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Introduction

Copulas-multivariate distribution functions with uniform margins-have proven to be remarkably useful in statistical modelling and in the study of dependence and association of random variables. Quasi-copulas, a more general concept, share many properties with copulas. The set of copulas is a proper subset of the set of quasi-copulas, and both sets have a natural partial ordering. The purpose of this paper is to investigate some properties of those partially ordered sets (posets). In particular, the poset of bivariate quasi-copulas is a complete lattice, which is order-isomorphic to the Dedekind-MacNeille completion of the poset of copulas in the bivariate case [START_REF] Nelsen | The lattice-theoretic structure of sets of bivariate copulas and quasi-copulas[END_REF], but this last is not true in higher dimensions.

Preliminaries

Let n ≥ 2 be an integer. An n-copula is a function C: II n -→ II(= [0, 1]) which satisfies the following properties:

(C1) For u = (u 1 , u 2 , . . . , u n ) in II n , C(u) = 0 if at least one coordinate of u is 0, and C(u) = u k whenever all coordinates of u are equal to 1 except maybe u k ; and

(C2) the C-volume of any n-box

J = × n i=1 [a i , b i ] ⊂ II n is nonnegative, i.e, V C (J) = (-1) k(c) C(c) ≥ 0, where the sum is taken over all the vertices c = (c 1 , c 2 , . . . , c n ) of J (i.e., c k = a k or c k = b k , for all k = 1, 2, . . . , n); and k(c) is the number of indices k such that c k = a k .
The importance of copulas in statistics is described in Sklar's theorem [START_REF] Sklar | Fonctions de répartition à n dimensions et leurs marges[END_REF]: Let H be a multivariate distribution function with univariate marginal distribution functions F 1 , F 2 , . . . , F n . Then there exists a copula C (which is uniquely determined on × n i=1 Range F i ) such that the following equality holds:

H(x) = C(F 1 (x 1 ), F 2 (x 2 ), . . . , F n (x n )) for all x = (x 1 , x 2 , . . . , x n ) ∈ [-∞, ∞] n .
Thus copulas link joint distribution functions to their univariate margins. For a complete survey on copulas, see [START_REF] Nelsen | An Introduction to Copulas[END_REF].

We will use along this paper the fact that set of n-copulas C n is compactsee [START_REF] Durante | Sklar's theorem via regularization techniques[END_REF] for a detailed study-, and consequently any sequence of n-copulas {C k } k∈IN contains a subsequence {C k(j) } j∈IN ⊆ {C k } k∈IN which converges (point-wise) to an n-copula C.

The concept of a quasi-copula is a more general notion than that of a copula, and was introduced by [START_REF] Alsina | On the characterization of a class of binary operations on distribution functions[END_REF] in the bivariate case, and [START_REF] Nelsen | Derivability of some operations on distribution functions[END_REF] for the general case, in order to characterize operations on distribution functions that can or cannot be derived from operations on random variables defined on the same probability space.

An n-quasi-copula is a function Q: II n -→ II which satisfies condition (C1) for n-copulas, but in place of (C2), the weaker conditions:

(Q1) Q is non-decreasing in each variable; and [START_REF] Cuculescu | Copulas: diagonals and tracks[END_REF]. While every copula is a quasi-copula, there exist proper quasi-copulas, i.e., quasi-copulas which are not copulas. If Q n denotes the set of n-quasi-copulas, Q n \ C n will denote the set of proper n-quasi-copulas. In this note we will also consider Q-volumes when Q is an n-quasi-copula. Similarities and differences between n-copulas and proper n-quasi-copulas can be found, for instance, in De [START_REF] De Baets | Extremes of the mass distribution associated with a trivariate quasi-copula[END_REF], [START_REF] Nelsen | Some new properties of quasi-copulas[END_REF],2010[START_REF] Rodríguez-Lallena | Some new characterizations and properties of quasi-copulas[END_REF].

(Q2) the Lipschitz condition |Q(v) -Q(u)| ≤ n i=1 |v i -u i | for all u, v in II n (see
For any quasi-copula

Q we have W n (u) = max(0, n i=1 u i -n + 1) ≤ Q(u) ≤ min(u 1 , u 2 , . . . , u n ) = M n (u) for all u in II n . M n (for every n ≥ 2)
and W 2 are copulas; however, for every n ≥ 3, W n is a proper n-quasi-copula. We will use the following notation: Given two n-quasi-copulas

Q 1 and Q 2 , Q 1 ≤ Q 2 denotes the point-wise inequality Q 1 (u) ≤ Q 2 (u) for all u ∈ II n .
Aggregation of pieces of information coming from different sources is an important task in expert and decision support systems, multi-criteria decision making, and group decision making. Aggregation operators [START_REF] Calvo | Aggregation operators: properties, classes and construction methods[END_REF] are precisely the mathematical objects that allow this type of information fusion. Aggregation operators include copulas, quasi-copulas, triangular norms (or t-norms)-associative copulas are continuous t-norms-, and semicopulas-a generalization of the concept of t-norm)-see Durante and Sempi (2005) and [START_REF] Klement | Triangular Norms[END_REF].

We will also need some notions from lattice theory [START_REF] Davey | Introduction to Lattices and Order[END_REF]. Given two elements x and y of a poset (P, ≤), let x ∨ y denote the join (or the least upper bound) of x and y (when it exists); similarly for S, where S is a subset of P ; x∧y denotes the meet (or the greatest lower bound) of x and y (when it exists); and similarly for S. In particular, for any pair

Q 1 and Q 2 of quasi-copulas (or copulas), Q 1 ∨ Q 2 = inf{Q ∈ Q n | Q 1 ≤ Q, Q 2 ≤ Q} and Q 1 ∧ Q 2 = sup{Q ∈ Q n | Q ≤ Q 1 , Q ≤ Q 2 }.
If the join or meet is found within a particular poset P , we subscript P S. Given two posets A and B, we say that A is join-dense (respectively, meet-dense) in B if for any D in B, there exists a set S ⊆ A such that D = B S (respectively, D = B S). A poset P = ∅ is a lattice if for every x, y in P , x ∨ y and x ∧ y are in P ; and P is a complete lattice if for every S ⊆ P , S and S are in P . If ϕ: P -→ L is an order-imbedding (i.e., order-preserving injection) of a poset P into a complete lattice L, then we say that L is a completion of P . Finally, if ϕ maps P onto L, ϕ is an order-isomorphism (i.e., order-preserving bijection).

We also have the following definition [START_REF] Davey | Introduction to Lattices and Order[END_REF]:

Definition 1. A completion C of a lattice L is called a Dedekind-MacNeille completion of L if C is join-dense and meet-dense in L.

The lattice of quasi-copulas

In [START_REF] Nelsen | The lattice-theoretic structure of sets of bivariate copulas and quasi-copulas[END_REF], the authors show that the set of 2quasi-copulas is a complete lattice, which is order-isomorphic to the Dedekind-MacNeille completion of the set of 2-copulas (for a study of the latticetheoretic structure of the sets of triangular norms and semi-copulas, see [START_REF] Durante | The lattice-theoretic structure of the sets of triangular norms and semi-copulas[END_REF]. Consequently, any set of 2-copulas sharing a particular statistical property is guaranteed to have pointwise best-possible bounds within the set of quasi-copulas. We now wonder if these results can be extended to higher dimensions. We then prove that the set of n-quasi-copulas is a complete lattice; however it is not order-isomorphic to the Dedekind-MacNeille completion of the set of n-copulas.

We first prove some results of the posets Q n , C n , and

Q n \ C n . Theorem 2. Q n is a complete lattice; however, neither C n nor Q n \ C n is a lattice.
Proof. Let S be any set of n-quasi-copulas, and define

Q S (u) = sup{Q(u) | Q ∈ S} and Q S (u) = inf{Q(u) | Q ∈ S} for each u in II n .
Since Q S and Q S are n-quasi-copulas (Rodríguez-Lallena and Úbeda-Flores, 2004), it now follows that ∨S (= Q S ) and ∧S (= Q S ) are in Q n , hence Q n is a complete lattice. Now suppose that C n is a lattice, and consider the following 2-copulas:

C 1 (u, v) = min(u, v, max(0, u -2/3, v -1/3, u + v -1)), C 2 (u, v) = C 1 (v, u), C 3 (u, v) = min(u, v, max(0, u -1/3, v -1/3, u + v -2/3)), C 4 (u, v) = min(u, v, max(1/3, u -1/3, v -1/3, u + v -1)).
We consider the following n-copulas:

C * i (u) = C i (u 1 , u 2 ) n k=3 u k , for i = 1, 2, 3, 4
, and for all u ∈ II n [START_REF] Nelsen | Derivability of some operations on distribution functions[END_REF]. Since C n is a lattice, C = C * 1 ∨ C * 2 exists and is a copula. Hence 1/3 ≥ C(1/3, 2/3, 1, . . . , 1) ≥ C * 1 (1/3, 2/3, 1, . . . , 1) = 1/3, so that C(1/3, 2/3, 1, . . . , 1) = 1/3. Similarly (using C *

2 ), we have C(2/3, 1/3, 1, . . . , 1) = 1/3. Since C * 1 ≤ C * 3 and 4

C * 2 ≤ C * 3 , C ≤ C *
3 and so C(1/3, 1/3, 1, . . . , 1) ≤ C * 3 (1/3, 1/3, 1, . . . , 1) = 0, thus C(1/3, 1/3, 1, . . . , 1) = 0. Similarly, we have C(2/3, 2/3, 1, . . . , 1) ≤ C * 4 (2/3, 2/3, 1, . . . , 1) = 1/3, so C(2/3, 2/3, 1, . . . , 1) = 1/3. Hence, we obtain V C ([1/3, 2/3] 2 × II n-2 ) = -1/3, i.e., C is a proper n-quasi-copula, which is a contradiction.

To prove that Q n \ C n is not a lattice, it suffices to exhibit two proper n-quasi-copulas Q 1 and Q 2 whose join (or meet) is an n-copula. Let Q be the proper 2-quasi-copula C 1 ∨ C 2 , and define

Q 1 (u) = Q(2u 1 , 2u 2 )u 3 • • • u n /2, u ∈ [0, 1/2] 2 × II n-2 , min(u 1 , u 2 , . . . , u n ), elsewhere,
and

Q 2 (u) = (1 + Q(2u 1 -1, 2u 2 -1)u 3 • • • u n )/2, u ∈ [1/2, 1] 2 × II n-2 , min(u 1 , u 2 , . . . , u n ), elsewhere. Note that Q 1 and Q 2 are proper n-quasi-copulas. Finally, since Q 1 ∨Q 2 = M n ,
which is an n-copula, the proof is done.

Lemma 3. Let a = (a 1 , a 2 , . . . , a n ) ∈ (0, 1) n , let θ ∈ [W n (a), M n (a)],
and define S a,θ = {Q ∈ Q n | Q(a) = θ}. Then S a,θ and S a,θ are the proper n-quasi-copulas (except when S a,θ = M n ) given by S a,θ (u) = min(u 1 , u 2 , . . . , u n , θ + n i=1 (u ia i ) + ) and S a,θ (u) = max(0, n i=1 u in + 1, θ + n i=1 (u ia i ) + ), respectively, where x + = max(x, 0).

Proof. Let Q be any n-quasi-copula. The defining conditions (Q1) and (Q2) for quasi-copulas yield, for all u ∈ II n , the inequalities -(a i -

u i ) + ≤ Q(u) -Q(u 1 , . . . , a i , . . . , u n ) ≤ (u i -a i ) + for all i = 1, 2, . . . , n, hence θ - n i=1 (a i -u i ) + ≤ Q(u) ≤ θ + n i=1 (u i -a i ) + . Thus S (a,b),θ ≤ Q ≤ S a,θ
, and these bounds are n-quasi-copulas (Theorem 3.2 in Rodríguez-Lallena and Úbeda-Flores, 2004).

Unlike the bivariate case, for any integer n ≥ 3, C n is neither join-dense nor meet-dense in Q n , as the following two examples show -note that W n is not an n-copula for n ≥ 3, so it is trivial that there does not exist a set B such that W n = Q n (B); however we provide another "non-trivial" example. But before proceeding, we provide the definition of an ordinal sum of a family of n-quasi-copulas, which is an n-quasi-copula and a simple generalization of the definition of ordinal sum of n-copulas -which can be found in [START_REF] Mesiar | Ordinal sums and idempotents of copulas[END_REF].

Definition 4. Let J be a finite or countable subset of the natural numbers IN, let (a k , b k ) k∈J be a family of sub-intervals of the unit interval II indexed by J, and let {Q k } k∈J a family of n-quasi-copulas also indexed by J. It is required that any two of the intervals (a k , b k ) have at most an endpoint in common. Then the ordinal sum Q of {Q k } k∈J with respect to the family of intervals (a k , b k ) is defined, for all u ∈ II, by

Q(u) =        a k + (b k -a k )Q k min(u 1 , b k ) -a k b k -a k , . . . , min(u n , b k ) -a k b k -a k , min(u 1 , u 2 , . . . , u n ) ∈ (a k , b k ), f or some k ∈ J, min(u 1 , u 2 , . . . , u n ),
elsewhere.

Example 5. Let n ≥ 3 be an integer; and D the ordinal sum of M n and W n with respect to the n-boxes [0, 1/2] n and [1/2, 1] n , respectively. Since any ordinal sum of n-quasi-copulas is an n-quasi-copula, then D is a proper n-quasi-copula. Now, suppose C n is join-dense in Q n , then there exists a set S ⊆ C n such that D = Q n S. Then, we have two cases:

(a) There exists an n-copula C such that C(1/2) = 1/2.

(b) Since C n is compact, there exists a sequence of n-copulas {C k } (with

C k ≤ D for every k ∈ IN) such that {C k (1/2)} -→ 1/2 as k → ∞. Let C be the n-copula for which {C k } -→ C point-wise; then it is clear that C(1/2) = 1/2.
In both cases, C is an ordinal sum -this is a simple generalization of the result in (Theorem 3.2.1 in [START_REF] Nelsen | An Introduction to Copulas[END_REF]. Since both C and D are ordinal sums and C ≤ D, with respect to the region [1/2, 1] n there exists an n-copula which is less than W n ; but this is absurd. We then conclude that C n is not join-dense in Q n .

Example 6. We first look at the case n = 3. Let C 1 and C 2 be the 3copulas whose mass is distributed uniformly along the main diagonals of the dark cubes in Figures 1 and2, respectively (for more details, see [START_REF] Carley | Maximum and minimum extensions of finite subcopulas[END_REF]; and consider the 3-quasi-copula
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Figure 1: Blocks used for the construction of the 3-copula C 1 in Example 6.

¡ ¢ ¡ ¢ ¡£ ¤ ¢ ¡ ¢ ¡£ ¤ ¢ ¤¥¦ ¢ ¡£ ¤ ¢ ¤¥ § ¢ ¡£ ¤ ¢ ¨¥¦ ¢ ¡£ ¤ ¢ ¤ ¢ ¡£ ¡ ¢ ¡ ¢ ¤£ ¤ ¢ ¤ ¢ ¤£ ¡ ¢ ¤¥¦ ¢ ¤£ ¡ ¢ ¤¥ § ¢ ¤£ ¡ ¢ ¨¥¦ ¢ ¤£ ¡ ¢ ¤ ¢ ¤£ Figure 2: Blocks used for the construction of the 3-copula C 2 in Example 6. case, Q(1/2, 1/2, 1/2) = 1/4, Q(1, 1/2, 1/2) = 1/2, and Q(1/2, 1, 1/2) = 1/2. Now, suppose C 3 is meet-dense in Q 3 ; then there exists a set S ⊆ C 3 such that Q = Q 3 S.
Thus, for all ε > 0, there exists a sequence of 3copulas {C * k } such that C * k ≥ Q and C * k (1/2, 1/2, 1) < 1/4 + ε for every k ∈ IN. Observe also that C * k (1/2, 1/2, 1/2) < 1/4 + ε and C * k (1, 1/2, 1/2) = C * k (1/2, 1, 1/2) = 1/2. Thus, it must be satisfied

V C * k ([0, 1/2] 3 ) ≥ 1/4, V C * k ([1/2, 1] × [0, 1/2] 2 ) ≥ 1/4 -ε, and V C * k ([0, 1/2] × [1/2, 1] × [0, 1/2]
) ≥ 1/4ε. However, note that taking ε < 1/8, we have a contradiction. Thus, we have Q = Q 3 S.

To prove the result for the n-dimensional case, it suffices to take the nquasi-copula Q * given by Q * (u) = Q(u 1 , u 2 , u 3 ) n i=4 u i for all u ∈ II n [START_REF] Nelsen | Derivability of some operations on distribution functions[END_REF], where Q is the 3-quasi-copula defined above -and similarly the generalization for C 1 and C 2 -, and using similar arguments to those from the trivariate case, we conclude that Q * = Q n T , where T is a set of n-copulas such that T ⊆ C n ; whence C n is not meet-dense in Q n .

As a consequence of the two previous examples, and taking into account Definition 1, we have the following result: Theorem 7. For n ≥ 3, Q n is not order-isomorphic to the Dedekind-MacNeille completion of C n .

Acknowledgements

The authors wish to thank the anonymous referee for valuable suggestions. The third author also acknowledges the support of the Ministerio de Ciencia e Innovación (Spain) and FEDER (project MTM2009-08724), and the Consejería de Educación of the Junta de Andalucía (Spain).