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Abstract

In this paper, we compare conditional distributions derived from bivariate archimedean cop-
ulas in terms of their respective variability using the dispersive stochastic order. Specifically,
we fix the underlying copula and we consider the effect of increasing the second component
on the variability of the conditional distribution of the first component. Characterizations
are provided in terms of the generator and of the marginal distributions. Several examples
involving standard parametric copulas such as Clayton and Frank are discussed.
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1 Introduction and motivation

In this paper, we consider random couples (X7, X2) with archimedean copula generated by
a continuous, possibly infinite, strictly decreasing convex function ¢ : [0, 1] — R* such that
$(1) = 0. Specifically, define the pseudo-inverse ¢~ of the generator ¢ as

_1 d7L(t) for 0 < t < ¢(0),
P = { oo zb(o) <t< e (1)

Clearly, ¢!~ is continuous and non-increasing on R*, and strictly decreasing on [0, ¢(0)].
For a strict generator (i.e. a generator ¢ such that lims_o@(t) = +o0), ¢l=1 is just the
inverse ¢! of ¢. For a non-strict generator (i.e. a generator ¢ such that ¢(0) < +o0), ¢l~1
coincides with the inverse ¢! of ¢ on [0, ¢(0)] and is set equal to 0 after ¢(0). Now, we
consider random couples (X7, Xy) with joint distribution function Fx of the form

Fx(xq1,29) = C¢(F1(x1),F2(x2)) (1.2)

where for ¢t € R, Fi(t) = Pr[X; <{|, i = 1,2, and where Cy is the archimedean copula with
generator ¢ defined as

Cour,uz) = ¢ (d(ur) + p(uz)) (1.3)

for 0 < wuy,up < 1. Throughout the paper, we assume that the marginal distribution
functions F} and F3 are continuous and strictly increasing on their support. If needed, we
also assume that F; and F, possess probability density functions, denoted as f; and fs,
respectively.

Archimedean copulas (1.3) enjoy numerous convenient mathematical properties and are
therefore appreciated for modelling or simulating bivariate data. See, e.g., Nelsen (2006,
Chapter 4) for a review. In particular, archimedean copulas naturally appear in relation
with frailty models for the joint distribution of two survival times depending on the same
latent factor (the generator being then the inverse of the Laplace transform of this latent
factor).

Here, we examine the behavior of one component of a random vector when the other
component gets larger, or ages. Specifically, we compare the variability of X, given Xo = 29
to the variability of X7 given Xy = &}, with x5 < &} in terms of the dispersive order. Note
that the copula Cy is held fixed in our analysis so that we do not modify the underlying
dependence structure but we study the impact of the aging of X5 on the variability of Xj.
We refer to this phenomenon as cross-aging.

Random couples with joint distribution function (1.2) often possess positive dependence
properties, ensuring that X; “increases” in X, and vice versa. Formally, recall the definition
of stochastic dominance, which translates into mathematical terms the intuitive idea of
“being larger than” for random variables: given the random variables X and Y, X is said
to be smaller than Y in the stochastic dominance (denoted as X =<4 Y) if Pr[X < ¢] >
Pr[Y < ¢] for all t. Whatever the threshold ¢, it is thus more likely that X falls below ¢
compared to Y. Given a random variable X and an event A, let us denote as [X|A] a random
variable with distribution function = +— Pr[X < z|A]. If the generator ¢ is differentiable
and if its derivative is log-concave, Muller and Scarsini (2005, Theorem 2.8) established that



[ X1 X = @] = [X1]|Xo = @b for o < ), when (X7, X3) has distribution function (1.2).
This property is referred to as conditional increasingness in the literature. If C'; is obtained
from the frailty construction (i.e. the generator ¢ is the inverse of a Laplace transform) then
the above stochastic inequality holds with the stronger likelihood ratio order replacing <.
This property is known in the literature as total positivity of degree 2 (TP2) and is fulfilled
by most parametric families of archimedean copulas. For more results in that direction, we
refer the interested readers, e.g., to Denuit et al. (2005, Chapter 5).

Whereas X, generally “increases” in X,, a natural question that has to the best of our
knowledge not yet been addressed in the literature concerns the variability of X7 given Xs.
When X, is known to increase, does X; become more or less variable? In this paper, we
answer this question using the dispersive order which turns out to be the appropriate tool
to study the variability of conditionals derived from archimedean copulas provided some
conditions are met. The dispersive order is one of the strongest variability orders, making
the results derived in the present paper particularly attractive for applications. Note that
the usual convex order does not apply in our case since the conditional mean is generally
not constant.

The paper proceeds as follows. Section 2 recalls basic facts about dispersive order. In
Section 3, we examine the case of unit uniform marginals. The strictness of the generators
turns out to play an important role in the analysis conducted there. Then, in Section 4, we
allow for arbitrary marginals. This general case is not a direct consequence of the preceding
section as the marginal behavior does matter. In Section 5, we establish comparative results
where cross-aging (in the dispersive sense) provides the appropriate theoretical argument.
The final Section 6 concludes.

2 Dispersive order

The dispersive order can be used for comparing spread among probability distributions.
Considering two random variables X and Y, X is smaller than Y in the dispersive order
when the difference between any two quantiles of X is smaller than the difference between
the corresponding quantiles of Y. The dispersive order has a long history in statistics. We
refer the reader e.g. to the review paper by Jeon et al. (2006) as well as to the reference
book by Shaked and Shanthikumar (2007) for a detailed presentation of this stochastic order
relation. In the context of lifetime distributions, it has been used by Belzunce et al. (1996)
and Pellerey and Shaked (1997) to characterize IFR and DFR distributions.

Define the generalized inverse (or quantile function) of the distribution function F for
a€ (0,1) by

F'(a)=inf {z eR|F(z) > a}.

Furthermore, F~1(0) is defined as the left endpoint of the support of F, i.e. F~1(0) =
sup{z € R|F(x) = 0}, with the convention sup ) = —co. Similarly, F=(1) is defined as the
right endpoint of the support of I, i.e. F~1(1) = inf{x € R|F(x) = 1}, with the convention
inf ) = 4o0.

Recall that given the random variables X and Y with distribution functions Fy and Fy
and inverses Fiy' and Fy!, respectively, X is said to be smaller than Y in the dispersive



order (denoted as X <gigp Y) if
FUB) — Fx'(a) < Fp'(B) — Fy' () whenever 0 < a < 3 <1 (2.1)

& ar Iy (a) — Fy'(a) non-decreasing on [0, 1].

It is clear that the order <4, indeed corresponds to a comparison of X and Y by variability
because it requires the difference between any two quantiles of X to be smaller than the
corresponding difference in quantiles of Y. It is easy to prove that X =g Y implies
Var[X] < Var|Y]. In addition to the definition (2.1), the following characterization is useful:

X =aiep Y & v+ I} (Fx(z)) — 2 non-decreasing. (2.2)

See formula (3.B.10) in Shaked and Shanthikumar (2007).

3 Unit uniform marginals

If the support of the conditionals is finite with common left and right endpoints then it is easy
to see that the dispersive order cannot hold. This can be deduced from (2.1): considering
two different distribution functions Fy and Fy, Fy;' — Fi' cannot be monotone on [0, 1] if
FZH0) = FyH(0) > —oo and Fy'(1) = Fy'(1) < +oo. Therefore, in case the support is
bounded, we need different endpoints for a possible comparison in terms of the dispersive
order. This is only possible if the generator is non-strict, as shown next.

Let (Uy,Us) be a couple of random variables with joint distribution function C} given
in (1.3). If the generator ¢ has a first derivative that can be inverted then the distribution
function of [U;|Uy = ug) is given by

0if uy < 1 ($(0) — P(u2))

and the corresponding quantile function is given by

{¢4(¢er%#%%)—¢wg)ﬁazgﬁy
67 (9(0) — 9lua) i o< ZE.

Note that for strict generator the quantile function simplifies to

) =07 (o (@ (2220}~ o).

Now, for a = 1 we get ¢~1(0) = 1 whatever ¢ (be it strict or not) and the conditioning value
uy. On the contrary, letting a tend to 0 gives 0 if ¢ is strict, whatever usy, but the limit may
depend on ¢ and on us if ¢ is non-strict. More precisely, when ¢ is non strict the support is
(67 ((0) — @(uz)),1]. Therefore, for a strict generator ¢, the support for both [U;|Us = us)
and [Up|Us = uh| is the interval [0, 1] and no dispersive order relation can hold whereas if
¢ is non strict then a dispersive comparison may be possible. This is why we restrict our
analysis to non-strict generators in this section devoted to unit uniform marginals.

&' (u2) : -1
Pr[Uy < ui|Us = ua] = { ForTatun oty 1 1 = ¢ (9(0) — d(ua),

¢w (a> -
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Remark 3.1. Note that, as stated above, the expression derived for v, requires differentia-
bility of the generator ¢ and invertibility of its derivative. These conditions are not always
fulfilled. For instance, the lower Frechet-Hoeffding bound generated by ¢(t) = 1 —¢ does not
satisfy these requirements, hence the above formula does not apply. In this particular case,
the conditional distribution of Uy given Us; = us is degenerated at 1 — us.

We also consider conditionals of the form [U;|Us < usg] in this paper. The distribution
function of [U1|Us < gl is

¢ Modua)) i oy > b1 (H(0) — (un))

Prith < Vs < gl = { 0if uy < 6" ($(0) — B(u2))

The corresponding quantile function is given by

Ui, (@) = 67 ($(u2a) — P(uz)).

Also here, we see that for « = 1 we get ¢~1(0) = 1 whereas the limit for o tending to 0 is 0
for a strict generator but may depend on ¢ and on wus if the generator is non-strict. Hence,
no dispersive order relation is possible between [U;|Us < ug] and [U3|Us < w)) if ¢ is strict.
Here also, we need to restrict our analysis to non-strict generators.

The next result investigates the effect of increasing one component of the archimedean
vector.

Proposition 3.2. Let (Uy, Us) be a couple of unit uniform random variables with archimedean
copula with non-strict generator ¢. Assume thal ¢ possesses a first derivative that can be
inverted. Then,

(1) The stochastic inequality [U1|Us = us] <aisp [Ur|U2 = uh] holds for us < uly € [0, 1] if,
and only if, a — 1 o ¢;21 (a) — «v is non-decreasing. If ¢ admits a second derivative
then this is the case if, and only if, %1%2 (a) < %1%12 () for all a.

(1i) The stochastic inequality [Ur|Us < us| <aisp [Ur|U2 < wh] holds for us < ufy € [0, 1] if,

and only if, a — ¢Z,2 o ¢Z;1(a) — « 18 non-decreasing or, equivalently, if, and only if,
O % (a) < 2 *,Q(oz) for all a.

O ¥ u2 = da Tu

Proof. The first part of the statements in (i)-(ii) is a direct application of (2.2). To prove
the second part of the statement in (i), note that

0 ) (a) — v is non-decreasing in

2y (U (@) — 2t (V) ()

& >0 for all o
%¢u2 (¢1721 (OZ))
0 1 0 .
A 8_a¢u'2 (Yo, (@) — 8—a¢ug (Y, (@) = 0 for all o
0 0
— < —y
- 8a¢m(0é) < 8a¢u2 (a) for all «
which ends the proof of (i). The reasoning leading to (ii) is similar. O
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Let us now examine an example where Proposition 3.2 applies.

Example 3.3 (Family 7 in Table 4.1 of Nelsen (2006)). Consider the generator ¢y(t) =
—1In (9t +(1-— 9)) indexed by 6 € (0,1]. The corresponding copula function is

Cg, (U1, ug) = max {9u1u2 + (1 —0)(ug + us — 1),0}.

Consider (Uy,Us) with joint distribution function Cy,. For # = 0, we get the lower Frechet-
Hoeffding bound copula C'(uy,us) = max{u; + us — 1,0} which gives the minimum in the
dispersive sense since [U|Us = us| is constantly equal to 1 — uy in that case. For 0 = 1, we
get the independent case.

Direct calculations yield

—0
/ _
Plue) = G T
1 1—6
n—1 L 1=v
@) = -
(¢)! <¢'(UQ)> : a(fus+1—-0)+6—1
o 0
(P (u
o (10 (M)~ o) — —mie
Now, since
B e 4+0-—-1
)= T
we have () _y
u o —
oo (2 ) 315
Also,
"(u 1 1 —u)(1 -0
jf,((oi)) e and 67 (9(0) - o) - U,
Finally,
a—1+460 if o > 1-0
P, (@) = Woaey o Jeetimt?
’ ( 0@242(1—0) if or < 0u;+f—ev
so that for ¢/ < ¢,
0ifa > Wﬂ:ﬁ,
e(a) = dule) = § GRS - o i iRt < o < gl
1=0)(1) (=001 ¢ o 1-0
0t/ +1—6 otri—e LY > g e

Since ¢y — 1)y is non-increasing in «, we finally get by (2.1)

Uy < UIQ = [U1|U2 - UQ] jdisp [U1|U2 - UIQ]

5



For this copula, we thus see that increasing the second component increases the conditional
distribution in the dispersive order. Hence, U; becomes more variable when U, ages so that
the copula Cy, induces some positive cross-aging variability effect.

Now, as
t

o .
8_a¢t(a>79t+1—9

increases in ¢, we also have
ug <uy = [Uh|Us < ug] Raip [U1|Uz < uj).

The knowledge that Us falls below a smaller threshold uy compared to wf, thus decreases the
variability of U;. In other words, allowing Us to assume larger values (less than uf instead
of less than uy) makes U/; more variable in the <y -sense.

4 Arbitrary marginals

4.1 Concave marginal distribution function

Now that we have derived in Proposition 3.2 an effective condition for the conditionals to
be ordered in the dispersive order for the unit uniform case, it is natural to wonder whether
this condition also applies to random couples with arbitrary marginals connected through
an archimedean copula. However, the results obtained in Section 3 do not allow to treat this
more general situation. The reason is that the implication X =<aisp ¥ = g(X) =aisp 9(Y)
is not necessarily true for increasing transformations g unless additional assumptions about
the shape of the function ¢ and the respective distributions of X and Y are fulfilled.

There is nevertheless one particular case where the results derived in Section 3 extend to
other marginals than unit uniform ones, as discussed next.

Proposition 4.1. Let (X1, X2) be a random vector with distribution function (1.2) such
that Fy and Iy are continuous with supports contained in RY. Assume that ¢ has a first
deriwative that can be inverted. Then,

(i) If Fy is concave on RY then [X1|Xo = o] increases in xo in the < yg,-sense if the
non-strict generator ¢ fulfills the condition of Proposition 3.2(i).

(ii) If Fy is concave on Rt then [X1| X2 < ms] increases in xq in the = yg,-sense if the
non-strict generator ¢ fulfills the condition of Proposition 3.2(ii).

Proof. Let us establish (i). If we define U; = F;(X;), i = 1,2, then (Uy,Us) fulfills the
conditions of Proposition 3.2(i). Consider us < uf € [0, 1]. Since the common right endpoint
of the supports of [U;|Us = ug] and of [Uy|Usy = uh| is 1, we have [Uy|Usy = uly] <4 [U1|Us =
us]. Also, we have from Proposition 3.2(i) that [U1|Us = us] <awsp [U1|U2 = ub]. From
Theorem 3.B.10 in Shaked and Shanthikumar (2007), we see that provided and Fj ! is convex
(or, equivalently, F is concave, that is, the corresponding probability density function is



decreasing), we have

[U1|U2 = UQ] jdisp [U1|U2 = UIQ] for all uy < UIQ € [0, 1]
= [F7HU)|Uz = us) Raiep [F7H(UL) Uz = uh) for all ug < uly € [0, 1]
& [ X1|Xe = 2] <aip [X1| X2 = 23] for all 25 < 2 in the support of Xo.

The same reasoning shows that (ii) also holds true. O

Concave distribution functions are unimodal about 0 (i.e. they possess decreasing densi-
ties). For such distributions, the assumptions of Proposition 3.2 are thus enough to ensure
that the conditionals are ordered in the <4g,-sense. Concave distribution functions arise in
a number of ways in applied probability. In particular, all the DFR (for decreasing failure
rate) distributions have concave distribution functions. Moreover, this class is closed under
change of scale, power transformation, left truncation, limits, mixtures and the formation of
arbitrary series systems.

4.2 General case

Let us now consider arbitrary marginals. Note that switching from unit uniform to arbitrary
marginals allows us to consider a strict generator ¢ as long as the supports of the conditional
distributions do not coincide with some bounded interval. For instance, considering a strict
generator ¢ with marginals I} and F» with common support (0, +00) makes a <45, compar-
ison possible. For these reasons, we do not repeat the conditions on the generator, keeping
in mind that we exclude the case with identical bounded supports in the next result.

Proposition 4.2. Let X = (X1, X2) be a random vector with distribution function (1.2) such
that Fy and Fs are continuous and strictly increasing. Assume that ¢ has a first derivative
that can be inverted. Then,

i) the stochastic inequality [ X1|Xo = x| <aisp [ X1| X2 = 24| holds for xo < 2 if, and only
D 2 2

if,
a Fl_1 (¢FQ(I/2)(Q)> — Ffl (¢FQ(I2)(Q)> is mon-decreasing on |0, 1]. (4.1)

i1) the stochastic inequality [ X1 X < o] Raisp | X1| X2 < 5] holds for x4 < 24, if, and only
D 2 2

if,
o FT1 (¢}2(I,2)(oz)> — F (¢}2(I2)(a)) is mon-decreasing on |0, 1]. (4.2)

Proof. The result is a consequence of (2.1). Define U; = F;(X;), i = 1,2. Considering (i),
the conditional distribution of X is given by

Pr[X) <Xy =ao] = Pr[Fy7H(U)) < a|FyH(Uy) = o
= Pr[Uy < Fi(21)|Uz = Fa(a)]
= Yh (Fi(1))

so that the corresponding quantile function is Fi ' 0 ¢p,(,,). The proof for (i) is similar. O



Note that only F} matters in Proposition 4.2, not F;. This comes from the fact that
the condition Xo = x5 or Xy < &9 can equivalently be expressed in terms of Uy = Fy(Xs),
coming back to the unit uniform distribution whatever F5.

If ¢ possesses a second derivative then another way to state the results in Proposition
4.2 consists in imposing that the first derivative of (4.1)-(4.2) is non-negative. For instance,
this gives for (4.1)

Y
do + Fa(x2)

A (7 (e (@)

where f; denotes the probability density function corresponding to F.

o > non-decreasing,

4.3 Examples

Let us now consider a couple of examples involving standard families of parametric archimedean
copulas.

Example 4.3. Consider Frank’s copula given by

(exp(=fur) — 1)(exp(—bus) — 1)
exp(—0) — 1

1
C¢9(u1,u2):—51n <1+ > , 04£0.

This is an archimedean copula with generator ¢y(t) = In(e™® — 1) — In(e™* — 1). Then, we
obtain

1 e—@FQ(l’Q) + Oé(l . e—@FQ(IQ))
VR (aa) (@) = 0 In <e—€F2(1:2) + afe=? — e“QFQ(m))> -
and
* | e—0Fa(z2) _
¢Fg(1¢2)(a) - 5 In <€—0F2(1?2) -1+ (6_0F2(I2)a - 1)(6_0 - 1>> ‘ (44)

For instance, with unit Exponential marginal F, that is, Fy(z) = 1 — exp(—x), we get

1 — b o
Fr (Upyay (@) = FrH (@@ (@) = —In <#§238> (4.5)
nd
’ 1 1 = 0y (@)
FH (@) (@) = T () (@) = —1n T(Z)@) : (4.6)

For 8 > 0, Frank’s copulas express positive dependence, i.e. large values of one component
tend to be associated with large values of the other one. Considering Fy(z2) = 0.25 and
Fy(2l,)) = 0.75, Figure 4.1 (top left panel) shows that the difference (4.5) is increasing for
values of 8 corresponding to Kendall’s 7 equal to 0.1, 0.4, 0.7, and 0.9, respectively. This
means that increasing the value of Xy makes X; more variable in the <4gp-sense. On the
contrary, for 8 < 0, the dependence is negative, that is, large values of one component tend
to be associated with small values of the other one. For such s, we see from Figure 4.1 (top
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right panel) that the difference (4.5) is now decreasing. Increasing Xo now makes X; less
variable in the <gg,-sense. Moving from the center of the distribution to the tails does not
modify the conclusion, as it can be seen from Figure 4.2 (top panels) where we consider x5
and xf, such that Fy(zs) = 0.99 and Fh(zy) = 0.995. Figure 4.3 shows the difference (4.5)
as a function of o and #. The different behavior according to the sign of @ is clearly visible
there.

In addition to the unit Exponential case, we also consider in Figures 4.1-4.2 the case of
Pareto marginal I, that is, Fy(z) = 1 — 27* for > 1 and some a > 0, standard Normal
marginal Fj, and Gamma marginal ;. We can see there that the results obtain in the unit
Exponential case are also valid in the Pareto case. However, no dispersive order relation
holds in the Normal case whereas in the Gamma case, the dispersive order relation is valid
only for sufficiently high value of Kendall’s correlation coefficient. This illustrates the effect
of marginal distributions on cross-aging.

Example 4.4. Consider Clayton’s copula defined by

Coy(ur, us) = (ui’ +uz’ — 1>_1/€, 0 > 0. (4.7)
This copula belongs to the archimedean class, generated by ¢g(t) = r‘;—17 0 > 0, which is
strict. In this case, we find ¢, '(t) = (8¢ + 1)7%/% and
—0 [ _—0/(0+1) —1/0
Urn(e) = (1 (Fafan) ™ (a7 — 1)) (1)
and
* —0 —0 _1/0
V(@) = (Palw2)a)™ = Pafan) ™ 1) . (4.9)

For instance, with Pareto marginal F;, we get

—1/a

FH () (@) = FTH (Umes) (@) = (1 - ¢Fz<zg>(a))_1/a - (1 - ¢Fg<z2>(@)) (4.10)

and

—1/a

Ffl(?ﬁ}g(zg)(a)) — F (W (@) = (1 — ¢}2(x5)(a))_1/a — (1 — ¢}2(z2)(a>) . (4.11)

Note that the dependence expressed by Clayton copula (4.7) is always positive (an exten-
sion of (4.7) to negative fs is possible but is not considered here). The limiting case § = 0
corresponds to independence and increasing 0 strengthens the positive relationship between
the two components of the random couple. Figure 4.4 is the counterpart of Figure 4.1 and
Figure 4.5 is the counterpart of Figure 4.3 for Clayton copula. The conclusions drawn for
Frank copulas in the case 6 > 0 still apply to Clayton copulas.



Figure 4.1: Graph of (4.1) for Frank copula with x5 and 2} such that Fy(x2) = 0.25 and
Fy(xh) = 0.75 and values of 8 corresponding to Kendall’s 7 equal to 0.1 (solid), 0.4 (dashed),
0.7 (dotted), and 0.9 (dotdash) in the left panels and to -0.1 (solid), -0.4 (dashed), -0.7
(dotted), and -0.9 (dotdash) in the right panels. From top to bottom: unit Exponential
marginal Fy, Pareto marginal F; (with a = 5), standard Normal marginal Fj, and Gamma
marginal Fy (with shape parameter 3 and scalleo parameter 1, that is, with mean and variance
equal to 3).
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Figure 4.2: Graph of (4.1) for Frank copula with x5 and 2} such that Fy(x2) = 0.99 and
Fa(xh) = 0.995 and values of 6 corresponding to Kendall’s 7 equal to 0.1 (solid), 0.4 (dashed),
0.7 (dotted), and 0.9 (dotdash) in the left panels and to -0.1 (solid), -0.4 (dashed), -0.7
(dotted), and -0.9 (dotdash) in the right panels. From top to bottom: unit Exponential
marginal Fy, Pareto marginal F; (with a = 5), standard Normal marginal Fj, and Gamma
marginal Fy (with shape parameter 3 and scallelparameter 1, that is, with mean and variance
equal to 3).
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Figure 4.3: Graph of (4.5) as a function of a and 6 for Frank copula with x5 and @}, such that
Fa(xg) = 0.25 and Fy(ah) = 0.25 (top panel) and with x5 and 2% such that Fy(zs) = 0.99
and Fy(x}) = 0.995 (bottom panel) with unit gxponential marginal F7.
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Figure 4.4: Graph of (4.1) for Fy(x2) = 0.25 and Fy(z}) = 0.75 (left panel) and Fy(zs) =
0.99 and Fy(xh) = 0.995 (right panel) for Clayton copula and values of 6 corresponding to
Kendall’s 7 equal to (solid), 0.4 (dashed), 0.7 (dotted), and 0.9 (dotdash). From top to
bottom: unit Exponential marginal Fj, Pareto marginal F; (with a = 5), standard Normal
marginal F}, and Gamma marginal Fj (with shape parameter 3 and scale parameter 1, that

is, with mean and variance equal to 3). 13



Figure 4.5: Graph of (4.10) as a function of a and 6 for Clayton copula with =5 and , such
that Fy(xe) = 0.25 and Fy(x}) = 0.75 (top panel) and with x5 and 2% such that Fy(xe) = 0.99
and Fy(x}) = 0.995 (bottom panel) with Pargtp marginal Iy (a = 5).



5 Conditional comparison of random vectors with iden-
tical copulas

Consider two random couples, (X1, X2) and (Y7, Y3), say, sharing the same archimedean
copula C'y. We assume that (X7, Xs) possesses the dispersive cross-aging property and we
would like to compare conditional distributions [X|Xs = 25| and [Y;|Y2 = 25| when the
marginals are ordered. The next result provides an answer to this problem.

Proposition 5.1. Let (X, Xs) and (Y7, Ys) be two random couples with the same archimedean
copula Cy and with conlinuous and strictly increasing marginal distribution functions. We
assume that ¢ possesses a first derivative that can be inverted and that [ X1| X2 = mo] <uisp
| X1| X2 = b| holds for all xo < 2. Then,

X1 Raisp Y1 and Yy R Xo = [ X1| Xo = 2a] Suisp [Y1|Y2 = 22| for all xs.

Proof. Denote as F; the distribution function of X;, ¢ = 1,2, and as (; the distribution
function of Y;, i = 1,2. Clearly,

o (¢G2(z2)(01)> (¢Fg(z2 (G 1 ¢G2(m )) - Ffl (¢G2(m)(a)>>
(A (Yoo (@) = i ($ren (@) ) (51)

Since X| <aisp Y1 we know that a — G7'(a) — Fy (@) is non-decreasing. This, in turn, im-
plies that o = G (Y, @g) (@) — FT (WG, () (@) is non-decreasing, since o i g, () () is
non-decreasing. The function inside the first bracket of (5.1) is thus non-decreasing. Let us
now consider the function inside the second bracket of (5.1). Putting 4 = F5 '(Gy(x3)), we
have zo < 2, since Yy =< Xo. Now using the fact that [X;]|Xo = xo] <giep [X1]X2 =
ap], we see that Fy ' (¢ms(a)) — Fi ' (€m @, (@) is non-decreasing and coincides with
P (630 (@)) = FyH (@0 my o (@) Hence, G (€250 (@)) — FH (¥ my ) (@) appears as the
sum of two non-decreasing functions and is therefore also non-decreasing, which ends the
proof. O

A similar result holds for conditional distributions [ X;|Xs < 2] and [Y;|Ys < 25]. Taking
F, = (G5, we see that increasing the first marginal distribution in the <4;,-sense also increases
the conditional distributions in the <g,-sense.

6 Discussion

In this paper, we have established necessary and sufficient conditions for dispersive inequali-
ties between conditionals of bivariate distribution functions built from archimedean copulas,
a phenomenon called dispersive cross-aging. Given the importance of the dispersive stochas-
tic order relation in many applications, the results derived in this paper allow for a deeper
understanding of the dependence structure induced by archimedean copulas. The conditions
derived in this paper are easy to verify (at least numerically) and are satisfied by standard
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copulas including Clayton and Frank families for some marginal distributions (including Fx-
ponential and Pareto, as well as Gamma for appropriate values of Kendall’s rank correlation
coefficient).

The fact that comparisons in terms variability are not stable under non-decreasing trans-
formations was expected since such transformations may affect the variability of the random
variables. Hence, we cannot expect that the results derived for unit uniform marginals in
Section 3 extend to arbitrary marginals. In other words, the results do not only depend on
the underlying copula but the marginal distribution functions also matter. In the context of
the present paper, the convexity of the transformation is an important property, as seen from
Proposition 4.1. This stresses the difference between the approach developed in this paper
and the standard analysis of dependence in which only the magnitude is taken into account
(positive dependence generally means that large values of one component are accompanied
by large values of the other). The present paper is a first step towards examining how the
size of one component affects the variability of the other.
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