Ω), the radiating variational solution to curl 2 uk 2 u = curl( |q|f ) in Ω.

Proof. For l = 1, 2 and j ∈ Z 2 , we have

D H(a j )f dx = j∈Z 2 l=1,2 a (l)+ j β j w j D |q|f • curl ϕ (l)+ j dx + l=1,2 a (l)- j β j w j D |q|f • curl ϕ (l)- j dx = (a j ), D |q|f • curl ϕ (l)+ j β j w j dx , D |q|f • curl ϕ (l)- j β j w j dx ℓ 2 (Z 2 ) 4
.

Note that the equation curl 2 uk 2 u = curl( |q|f ) in Ω with Rayleigh expansion condition is uniquely solvable for all wave number k > 0. The Fredholm property can be obtained as in [START_REF] Bao | Variational approximation of Maxwell's equations in biperiodic structures[END_REF][START_REF] Dobson | A variational method for electromagnetic diffraction in biperiodic structures[END_REF][START_REF] Schmidt | On the diffraction by biperiodic anisotropic structures[END_REF], and using integral representation formulas from Theorem 3.1 in [START_REF] Sandfort | The factorization method for inverse scattering from periodic inhomogeneous media[END_REF] one shows the uniqueness. Now we define v

(l)± j = ϕ (l)± j /(β j w j ) and consider a smooth function φ ∈ C ∞ (R) such that φ = 1 in (-h, h), φ = 0 in R \ (-2h, 2h).
Then φv

(l)± j belongs to H α (curl, Ω) with compact support in {|x 3 | < 2h}. Assume that u ∈ H α,loc (curl, Ω) is the variational radiating solution to curl 2 u -k 2 u = -curl( |q|f ) in Ω. We have D |q|f • curl v (l)± j dx = Ω h (curl u • curl v (l)± j -k 2 u • v (l)± j ) dx + Ω 2h \Ω h (curl u • curl(φv (l)± j ) -k 2 u • φv (l)± j ) dx .
Now using Green's theorems and exploiting the fact that v (l)± j and u are divergence-free solutions to the Hemholtz equation in R 3 and Ω \ Ω h , respectively, we obtain that

D |q|f • curl v (l)± j dx = Γ h (e 3 × curl u • v (l)± j -e 3 × curl v (l)± j • u) ds + Γ -h (e 3 × curl v (l)± j • u -e 3 × curl u • v (l)± j ) ds = Γ h - Γ -h ∂ 3 v (l)± 2,j u 2 -∂ 3 u 2 v (l)± 2,j + ∂ 3 v (l)± 1,j u 1 -∂ 3 u 1 v (l)± 1,j ds . ( 17 
)
Note that we have

v (l)+ 1,j = p (l) 1,j β j w j (e iβj x3 + e -iβjx3 )e -iαj•x , ∂ 3 v (l)+ 1,j = iβ j p (l) 1,j β j w j (e iβj x3 -e -iβjx3 )e -iαj•x .
Then by straightforward computation we obtain

Γ h (∂ 3 v (l)+ 1,j u 1 -∂ 3 u 1 v (l)+ 1,j ) ds = n∈Z 2 û+ 1,n Γ h e iαn•x ∂ 3 v (l)+ 1,j -iβ n v (l)+ 1,j ds = 8π 2 w * j p (l) 1,j û+ 1,j .
Similarly we also have

Γ h (∂ 3 v (l)+ 2,j u 2 -∂ 3 u 2 v (l)+ 2,j ) ds = 8π 2 w * j p (l) 2,j û+ 2,j , Γ -h (∂ 3 v (l)+ 2,j u 2 -∂ 3 u 2 v (l)+ 2,j + ∂ 3 v (l)+ 1,j u 1 -∂ 3 u 1 v (l)+ 1,j ) ds = -8π 2 w * j (p (l) 1,j û- 1,j + p (l) 2,j û- 2,j ).
Now substituting the last two equations into [START_REF] Kirsch | Uniqueness theorems in inverse scattering theory for periodic structures[END_REF] we derive

D |q|f • curl v (l)+ j dx = 8π 2 w * j (p (l) 1,j û- 1,j + p (l) 2,j û- 2,j + p (l) 1,j û+ 1,j + p (l) 2,j û+ 2,j ).
Similarly we have

D |q|f • curl v (l)- j dx = 8π 2 w * j (-p (l) 1,j û- 1,j -p (l) 2,j û- 2,j + p (l) 1,j û+ 1,j + p (l) 2,j û+ 2,j )
which shows that H * satisfies ( 16). Next we show the compactness of H * . This relies on the operator

W : ℓ 2 (Z 2 ) 4 → ℓ 2 (Z 2 ) 4 defined by W ((a l ) l∈Z 2 ) = -8π 2 w * j        p (1)
1,j (a

(1)+ j + a (1)- j ) + p (1)
2,j (a

(2)+ j + a (2)- j ) p (2) 
1,j (a

(1)+ j + a (1)- j ) + p (2)
2,j (a

(2)+ j + a (2)- j ) p (1) 
1,j (a

(1)+ j -a (1)- j ) + p (1)
2,j (a

(2)+ j -a (2)- j ) p (2) 
1,j (a

(1)+ j -a (1)- j ) + p (2)
2,j (a

(2)+ j -a (2)- j )        ⊤ , j ∈ Z 2 . ( 18 
)
Since (w * j ) j∈Z 2 is a bounded sequence, and since the sequences (p (l) j ) j∈Z 2 are bounded for l = 1, 2 due to (13), the operator W is bounded. Now we define the operator

Q : L 2 (D) 3 → ℓ 2 (Z 2 ) 4 (19) 
which maps

f to (û + 1,j , û- 1,j , û+ 2,j , û- 2,j ) where u is the radiating variational solution to curl 2 u -k 2 u = curl( |q|f ) in Ω. Then we have H * = -W Q. ( 20 
)
The following trace spaces are necessary for our proof: We define

Y (Γ ±h ) = {f ∈ H -1/2 (Γ ±h ) 3 | there exists u ∈ H α (curl, Ω h ) with ± e ⊤ 3 × u| Γ ±h = f } with norm f Y (Γ ±h ) = inf u∈Hα(curl,Ω h ),±e ⊤ 3 ×u|Γ ±h =f u Hα(curl,Ω h ) .
The trace spaces Y (Γ ±h ) are Banach spaces with this norm, see [START_REF] Monk | Finite Element Methods for Maxwell's Equations[END_REF]. In the latter reference one also shows that the operation u → ((0, 0,

±1) × u| Γ ±h ) × (0, 0, ±1) is bounded from H α (curl, Ω h ) into Y ′ (Γ ±h ) which is the dual space of Y (Γ ±h ). Now we know that the operation which maps f ∈ L 2 (D) 3 into u ∈ H α,loc (curl, Ω), radiating variational solution to curl 2 u -k 2 u = curl( |q|f ), is bounded. Note that ((0, 0, ±1) × u| Γ ±h ) × (0, 0, ±1) = (u 1 , u 2 , 0). We obtain that the operations f → (u 1 , u 2 , 0)| Γ h and (u 1 , u 2 , 0)| Γ h → (û + 1,j , û+ 2,j ) are bounded from L 2 (D) 3 into Y ′ (Γ h ) and from Y ′ (Γ h ) into ℓ 2 (Z 2 ) 2 , respectively. Similarly for Γ -h we obtain that f → (û - 1,j , û- 2,j ) are bounded from L 2 (D) 3 into ℓ 2 (Z 2 ) 2 .
Together with the boundedness of the sequence (w * j ) j∈Z 2 , Q is a bounded operator. We know that in a neighborhood of Γ ±h u solves the Helmholtz equation. Hence elliptic regularity results [START_REF] Mclean | Strongly Elliptic Systems and Boundary Integral Operators[END_REF] 

imply that u is H 2 -regular in a neighborhood of Γ ±h , thus, f → (u 1 , u 2 , 0)| Γ ±h is compact operations from L 2 (D) 3 into Y ′ (Γ ±h ). Then Q is a compact operator and H * is compact. Therefore H is compact as well.
To obtain the injectivity of H, we prove that H * has dense range. It is sufficient to prove that W has dense range and all sequences ((δ jl ) l∈Z 2 , 0, 0, 0), (0, (δ jl ) l∈Z 2 , 0, 0), (0, 0, (δ jl ) l∈Z 2 , 0) and (0, 0, 0, (δ jl ) l∈Z 2 ) belong to the range of Q (by definition, the Kronecker symbol δ jl equals one for j = l and zero otherwise).

The operator W has dense range due to the fact that det

       p (1) 1,j p (1) 1,j p (1) 2,j p (1) 2,j p (2) 1,j p (2) 1,j p (2) 2,j p (2) 2,j p (1) 1,j -p (1) 1,j p (1) 2,j -p (1) 2,j p (2) 1,j -p (2) 1,j p (2) 2,j -p (2) 2,j        = -4 p (2) 1,j p (1) 2,j -p (2) 2,j p (1) 1,j 2 = 4(c j β j ) 2 = 0,
due to the property (12) of the polarizations. Now we show that ((δ jl ) l∈Z 2 , 0, 0, 0) belongs to the range of Q, and the other cases can be done in a similar way. We choose a cut-off function χ 1,j ∈ C ∞ (R) such that χ 1,j (t) = 0 for t < 0 and χ(t) = 1 for t > h/2. Then (x 1 , x 2 , x 3 ) → χ 1,j (x 3 ) exp(i(α j • x + β j (x 3h)) has Rayleigh sequence ((δ jl ) l∈Z 2 , 0). For all j ∈ Z 2 , we define

ϕ j (x) = (χ 1,j (x 3 ), 0, χ 3,j (x 3 )) ⊤ exp(i(α j • x + β j (x 3 -h)),
where

χ 3,j (x 3 ) = -iα 1,j e -iβjx3 x3 0 e iβjt χ 1,j (t) dt .
Then div ϕ j = 0 in Ω and the Rayleigh sequences of the first two components of ϕ j are ((δ jl ) l∈Z 2 , 0, 0, 0). Next we show that there exists

f j ∈ L 2 (D) 3 such that curl 2 ϕ j -k 2 ϕ j = curl( |q|f j ) in Ω holds in the variational sense. Set g j (x) := curl 2 ϕ j (x) -k 2 ϕ j (x), x ∈ Ω,
then we have div (g j ) = 0 in Ω which also implies that

∂Ω h g j • ν ds = 0.
Therefore, due to Theorem 3.38 in [START_REF] Monk | Finite Element Methods for Maxwell's Equations[END_REF], there exists ψ j ∈ H 1 (Ω h ) 3 such that

g j = curl ψ j in Ω h .
Define f j = |q| -1 ψ j , then f j ∈ L 2 (D) 3 and we have, in the weak sense,

curl 2 ϕ j -k 2 ϕ j = curl( |q|f j ) in Ω h .
Together with curl 2 ϕ jk 2 ϕ j = 0 in Ω \ Ω h , we complete the proof.

Now we show a factorization of the near field operator N in the following theorem. To this end, we define the sign of q by sign(q) := q |q| . Theorem 3.2. Assume that q satisfies the Assumption 2.1. The operator W is defined as in [START_REF]Characterization of the shape of a scattering obstacle using the spectral data of the far field operator[END_REF].

Let T : L 2 (D) 3 → L 2 (D) 3 be defined by T f = sign(q)(f + |q| curl v)
, where v ∈ H α,loc (curl, Ω) is the radiating solution to [START_REF] Bao | An inverse problem for scattering by a doubly periodic structure[END_REF]. Then the near field operator satisfies

W N = H * T H.
Proof. We recall the operator Q in ( 19) that maps f ∈ L 2 (D) 3 to the Rayleigh sequences (û + 1,j , û-1,j , û+ 2,j , û-2,j ) where u is the radiating variational solution to curl 2 uk 2 u = curl( |q|f ) in Ω. By definition of the solution operator G we have Gf = (û + 1,j , û-1,j , û+ 2,j , û-2,j ) where u ∈ H α,loc (curl, Ω) is a radiating weak solution to curl(ε -1 r curl u)k 2 u =curl(q/ |q|f ). This means that curl 2 uk 2 u =curl( |q| sign(q)(f + |q| curl v)), thus, Gf = -(QT )f . Now due to the fact that N = GH we have

W N = W GH = -W QT H.
Additionally we know from ( 20) that H * = -W Q which completes the proof.

The Range Identity Theorem

This section presents an abstract result on range identities which is necessary to characterize the support D of the contrast q. For the convenience of the reader, we give a rather complete proof, see also in [START_REF] Kirsch | The Factorization Method for Inverse Problems[END_REF][START_REF] Lechleiter | The Factorization method is independent of transmission eigenvalues[END_REF]. First, we introduce real and imaginary part of a bounded linear operator. Let X ⊂ U ⊂ X * be a Gelfand triple, that is, U is a Hilbert space, X is a reflexive Banach space with dual X * for the inner product of U , and the embeddings are injective and dense. Then the real and imaginary part of a bounded operator T : X * → X are defined in accordance with the corresponding definition for complex numbers,

Re (T ) := 1 2 (T + T * ), Im (T ) := 1 2i (T -T * ).
Theorem 4.1. Let X ⊂ U ⊂ X * be a Gelfand triple with Hilbert space U and reflexive Banach space X. Furthermore, let V be a second Hilbert space and F : V → V , H : V → X and T : X → X * be linear and bounded operators with

F = H * T H
We make the following assumptions: a) H is compact and injective. b) There exists t ∈ [0, 2π] such that Re (e it T ) has the form Re (e it T ) = T 0 + T 1 with some positive definite selfadjoint operator T 0 and some compact operator T 1 : X → X * . c) Im T is non positive on X, i.e., Im T φ, φ ≤ 0 for all φ ∈ X. Moreover, we assume that one of the two following conditions is fullfilled d) T is injective and t from b) does not equal π/2 or 3π/2. e) Im T is negative on the (finite dimensional) null space of Re (e it T ), i.e., for all φ = 0 such that Re (e it T )φ = 0 it holds Im T φ, φ < 0.

Then the operator F ♯ := |Re (e it F )| -Im F is positive definite and the ranges of H * : X * → V and

F 1 2
♯ : V → V coincide. Proof. We know that from Theorem 2.15 in [START_REF]The factorization method for a class of inverse elliptic problems[END_REF] it is sufficient to assume that X = U is a Hilbert space and that H has dense range in U . The factorization of F implies that Re (e it F ) = H * Re (e it T )H is compact and selfadjoint. By the spectral theorem for such operators, there exists a complete orthonormal eigensystem (λ j , ψ j ) j∈N of Re (e it F ). In consequence, the spaces

V + = span{ψ j : λ j > 0} and V -= span{ψ j : λ j ≤ 0}
are invariant under Re (e it F ) and satisfy V = V + ⊕ V -. We set U -= HV -.

In the next step we show that U -is finite dimensional. The operator T 1 = Re (e it T ) -T 0 is a selfadjoint and compact operator, we denote by (µ j , φ j ) j∈N an eigensystem of T 1 . By assumption of T 0 , there exists α > 0 such that T 0 ϕ, ϕ ≥ α ϕ 2 for all ϕ ∈ U . We set W + = span{φ j : µ j > -α}, W -= span{φ j : µ j ≤ -α} and note that W -is finite dimensional since µ j → 0. Let now φ = Hψ ∈ U -with (unique) decomposition

φ = φ + + φ -, φ ± ∈ W ± . Since ψ ∈ V -, 0 ≥ Re (e it F )ψ, ψ = Re (e it T )Hψ, Hψ = Re (e it T )(φ + + φ -), φ + + φ - = Re (e it T )φ + , φ + + Re (e it T )φ -, φ -≥ c φ + 2 -Re (e it T ) φ -2 , thus, φ 2 = φ + 2 + φ -2 ≤ C φ -2
. This shows that the mapping φ → φ -is boundedly invertible from U -into W -. Consequently, U -is finite dimensional.

Denseness of the range of H implies that the sum HV + + U -is dense in U . Since U -is a finite dimensional and therefore complemented subspace, we can choose a closed subspace U + of HV + such that the (non-orthogonal) sum U = U + ⊕ U -is direct. Let moreover U 0 := HV + ∩ U -be the intersection of HV + and U -, we will show that U 0 is contained in the kernel of Re (e it T ). We denote P U ± : U → U ± the canonical projections, that is, every φ ∈ U has the unique decomposition φ = P U + φ + P U -φ. Both operators P U ± are bounded and P U + -P U -is an isomorphism, since

(P U + -P U -) 2 = P 2 U + + P 2 U --P U + P U --P U -P U + = P U + + P U -= Id .
From the factorization Re (e it F ) = H * Re (e it T )H and the definition of U ± we obtain that H * Re (e it T )(U -) = Re (e it F )(V -) ⊂ V -. Note also that, by definition we have U + ⊂ HV + . In consequence, for φ -∈ U -and ψ + ∈ V + we have 0 = H * (Re (e it T ))φ -, ψ + = Re (e it T )φ -, Hψ + = φ -, (Re (e it T ))Hψ + .

We conclude that Re (e it T )U -⊂ (HV + ) ⊥ = (U + ⊕ U 0 ) ⊥ ⊂ (U + ) ⊥ and, Re (e it T )U + ⊂ Re (e it T )HV + ⊂ (U -) ⊥ . Indeed, for φ + ∈ HV + there is a sequence ψ + n ∈ V + such that Hψ + n → φ + and Re (e it T )Hψ + n ⊂ (U -) ⊥ by ( 21), thus, Re (e it T )φ + ⊂ (U -) ⊥ . For φ 0 ∈ HV + ∩ U -, these mapping properties of Re (e it T ) imply that Re (e it T )φ 0 is orthogonal both to U -and U + . Therefore Re (e it T )φ 0 = 0 and we conclude that U 0 = HV + ∩ U -is contained in the kernel of Re (e it T ). This inclusion allows to show a factorization of F ♯ in the next step.

Let ψ ∈ V and ψ ± be its orthogonal projection on V ± . Then

|Re (e it F )|ψ = H * Re (e it T )H(ψ + -ψ -) = H * Re (e it T )(P U + Hψ + + P U -Hψ + -P U + Hψ --P U -Hψ -) = H * Re (e it T )(P U + Hψ + 2 P U -Hψ + ∈U 0 ⊂ker(Re (e it T )) -P U + Hψ) = H * Re (e it T )(P U + -P U -)Hψ
This factorization of |Re (e it F )| yields a factorization of F ♯ ,

F ♯ = |Re (e it F )| -Im F = H * (Re (e it T )(P U + -P U -) -Im T )H = H * T ♯ H,
where T ♯ = Re (e it T )(P U + -P U -) -Im T . Due to the fact that Re (e it T )(P U + -P U -)Hφ, Hφ = |Re (e it F )|φ, φ ≥ 0 for all φ ∈ V and denseness of the range of H in U we conclude that Re (e it T )(P U + -P U -) is nonnegative on U . Since T ♯ is therefore a nonnegative operator, we can apply the inequality [19, Estimate (4.5)] for bounded nonnegative operators,

T ♯ ψ, ψ ≥ 1 T ♯ T ♯ ψ 2 , ψ ∈ U (22) 
Now, we show that assumption d) implies assumption e). Under the assumption d), let φ belong to the null space of Re (e it T ) and suppose that Im T φ, φ = 0. We need to show that this implies that φ = 0. By definition of the real part of an operator,

e it T φ + e -it T * φ = 0 (23) 
Furthermore, -Im T is a bounded nonnegative operator so the application of ( 22) to -Im T yields

0 = -Im T φ, φ ≥ 1 Im T Im T φ 2 , φ ∈ U,
hence Im T φ = 0 and Im φ = 0. By definition of the imaginary part, this is to say that T φ -T * φ = 0. Combine this equation with (23) yields that (1 + e i2t )T φ = 0. Since t ∈ [0, 2π] \ { π 2 , 3π 2 }, this implies T φ = 0 and φ = 0 by assumption d). We have hence proven that Im T φ, φ < 0 for all 0 = φ ∈ ker(Re (e it T )). This is precisely assumption e) which is considered next.

Assuming e), we will show that T ♯ is injective. Suppose that T ♯ φ = 0, then we have Re (e it T )(P U + -P U -)φ, φ -Im T φ, φ = 0. Boths terms on the left are nonnegative so we have Re (e it T )(P U + -P U -)φ, φ = 0 Im T φ, φ = 0 [START_REF] Lechleiter | A galerkin method for strongly singular volume integral equations arising in grating scattering[END_REF] From this and application of [START_REF] Lechleiter | The Factorization method is independent of transmission eigenvalues[END_REF] to Re (e it T )(P U + -P U -) yield Re (e it T )(P U + -P U -)φ = 0. Moreover, due to the selfadjointness we obtain

Re (e it T )(P U + -P U -) = (P U + -P U -) * Re (e it T ) and since P U + -P U -is an isomorphism so is (P U + -P U -) * . Consequently, Re (e it T )φ = 0. Assumption e) now implies that Im T φ, φ < 0 if φ = 0. However, we showed, in [START_REF] Lechleiter | A galerkin method for strongly singular volume integral equations arising in grating scattering[END_REF], that -Im T φ, φ = 0, that is, φ = 0 and therefore T ♯ is injective. Hence, by assumption d) or e), T ♯ is an injective Fredholm operator on index 0 (Fredholmness is due to assumption b)) and hence boundedly invertible. By ( 22) we obtain

T ♯ ψ, ψ ≥ 1 T ♯ T ♯ ψ 2 ≥ C ψ 2 for all ψ ∈ U
Now, as T ♯ has been show to be positive definite, the square root T

1/2 ♯
of T ♯ is also positive definite on U , see, e.g., [START_REF] Rudin | Functional Analysis[END_REF], hence the inverse

T -1/2 ♯
is bounded and we can write

F ♯ = F 1/2 ♯ F 1/2 ♯ * = H * T ♯ H = H * T 1/2 ♯ H * T 1/2 ♯ *
However, if two positive operators agree, then the ranges of their square root agree, as the following well known lemma shows.

Lemma 4.2. (Lemma 2.4 in [START_REF]The factorization method for a class of inverse elliptic problems[END_REF]). Let V , U 1 and U 2 be Hilbert spaces and A j : U j → V , j = 1, 2, bounded and injective such that

A 1 A * 1 = A 2 A * 2 .
Then the ranges of A 1 and A 2 coincide and A -1

1 A 2 is an isomorphism from U 2 onto U 1 . Setting A 1 = F 1/2 ♯ and A 2 = H * T 1/2 ♯
, the last lemma states that the ranges of F 

Study of the Middle Operator

In this section we analyze the middle operator T in the factorization of Theorem 3.2 and derive its necessary properties for the application of the Theorem 4.1. This is seen in the following lemma.

Lemma 5.1. Suppose that the contrast q satisfies the Assumption 2.1 and that the direct scattering problem (9) is uniquely solvable for any f ∈ L 2 (D) 3 . Let T : L 2 (D) 3 → L 2 (D) 3 be the operator defined as in Theorem 3.2, i.e.

T f = sign(q

)(f + |q| curl v),
where v ∈ H α,loc (curl, Ω) is the radiating variational solution to

curl(ε -1 r curl u) -k 2 u = -curl(q/ |q|f ). ( 25 
)
Then we have (a) T is injective and Im T f, f ≤ 0 for all f ∈ L 2 (D) 3 .

(b) Define the operator T 0 : L 2 (D) 3 → L 2 (D) 3 by T 0 f = sign(q)(f + |q| curl ṽ) where ṽ ∈ H α,loc (curl, Ω) solves [START_REF] Mclean | Strongly Elliptic Systems and Boundary Integral Operators[END_REF] 3 , in the variational sense. Then we have that T -T 0 is compact in L 2 (D) 3 .

for k = i, f ∈ L 2 (D)
(c) For T 0 defined as in (b), if Re (q) > 0 on L 2 (D) 3 then Re (T 0 ) is coercive in L 2 (D) 3 , i.e, there exists a constant γ > 0 such that

Re (T 0 )f, f L 2 (D) 3 ≥ γ f L 2 (D) 3 .
Note that the proofs of (b) and (c) can be found in Theorem 4.9 [START_REF] Sandfort | The factorization method for inverse scattering from periodic inhomogeneous media[END_REF] or Theorem 5.12 [START_REF] Kirsch | The Factorization Method for Inverse Problems[END_REF]. Here, for convenience, we repeat the proof of (b) in [START_REF] Kirsch | The Factorization Method for Inverse Problems[END_REF] with slight adaptations.

Proof. (a) We show the injectivity of T by assuming that T f = sign(q)(f + |q| curl v) = 0, then v is a radiating variational solution to the homogeneous problem curl 2 vk 2 v = 0. However, we showed in the proof of Lemma 3.1 that the latter problem has only the trivial solution which implies that v = 0 in Ω. Thus, f = 0 or T is injective. Now we set w = f + |q| curl v, then T f = sign(q)w and

T f, f L 2 (D) 3 = D sign(q)w • (w -|q| curl v) dx = D (sign(q)|w| 2 -q/ |q|w • curl v) dx For r > sup{|x 3 | : (x 1 , x 2 , x 3 ) ⊤ ∈ D}, we consider a smooth function χ ∈ C ∞ (R) such that χ = 1 in Ω r , χ = 0 in Ω \ Ω 2r . Then χv belongs to H α,loc (curl, Ω) with compact support in Ω 3r . Since v ∈ H α,loc (curl, Ω)
is the radiating solution to ( 25), we have

- D q/ |q|w • curl v dx = Ωr (| curl v| 2 -k 2 |v| 2 ) dx + Ω2r \Ωr (curl v • curl(χv) -k 2 v • χv) dx
Now using Green's theorems and exploiting the fact that v solve the Helmholtz equation in Ω \ Ω h , we obtain that

- D q/ |q|w • curl v dx = Ωr (| curl v| 2 -k 2 |v| 2 ) dx + Γr - Γ-r (e 3 × curl v • v) ds = Ωr (| curl v| 2 -k 2 |v| 2 ) dx + Γr - Γ-r (-v 1 ∂ 3 v 1 -v 2 ∂ 3 v 2 + v 3 ∂ 3 v 3 ) ds . (26) 
Taking the imaginary part of the latter equation we have

-Im D q/ |q|w • curl v dx = Im Γr - Γ-r (-v 1 ∂ 3 v 1 -v 2 ∂ 3 v 2 + v 3 ∂ 3 v 3 ) ds .
Recall that v satisfies the radiating Rayleigh condition for |x 3 | > r. Thus all the terms corresponding to evanescent modes tend to zero as r tends to infinity. Then due to a straightforward computation we derive

-Im D q/ |q|w • curl v dx = lim r→∞ Im Γr - Γ-r (-v 1 ∂ 3 v 1 -v 2 ∂ 3 v 2 + v 3 ∂ 3 v 3 ) ds = -4π 2 j:k 2 >α 2 j β j (|v + j | 2 + |v - j | 2 ), which implies that Im T f, f L 2 (D) 3 = D Im q/|q||w| 2 dx -Im D q/ |q|w • curl v dx = D Im q/|q||w| 2 dx -4π 2 j:k 2 >α 2 j β j (|v + j | 2 + |v - j | 2 ) ≤ 0, since Im (q) ≤ 0 in D. (b)
From the definitions of T and T 0 we note that T f -T 0 f = q/ |q| curl(vṽ) where v, ṽ ∈ H α,loc (curl, Ω) are the radiating solutions, for k and k = i, of

Ω (ε -1 r curl v • curl ψ -k 2 v • ψ) dx = - Ω q/ |q|f • curl ψ dx , (27) 
Ω (ε -1 r curl ṽ • curl ψ + ṽ • ψ) dx = - Ω q/ |q|f • curl ψ dx , (28) 
respectively, for all ψ ∈ H α (curl, Ω) with compact support. By substituting ψ = ∇ϕ for scalar functions ϕ ∈ C ∞ (Ω) with compact support we obtain that Ω v • ∇ϕ dx = 0 for all ϕ ∈ C ∞ (Ω) with compact support which means that div v = 0, and analogously, div ṽ = 0 in Ω. The difference w = vṽ solves

Ω (ε -1 r curl w • curl ψ -k 2 w • ψ) dx = (k 2 + 1) Ω ṽ • ψ dx ,
for all ψ ∈ H α (curl, Ω) with compact support. Let now the sequence f j converge weakly to zero in L 2 (D) 3 and denote by v j , ṽj ∈ H α,loc (curl, Ω) the corresponding radiating solutions of ( 27) and ( 28), respectively. Define w j ∈ H α,loc (curl, Ω) again by the difference

w j = v j -ṽj . Set R > supp{|x 3 | : (x 1 , x 2 , x 3 ) ⊤ ∈ D}, then D ⊂ Ω R .
By the boundedness of the solution operator we conclude that v j and ṽj converge weakly to zero in H α (curl, Ω R ). Furthermore, v j and ṽj are smooth outside of D and converges uniformly (with all of its derivatives) to zero on Γ ±h . In consequence, w j converges to zero in C(∂Ω R ). We determine p j ∈ H 1 α,⋄ (Ω R ) as the solution of

ΩR ∇p j • ∇ϕ dx = ∂ΩR (ν • w j )ϕ ds (29) 
for all ϕ ∈ H 1 α,⋄ (Ω R ). Here the subspace

H 1 α,⋄ (Ω R ) of H 1 α (Ω R ) is defined as H 1 α,⋄ (Ω R ) = {ϕ ∈ H 1 α (Ω R ) : ΩR ϕ ds = 0}.
The solution of (29) exists and is unique since the form (p, ϕ) → ΩR ∇p • ∇ϕ dx is bounded and coercive on H 1 α,⋄ (Ω R ) by the inequality of Poincaré (cf. [START_REF] Triebel | Höhere Analysis[END_REF]). The latter states that there exists a constant c > 0 with

ΩR |∇ϕ| 2 dx ≥ c ϕ 2 H 1 α (ΩR) for all ϕ ∈ H 1 α,⋄ (Ω R ). (30) 
Problem ( 29) is the variational form of the Neumann boundary value problem

∆p j = div w j = 0 in Ω R , ∂ ν p j = ν • w j on ∂Ω R .
We observe that (29) holds even for all ϕ ∈ H 1 α (Ω R ) since ∂ΩR (ν •w j ) ds vanishes by the divergence theorem and the fact that div w j = 0. Substituting ϕ = p j into (29) yields, using [START_REF] Triebel | Höhere Analysis[END_REF] and the trace theorem,

c p j 2 H 1 α (ΩR) ≤ ΩR |∇p j | 2 dx = ∂ΩR (ν • w j )p j ds ≤ c w j C(∂ΩR) p j H 1 α (ΩR) ,
i.e. p j H 1 α (ΩR) ≤ (c/c) w j C(∂ΩR) which converges to zero. Therefore, the functions wj := w j -∇p j ∈ H α (curl, Ω R ) satisfy

• wj ∈ H α,div (curl, Ω R ) := {u ∈ H α (curl, Ω R ) : ΩR ∇ϕ • u dx = 0 for all ϕ ∈ H 1 α (Ω R )} • wj ⇀ 0 weakly in L 2 (Ω R ) 3 ,
• curl wj = curl w j ⇀ 0 weakly in L 2 (Ω R ) 3 .

These three conditions assure that wj converges to zero in the norm of L 2 (Ω R ) 3 since the closed subspace 3 . We refer to [START_REF] Weber | A local compactness theorem for Maxwell's equations[END_REF], see also [START_REF] Monk | Finite Element Methods for Maxwell's Equations[END_REF], Theorem 4.7. Since also ∇p j L 2 (ΩR) 3 → 0 this yields w j L 2 (ΩR) → 0 as j tends to infinity. Now we return to the variational equation for w j and substitute ψ = φw j where φ ∈ C ∞ (Ω) is some function with compact support such that φ = 1 on Ω R . This yields

H α,div (curl, Ω R ) of H α (curl, Ω R ) is compactly embedded in L 2 (Ω)
ΩR (ε -1 r | curl w j | 2 -k 2 |w j | 2 ) dx = Ω\ΩR (ε -1 r curl w j • curl(φw j ) -k 2 φ|w j | 2 ) dx + (k 2 + 1) Ω φ ṽj • w j dx .
We note that w j is smooth in Ω \ Ω R . Green's theorem in Ω mR \ Ω R (for a sufficiently large value of m) and application of curl 2 w jk 2 w j = (k 2 + 1)ṽ j in this region yields

ΩR (ε -1 r | curl w j | 2 -k 2 |w j | 2 ) dx = ∂ΩR (ν × curl w j ) • w j ds + (k 2 + 1)
ΩR ṽj • w j dx which tends to zero as j tends to infinity since ṽj and curl w j are bounded sequences and w j L 2 (ΩR) , w j C(∂ΩR) tend to zero. Therefore, also curl w j tends to zeros in L 2 (Ω R ) 3 which complete the proof.

Characterization of the Biperiodic Support

In this section, we give a characterization for a point z belonging to the support of the contrast q by exploiting special test sequences. A simple criterion for imaging the periodic support is also proposed. First we introduce some basic facts about α-quasiperiodic Green functions. It is well known that the function G k (x, y) given by

G k (x, y) = i 8π 2 j∈Z 1 β j e iαj •(x-y)+iβj|x3-y3| , x, y ∈ Ω, x 3 = y 3 , (31) 
is the α-quasiperiodic Green's function of the Helmholtz operator in three dimensions. That means, for fixed

y ∈ Ω, ∆ x G k (x, y) + k 2 G k (x, y) = -δ y (x), x ∈ Ω.
Also, another form of G k (x, y) can be given, see e.g. [START_REF] Arens | Scattering by biperiodic layered media: The integral equation approach[END_REF],

G k (x, y) = e ik|x-y| 4π|x -y| + Ψ k (x -y), (32) 
where Ψ k is the analytic solution to the Helmholtz equation in (-2π, 2π) 2 × R. The α-quasiperiodic Green's tensor G k (x, y) ∈ C 3×3 defined by

G k (x, y) = G k (x, y)I 3×3 + k -2 ∇ x div x (G k (x, y)I 3×3 ), x, y ∈ Ω, x 3 = y 3 , solves curl 2 x G k (x, y) -k 2 G k (x, y) = δ y (x)I 3×3 , x ∈ Ω,
where I 3×3 is the identity matrix. Here, the curl of a matrix is taken columnwise, the div of a matrix and the ∇ are meant to be taken columnwise and componentwise, respectively. Note that G k satisfies the Rayleigh expansion condition and has a strong singularity due to the representation of G k in [START_REF] Yang | A inverse transmission scattering problem for periodic media[END_REF].

Lemma 6.1. Let the operator W be defined as in [START_REF]Characterization of the shape of a scattering obstacle using the spectral data of the far field operator[END_REF]. For any z ∈ Ω and fixed nonzero p = (p 1 , p 2 , p 3 ) ∈ C 3 we denote by ( Ψ± z,j ) j∈Z 2 ∈ ℓ 2 (Z 2 ) 4 the Rayleigh coefficients of the first two components of 

Ψ z (x) := k 2 G k (x, z)p =      k 2 G k (x, z) + ∂ 2 G k (x,z) ∂x 2 1 p 1 + ∂ 2 G k (x,z) ∂x1∂x2 p 2 + ∂ 2 G k (x,z) ∂x1∂x3 p 3 ∂ 2 G k (x,z) ∂x2∂x1 p 1 + k 2 G k (x, z) + ∂ 2 G k (x,z) ∂x 2 2 p 2 + ∂ 2 G k (x,z) ∂x2∂x3 p 3 ∂ 2 G k (x,z) ∂x3∂x1 p 1 + ∂ 2 G k (x,z) ∂x3∂x2 p 2 + k 2 G k (x, z) + ∂ 2 G k (x,z) ∂x 2 3 p 3      , for x ∈ Ω, x = z.
(•, z) in (31) Ĝ± k,j (z) = i 8π 2 β j e -i[α1,j z1+α2,j z2±βj (z3∓h)] .
Then the Rayleigh sequences ( Ψ± z,j ) j∈Z 2 ∈ ℓ 2 (Z 2 ) 4 of the first two components of Ψ z can be given as

Ψ± z,j = (k 2 -α 2 1,j ) Ĝ± k,j (z)p 1 -α 1,j α 2,j Ĝ± k,j (z)p 2 ∓ α 1,j β j Ĝ± k,j (z)p 3 -α 2,j α 1,j Ĝ± k,j (z)p 1 + (k 2 -α 2 2,j ) Ĝ± k,j (z)p 2 ∓ α 2,j β j Ĝ± k,j (z)p 3 .
Proof. First, let z ∈ D. Recall the operator Q defined in [START_REF]The factorization method for a class of inverse elliptic problems[END_REF]. Due to the fact that H * = -W Q, it is sufficient to show that ( Ψz,j ) j∈Z 2 ∈ Rg(Q). Choose r > 0 such that B(z, r) ∈ D and consider a cut-off function ϕ ∈ C ∞ (R 3 ) with ϕ(x) = 0 for |x -z| ≤ r/2 and ϕ(x) = 1 for |x -z| ≥ r. We define

w(x) = curl 2 (ϕ(x)G k (x, z)p), x ∈ Ω.
Note that, for |x -z| ≥ r, we have

w(x) = curl 2 (ϕ(x)G k (x, z)p) = k 2 G k (x, z)p,
and further ( ŵj ) j∈Z 2 = ( Ψz,j ) j∈Z 2 . Using Green's theorem we obtain

Ω (curl w • curl ψ -k 2 w • ψ) dx = Ω (curl w -k 2 curl(ϕ(x)G k (x, z)p)) • curl ψ dx = Ω g • curl ψ dx ,
for all ψ ∈ H α (curl, Ω) with compact support, and g := curl wk 2 curl(ϕ(x)G k (x, z)p). Since g is smooth and vanishes for |z -x| ≥ r, thus supp(g) ⊂ D. Set f = |q| -1 g ∈ L 2 (D) 3 . Then we have

Ω (curl w • curl ψ -k 2 w • ψ) dx = D |q|f • curl ψ dx ,
which implies that ( Ψz,j ) j∈Z 2 ∈ Rg(Q). Now let z / ∈ D, and on the contrary, assume that Ψz,j ∈ Rg(Q). That means there exists u ∈ H α,loc (curl, Ω) and f ∈ L 2 (D) 3 such that u is the variational radiating solution to curl 2 u-k 2 u = curl( |q|f ) and ûj = Ψz,j for all j ∈ Z 2 . Since the Rayleigh sequences of u and Ψ z are equal, both functions coincide in (0, 2π) 2 × {|x 3 | > h} where h > supp{|x 3 | : (x 1 , x 2 , x 3 ) ⊤ ∈ D}. Due to the analyticity of u and Ψ z in Ω \ D and Ω \ {z}, respectively, and the analytic continuation we conclude that u = Ψ z in Ω \ (D ∪ {z}). This is a contradiction since u ∈ H(curl, B) for any ball B containing z but curl(k 2 G k (•, z)p) / ∈ H(curl, B) due to a strongly singularity at z. Theorem 6.3. Suppose that the contrast q satisfies the Assumption 2.1 and that the direct scattering problem (9) is uniquely solvable. For j ∈ Z 2 , denote by (λ n , ψ n,j ) n∈N the orthonormal eigensystem of (W N ) ♯ = |Re (W N )| + Im (W N ) and by ( Ψ± z,j ) j∈Z 2 the test sequence in Lemma 6.1. A point z belongs to the support of q if and only if

∞ n=1 | Ψ± z,j , ψ j,n ℓ 2 (Z 2 ) 4 | 2 λ n < ∞. (33) 
Proof. As we assumed in the theorem, (λ n , ψ n,j ) n∈N is an orthonormal eigensystem of (W N ) ♯ . The assumptions of Theorem 

Numerical Experiments

As mentioned in the introduction, these are to the best of our knowledge the first three-dimensional examples of the method in a biperiodic setting. These numerical examples focus on the dependence of the reconstructions on the number of the incident fields (or, equivalently, the evanescent modes), and the performance of the method when the data is perturbed by artificial noise. Further, we also indicate the number of the evanescent and propagating modes which are used for each reconstruction. These experiments use three biperiodic structures presented in one period Ω = (-π, π) 2 × R in terms of the support D of the contrast q as follows: (i) Biperiodic structures of ellipsoids,

D = {(x 1 , x 2 , x 3 ) ⊤ ∈ Ω : x 2 1 2.5 2 + x 2 2 2.5 2 + x 2 3 0.4 2 ≤ 1}, q = 0.5 in D.
(ii) Biperiodic structures of cubes,

D = {(x 1 , x 2 , x 3 ) ⊤ ∈ Ω : |x 1 | ≤ 2.5, |x 2 | ≤ 2.5, |x 3 | ≤ 0.45}, q = (x 3 + 1)(sin(x 1 ) 2 sin(x 2 ) 2 + 0.3)/4 -0.4i in D.
(iii) Biperiodic structures of plus signs,

D = Ω ∩ [({|x 1 | ≤ 1.75} ∪ {|x 2 | ≤ 1.75}) ∩ {|x 3 | ≤ 0.45}], q = 0.5 -0.6i in D 1 = {(x 1 , x 2 ) ⊤ ∈ D : -1 < x 1 < 1}, 0.3 in D \ D 1 .
The data of the direct scattering problem has been obtained by the extension of the volume integral equation method studied in [START_REF] Lechleiter | A galerkin method for strongly singular volume integral equations arising in grating scattering[END_REF] for the scalar case to the Maxwell's equations. Of course it is not possible to numerically compute data for all incident fields (ϕ

(l)± j ) j∈Z 2 in (11). Denote Z 2 M1,M2 = {j = (j 1 , j 2 ) ∈ Z 2 : -M 1 ≤ j 1 , j 2 ≤ M 2 }, M 1 , M 2 ∈ N.
For the numerical experiments here we solve the direct problem for a number j = (j 1 , j 2 ) of incident fields ϕ (l)± j where j ∈ Z 2 M1,M2 . Denote by N M1,M2 the block matrix corresponding to the discretization of the near field operator N . Then N M1,M2 is given by

N M1,M2 =      (û + 1,n ) (1)+ j (û + 1,n ) (1)- j (û + 1,n ) (2)+ j (û + 1,n ) (2)- j (û + 2,n ) (1)+ j (û + 2,n ) (1)- j (û + 2,n ) (2)+ j (û + 2,n ) (2)- j (û - 1,n ) (1)+ j (û - 1,n ) (1)- j (û - 1,n ) (2)+ j (û - 1,n ) (2)- j (û - 2,n ) (1)+ j (û - 2,n ) (1)- j (û - 2,n ) (2)+ j (û - 2,n ) (2)- j      , j, n ∈ Z 2 M1,M2 . (34) 
where

A n (z) = 4 l=1 j∈Z 2 M 1 ,M 2 Ψ(l) z,j ψ (l) j+M1+1,n 2 .
Here λ n , ψ j,n are the singular values and vectors of (WN M1,M2 ) ♯,δ , respectively. The parameter γ is chosen by Morozov's generalized discrepancy principle which can be obtained by solving the equation 

2 ♯

 2 is an isomorphism from U to V . Since T 1/2 ♯ is an isomorphism on U , we conclude that the range of H * T 1/2 ♯ equals the range of H * and that F -1/2 ♯ H * : U → V is bounded with bounded inverse.

4(M1+M2+1) 2 n=1γ 2 -

 22 δ 2 λ n (λ n + γ)2 A n (z) = 0, for each sampling point z. For the following experiments, we choose the wave number k = 2π/3. The number of the incident fields used is 4(M 1 + M 2 + 1) 2 . Further, the reconstructions have been smoothened using the command smooth3 in Matlab, and we plot the pictures in 3 × 3 periods.

  (a) Exact geometry (view down x 3 axis) (b) M 1,2 = 2 (view down x 3 axis) (c) M 1,2 = 4 (view down x 3 axis) (d) M 1,2 = 8 (view down x 3 axis) (e) Exact geometry (3D view) (f) M 1,2 = 8 (3D view)

Figure 1 :

 1 Figure 1: Reconstructions of biperiodic shapes of ellipsoids for different number of incident fields without noise. The number of Rayleigh coefficients measured in each reconstruction is 4(M 1 + M 2 + 1) 2 . The contrast q = 0.5 in D. (b) 48 propagating modes, 52 evanescent modes, isovalue 7 (c) 52 propagating modes, 312 evanescent modes, isovalue 0.1 (d) 52 propagating modes, 1104 evanescent modes, isovalue 0.01.

  (a) Exact geometry (view down x 3 axis) (b) M 1,2 = 2 (view down x 3 axis) (c) M 1,2 = 4 (view down x 3 axis) (d) M 1,2 = 8 (view down x 3 axis) (e) Exact geometry (3D view) (f) M 1,2 = 8 (3D view)

Figure 2 :

 2 Figure 2: Reconstructions of biperiodic shapes of cubes for different number of incident fields without noise. The number of Rayleigh coefficients measured in each reconstruction is 4(M 1 + M 2 + 1) 2 . The contrast q = (x 3 + 1)(sin(x 1 ) 2 sin(x 2 ) 2 + 0.3)/4 -0.4i in D. (b) 48 propagating modes, 52 evanescent modes, isovalue 40 (c) 52 propagating modes, 312 evanescent modes, isovalue 1.8 (d) 52 propagating modes, 1104 evanescent modes, isovalue 0.008.

  (a) Exact geometry (view down x 3 axis) (b) M 1,2 = 2 (view down x 3 axis) (c) M 1,2 = 4 (view down x 3 axis) (d) M 1,2 = 8 (view down x 3 axis) (e) Exact geometry (3D view) (f) M 1,2 = 8 (3D view)

Figure 3 :

 3 Figure 3: Reconstructions of biperiodic shapes of plus signs for different number of incident fields without noise. The number of Rayleigh coefficients measured in each reconstruction is 4(M 1 + M 2 + 1) 2 . The contrast q = 0.5 -0.6i in D 1 = {(x 1 , x 2 ) ⊤ ∈ D : -1 < x 1 < 1} and q = 0.3 in D \ D 1 . (b) 48 propagating modes, 52 evanescent modes, isovalue 15 (c) 52 propagating modes, 312 evanescent modes, isovalue 2 (d) 52 propagating modes, 1104 evanescent modes, isovalue 0.05.

  (a) Exact geometry (view down x 3 axis) (b) 2% artificial noise, M 1,2 = 8 (view down x 3 axis) (c) 5% artificial noise, M 1,2 = 8 (view down x 3 axis) (d) Exact geometry (3D view) (e) 5% artificial noise, M 1,2 = 8 (3D view)

Figure 4 :

 4 Figure 4: Reconstructions of biperiodic shapes of ellipsoids for artificial noise. The number of Rayleigh coefficients measured in each reconstruction is 4(M 1 + M 2 + 1) 2 . The contrast q = 0.5 in D. (b) 52 propagating modes, 1104 evanescent modes, isovalue 0.0012 (c) 52 propagating modes, 1104 evanescent modes, isovalue 0.0023.

  (a) Exact geometry (view down x 3 axis) (b) 2% artificial noise, M 1,2 = 8 (view down x 3 axis) (c) 5% artificial noise, M 1,2 = 8 (view down x 3 axis) (d) Exact geometry (3D view) (e) 5% artificial noise, M 1,2 = 8 (3D view)

Figure 5 :

 5 Figure 5: Reconstructions of biperiodic shapes of cubes for artificial noise. The number of Rayleigh coefficients measured in each reconstruction is 4(M 1 + M 2 + 1) 2 . The contrast q = (x 3 + 1)(sin(x 1 ) 2 sin(x 2 ) 2 + 0.3)/4 -0.4i in D. (b) 52 propagating modes, 1104 evanescent modes, isovalue 0.1 (c) 52 propagating modes, 1104 evanescent modes, isovalue 0.02.

  (a) Exact geometry (view down x 3 axis) (b) 2% artificial noise, M 1,2 = 8 (view down x 3 axis) (c) 5% artificial noise, M 1,2 = 8 (view down x 3 axis) (d) Exact geometry (3D view) (e) 5% artificial noise, M 1,2 = 8 (3D view)

Figure 6 :

 6 Figure 6: Reconstructions of biperiodic shapes of plus signs for artificial noise. The number of Rayleigh coefficients measured in each reconstruction is 4(M 1 + M 2 + 1) 2 . The contrast q = 0.5 -0.6i in D 1 = {(x 1 , x 2 ) ⊤ ∈ D : -1 < x 1 < 1} and q = 0.3 in D \ D 1 . (b) 52 propagating modes, 1104 evanescent modes, isovalue 0.1 (c) 52 propagating modes, 1104 evanescent modes, isovalue 0.02.

  Then z belongs to D if and only if W ( Ψ± j,z ) ∈ Rg(H * ). Note that the Rayleigh sequences Ĝ± k,j (z) of the α-quasiperiodic Green's function G k (•, z) can be obtained from the representation of G k

	Remark 6.2.

  4.1 on H, H * and T in the factorization W N = H * T H have been checked in Lemmas 3.1 and 5.1. Therefore, an application of Theorem 4.1 yields that Rg((W N ) ). Combining this range identity with the characterization given in Lemma 6.1 we obtain that ( Ψ± z,j ) j∈Z 2 ∈ Rg((W N ) Then the criterion[START_REF] Yang | A sampling method for the inverse transmission problem for periodic media[END_REF] follows from the Picard's range criterion.

	and only if z ∈ D.	1/2 ♯ ) = Rg(H 1/2 ♯ ) if

* 

Here û± [START_REF] Ammari | Uniqueness theorems for an inverse problem in a doubly periodic structures[END_REF][START_REF] Arens | Scattering by biperiodic layered media: The integral equation approach[END_REF],n are the Rayleigh sequences defined in [START_REF] Cakoni | Qualitative Methods in Inverse Scattering Theory[END_REF] while for l = 1, 2, (•)

indicate the correspondence to the the incident fields ϕ (l)± j

. Note that each component of N M1,M2 is a matrix of size (M 1 + M 2 + 1) 2 , thus N M1,M2 is a 4(M 1 + M 2 + 1) 2 × 4(M 1 + M 2 + 1) 2 matrix. The matrix WN M1,M2 which corresponds to the discretization of W N can be computed using [START_REF] Hu | The linear sampling method for the inverse electromagnetic scattering by a partially coated bi-periodic structure[END_REF], the symmetric matrix Re (WN M1,M2 ) can be decomposed as Re (WN

where D, V are the matrices of eigenvalues and corresponding eigenvectors of Re (WN M1,M2 ), respectively. Denote by |D| the absolute value of D which is taken componentwise. Then we have

Computing singular value decomposition of (WN M1,M2 ) ♯ implies that

where S is the diagonal matrix of singular values λ m of (WN 

Then the criterion [START_REF] Yang | A sampling method for the inverse transmission problem for periodic media[END_REF] for computing the image can be approximated as follows

where

Note that P should be small outside of D and big inside of D.

To show the performance of the method with noisy data, we pertub our synthetic data by artificial noise. More particularly, we add the noise matrix X of uniformly distributed random entries to the data matrix (WN M1,M2 ) 1/2 ♯ . Denote by δ the noise level, then the noise data matrix (WN M1,M2 )

where • 2 is the matrix 2-norm. Note that from the latter equation we also have

Since we apply Tikhonov regularization [START_REF] Colton | Recent developments in inverse acoustic scattering theory[END_REF], instead of implementing (35) we consider