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L évy area for Gaussian processes:
A double Wiener-Ito integral approach
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Abstract. Let {X1(t) }o<t<1 and{Xs(t) }o<¢<1 be two independent continuous centered Gaussian proseissesvari-
ance functions?; and Re. We show that if the covariance functions are of finiteariation andz-variation respectively
and such thap—! 4 ¢! > 1, then the Lévy area can be defined as a double Wiener—&@riitwith respect to an isonor-
mal Gaussian process inducedX¥y andX,. Moreover, some properties of the characteristic funaticthat generalised
Lévy area are studied.

Keywords: Lévy areap-variation, fractional Brownian motion, multiple Wienk& integral, Young’s inequality.
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1 Introduction

Let{W1(¢) |0 <t < 1}and{W,(t) |0 <t < 1} be two independent standard Wiener processes defined obalyility
spacg((2, F, P), and letA be the area included by the curve

szl(t), y:W2(t) 0§t§1

and its chord. This random variable was first introduced byyL(1951), where it is described (up to the multiplicative
constant 1/2, that we skip to simplify the computations) ams of stochastic integrals as

1 1
A= / Wh(t)dWs (£) — / Wa(t)dWi (£) . (1)
0 0
Lévy (1951) computed its characteristic function, whish i
. 1
_ itA]

It is easy to show thatl has the law of an element of the second Wiener chaos gendérateBrownian motion. This
can be proved directly due to the fact that the elements ofdlsend Wiener chaos have a very particular characteristic
function (see Janson (1997), Chapter 6), and one realiaehhas this form thanks to the factorisation (see Abraitzow
and Stegun (1970), page 85)

422 . [71et
COSh(Z) . H (1 + m) = H (1 — QZZO[n) 62 n (3)
n>0 neZ

wherea,, = (7(2n + 1))~1. Alternatively, the law ofA can be given as the law of a double Wiener—Itd integral
2= [ ss.0aneae

for an arbitrary Brownian motio® = {B; | t > 0}, where the kernef is obtained in the following way: consider an
orthonormal basis of2([0, 1]), which for convenience - since each eigenvalue has muitipliwo (see Section 4) - we
write as{¢,, ¥, | n € Z}, and define

f(87 t) = Z an¢n(s)¢n(t) + Z anwn(s)wn(t) :

nez nez
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Then
IP(f) =" anHo(IF (60)) + Y anHa(IF (1)) |

nez nez

wherelZ(¢) = fol #(s)dB(s) and Hy(x) = 22 — 1 is the Hermite polynomial of order two. Observe t&t(1Z (¢,,))

and Hy(IP (1,)) are all independent centergd(1) random variables. From (3} 2 1Z(f).

However, it is more difficult to get a strong representatibmaoas a double Wiener-Itd integral with respect to the
original Brownian motiongV; andWs. To this end, it is necessary to rely on the construction oftipia Wiener—Itd
integrals for a general white noise, see for instance Nué8a06), pages 8 and 14. There, both Brownian motidfis
andWW, are embedded in a Gaussian ndiBeon [0, 1] x {1,2}. Forh € L2([0,1] x {1,2},dt® Card = L?([0, 1], R?),
where Card is the counting measure, we have

o1

1
/ hdW :/ h(s, 1)dWi(s) +/ h(s,2)dWs(s) .
(0,1]x{1,2} 0 0

Moreover, forf € L?((]0,1] x {1,2})?) symmetric in the variable, i) € [0,1] x {1, 2}, we have

Lif)=2% /0 /0 F((s,), (1, 9)) AW (8)aW; (1) (4)

i,j=1

see Nualart (2006), page 23. For the sake of simplicity, weindistinctly usef;; (s, t) for f((s, ), (¢,7)) from now on.
Define
0, if i =5
fiﬁj(svt): l(17“1(5715)71712(570)7 ifi:lmj:Q ) (5)
' §(1T2(s,t) —1q,(s,1), ifi=2,j=1

wherelc is the indicator function of the sét and

Ty :={(s,t) €[0,1]* | s < t}, Ty :={(s,t) €[0,1]* | s > t} . (6)
Note thatf~ is symmetric. From (4) applied t6¢, and (1) it follows thatd 25 I, (f£). We will refer to (5) as the Lévy
kernel.

The aim of this paper is to extend the above strong construatiorder to define the Lévy area for general Gaussian
processes under minimal conditions of their covariancetfans, and to study its characteristic function. We wilhsmer
two independent continuous centered Gaussian procg&sés) |0 < ¢t < 1} and{X,(t) | 0 < ¢ < 1} with (continuous)
covariance function®; and R, and we prove that if the covariance functions are of fipieariation andg-variation
respectively and such that! 4+ ¢=! > 1, then the Lévy area can be defined as an element of the secimmkiV
chaos generated h¥; and X». Such a kind of results have been obtained (for the nonyantisetrized Lévy area
fol X1(t) dX5(t)) in the context of rough path analysis by Friz and Victoir 128, 2010b), but, as far as we know, in
such generality they are new for classical Gaussian prese€3ur results applied to two fractional Brownian motions
of Hurst parameteH and H' states that the Lévy area can be definedif+ H' > 1/2. In particular, ifH = H’,
then the condition igf € (1/4, 1) which is a known result (see Neuenkirehal. (2010) and the references therein) but
we present an alternative point of view based in the HuangGardbanis (1978) approach to stochastic integration for
Gaussian processes. Our results also extends the onedygiBandina and Tudor (2007) where the integﬁdl;\IX{{ dXtH’
is defined using Malliavin calculus techniques fére (0,1) andH’ > 1/2.

We should point out that there are other ways to construat\gy larea for Gaussian processes. In the light of Friz
and Victoir (2010a, 2010b) results, under the hypothesithefpresent paper, both the mollifier and Karhunen—Loeve
approximations (see Friz and Victoir (2010b), page 413Y4d.6évy area are well defined. The main advantage of our
approach is that the probabilistic properties of a doubiegral Wiener—Itd integral are well known; in particuldre
structure of its characteristic function is described imnte of a Carleman—Fredholm determinant. It turns out thet su
properties can be transferred to the more general contextdoiuble Wiener—Itd integral with respect to an isonormal
process, where our construction takes place.

The paper is organized as follows. We first introduce the ggrimmework of the isonormal Gaussian processes,
and following the scheme of Huang and Cambanis (1978), weckgs an isonormal Gaussian process to a pair of
independent Gaussian processes. We also give here a defiith generalised Lévy area. In the next section we derive
the conditions on the covariance functions so thatgenerates a Lévy area. As an example we explore what happens
with two fractional Brownian motion (fBm) with the same colance function, and the case with two different covariance



function. This later case allows us to let one of the procebseas irregular as desired, that is no low bounds for itstHurs
parameter is assumed, provided that the other one is regiubargh. Finally, we discuss about the representation of the
characteristic function of a double Wiener-Ito integraktérms of a Carleman—Fredholm determinant, that we apply to
compute the characteristic function df Under a further condition of symmetry over the stochastarpsses we will
show that the characteristic function of a generalisedylénea has a Carleman-Fredholm determinant with symmetric
poles and even multiplicity.

2 Isonormal Gaussian processes and multiple integrals

Gaussian multiple integrals are defined in the frameworkoformal Gaussian processes. Main references are Nualart
(2006) and Peccati and Taqqu (2010). The more general abstratext of Gaussian Hilbert spaces developed by Janson
(1997) is also very useful and interesting.

LetH be a separable Hilbert space with inner producis . An isonormal Gaussian process= {X (f)|f € H}is
a centered Gaussian family of random variables sucH&h@ét /) X (¢)] = (f, g)». It is well known that the construction
of the multiple Wiener—It6 integrals with respect to a Bromn motion can be transferred to isonormal Gaussian pseses
see Nualart (2006), pages 7 and 8, or Peccati and Taqqu (ZBd€Xjon 8.4. For the convenience of the reader we recall
some important facts on that construction. Z€®" (resp. H®") be thenth (Hilber) tensor power of{ (resp. the
nth symmetric tensor power); for detailed constructionshefse Hilbert spaces see Janson (1997), Appendix E. Given
f1,---, fr € Horthonormal, and.4, ..., n; nonnegative integers such that+ - - - + ny = n, define

k
j=1

where H,,(z) is the Hermite polynomial of ordes with leading coefficient equal to 1 (in Nualart (2006) thedieg
coefficient of H,,(z) is 1/n!), and Symm is a canonical symmetrization. THgrcan be extended to a linear isometry
betweenH®" (with the normv/n!|| - ||;e~) andL2(9), and this extension is called the multiple Wiener—Ito gmé of
ordern with respect taX. The image spacgl,,(f)| f € H®"} is called the Wiener chaos of ordemssociated witkX .
WhenH = L?(M,u) wherep is o-finite, the tensor poweH®™ may be identified withZ?(M™, ™), and the
symmetric tensor powé©™ with the space of symmetric functions It (M ™, u®™) (see Janson (1997), page 319).

2.1 The isonormal Gaussian process associated with two Gaisn processes

In this section we describe how two ordinary Gaussian pseEssan be imbedded into an isonormal Gaussian process.
We extend Huang and Cambanis (1978) approach, where thatrgotion was done for one Gaussian process. Let
X1 ={X:(¢) |t € [0,1]} and Xy = {X2(¢) | t € [0,1]} be two independent continuous centered Gaussian processes
both starting at zero, with (continuous) covariance fureiR, (s, t) and Ra(s,t) respectively. We start reproducing
Huang and Cambanis (1978) construction adapted to ourxtohit £ denote the set of step functions n1]

¢(t) = Z a‘j]‘(tj,thrl](t)? a’j € R .
j=1

For ¢ of the above form, define, far=1, 2,

n

Xi(9) = Z%‘ (Xi(tj1) — Xi(t;)) € L*(€),

j=1

which is a centered Gaussian random variable, and{fop, € £,

E[Xi(61)X: ()] = / 61(8)a (1)dR,(s. ),

[0,1]?

where the above integral is defined by

/[0 1)2 1(u,u’](5)1(v’v/] (t) de(‘S? t) = Ri(ul7 Ul) - Ri(ulq ’U) — RZ‘(’U,7 Ul) + Rz(u’ ’U) . (7)



With the convenient identifications,

(61, b2, = / 61(5)ba()dR(5,1), b1, €

[0,1)2

is an inner product and we can construct the Hilbert sgécehich is the completion of with respect tg(-, -)#,. In
the notation of Huang and Cambanis (1978), we Hdye= A»(R;). Then, the mapX; : £ — L2(2) can be extended
to an isometry betweeH; andL?(£2). The image spacgX;(f)| f € H.;} is an isonormal Gaussian process. It is worth
to remark that wherX; is a Brownian motion, theft; reduces td.([0, 1], dt). However, in generdt; is not a space
of functions; for example, whe/; is a fractional Brownian motion of Hurst paramefére (1/2,1), then; contains
distributions, see Pipiras and Taqqu (2001) and Jolis (R0O07

In order to define an isonormal Gaussian process assoc@ateathi X; and X5, the set of appropriate elementary
functions, denoted by,, is the set of the functions that can be writtenfds, i) = 01,01 (t) + d2:p2(¢), for (t,1) €
[0,1] x {1, 2}, where¢y, ¢2 € £, andd;; is the Kronecker’s delta. Of, we can consider the inner product (with the
convenient identifications):

f(s,Dg(t, 1)dRy(s,t) —l—/ f(5,2)g(t,2)dRa(s,1) .

(0,1)2

(g = (F 1) g( D) + (2,90 2y = /

[0,1)2

Let us callH the Hilbert space which is the completion&f with the above inner product. Note tHat = H; © Ho,
whereH; @ H- is the Hilbertian direct sum df{; andH», that is, the Hilbert space which consists in all orderedspai

(1‘1, 932) € Hi1 x Ho equipped with the inner pl’OdUC(tzl, $2), (yl, y2)>H1€BH2 = <l‘1, y1>H1 + <$2, y2>7-(2.
DefineX : & — L%(Q) by

From the independence betwe&n and X5, it follows that

EX(N)X(9)] = (f, 91, [,9 € &

So the mapX can be extended to an isometryhandX = {X(f) | f € H} is an isonormal Gaussian process.

2.2 Generalised levy area

Our plan is to use a double Wiener—Itd integral to define tbeylarea, so we need to consider the Hilbert spagé. A
construction of that space can be done in the following wast&y’? be the linear span of elements of type® f, for
f1, f2 € &, wheref, ® f2((s,4), (t, 7)) = fi(s,4)f2(t, ). On this set consider the inner product induced by

(f1 ® f2,91 ® ga)per = (f1,91)n (f2, 92)1 (8)

ThenH®? is the completion o£5’? by the inner product (8). Furthermore, we have
HE? 2 HP? & (Hy @ Ha) ® (Mo ® Hy) & HE? ©)

which gives a very appropriate interpretation of the eletsigre H®? as2 by 2 matrices with entrieg;; € H; ® H; for
1,7 = 1,2. The above isomorphism also induces the decomposition

2

(f,9)me2 = Y (fis 9ij)rtewre,,  Wheref = (fi;)ij=12, 9 = (gij)ij=1.2, With fij, gij € H; @ H;. (10)
inj=1

In particular, whenf, g € £52, the product can be expressed in terms of the covariancéidasc In next Lemma, the
double integral is defined in an obvious way since we are rategy rectangles.

Lemma 2.1. ConSiderf,g € 5582, with f= (fij)’i.,j:l,? andg = (gij)i,j:l,Q- Then

2
(f,9)me2 =Y /[071]2 /[071]2 fij(s,u)gi; (t, v)dRi (s, t)dR; (u, v) (11)

i,j=1



Proof. By (10) it suffices to consider ater{ti;, gij) w.on, - Let fij = f1® f2 andg; = g1®go, Wherefy, f2, g1, g2 € &Es.
Then

(fijs 9ii)rior; = (f1, 91)m. (f2, 92)m; :/

[0,1)2

= [ A OnOnem@aR s R0 = [ [0 . 048 (). @

£1(8)on ()dRi (s, 1) / Fo () g (0)dR; (u, v)

(0,1)2

Following again Huang and Cambanis (1978), the symmetniscteHilbert spacé(®? can be constructed using the
fact that®? is generated by functions, and transferring to this spaeatiion of symmetric function. Specifically,
given a functionf ((s, i), (¢, j)) the symmetrized function of is defined as

F(5:10. (1) = 5 (£(590, (6.00) + £((5.9), 59) ).

A function f is symmetric if and only iff = f With the same steps as Huang and Cambanis (1978), pagehs93, t
symmetryzation procedure can be extended fé§ih to the wholeH®2, and an element of € H®? is called symmetric
if f = f. Then, the spac&®? can be identified with the subspace of the symmetric elenier®2. OnH®2 we can
define the double integrd} in agreement with the comments in the first part of Section 2.

Now we are ready to define the Lévy area. The desirable definitould bel,(f*) wheneverf* ¢ H®2, where
f* was defined in (5). Unfortunately this is very difficult, if ggible at all, to prove. We will circumvent this problem
by finding an element ift{®2 which is indistinguishable (in a particular sense) frgfnand to which we will apply the
isometryl,(-). In other words, we will say that a symmetric functigf(s, i), (¢, j)) can be identified with an element

feHOZif

o=,

3,7=1

/ fij(57 u)gij(t7 U)dR, (S: t)de (U, 1}), for all 9= (gij)i,jzl,Z € 858)2 5
0,1)2

1]2

where the above integrals are iterated two-dimensionahlye8tieltjes integrals (see Definition (3.6)),

/[0’1]2 (/[071]2 fij(s,u)gi]’(t,’U)dRi(&t))de(u’v).

Note that we are not enlarging the spa¢€? but renaming the elemerftby f, since under the inner product 72

they are indistinguishable. Thus the miaps well defined forf and we putlz(f) := I2(f). This is a common procedure

to ease the identification of the elements of Hilbert spadestwhave been constructed by completion, see Huang and
Cambanis (1978). Therefore we will define the generalisad/larea in the following way:

Definition 2.2 (Generalised Lévy area)Ve say thaf, (f*) is a generalised &vy area if there exist’ € H®2 such that

£ @ per = Z / / ff-(s,u)gij(t,v)dRi(s,t)de(u,v) , (12)
0,12 Jo,2 "

3,7=1

forall g = (gij)ij=1.2 € ES2. Thenly(f~) := L(f~).

Another problem we have to face in order to make this defimitiactable is that we do not know how to compute the
inner product f~, g)e>. Indeed, Lemma 2.1 only shows how to calculate the innerywoof elements of 5. Hence
we will need to approximaté“ by elements 0558’2 and check equality (12) using a limit procedure.

3 Existence of a generalised évy area

This section gives the sufficient conditions on the proce$sg (¢t) | 0 < ¢t < 1} and{X2(t) |0 < t < 1} so a
generalised Lévy area exists (see Definition 2.2). In fhetdonditions on the processes will be constrains on their
covariance functions, and indeed this is what the previeaians suggest as the Hilbert space of the domaif, af
characterised by the covariance functionsigfand X». Friz and Victoir (2010a) claim the—variation of the covariance
function of a Gaussian process to be a fundamental quamtitiyed to the process. Therefore, we first recall some
definitions on the—variation of a function.



3.1 Functions of finitep—variation and Young-Stieltjes integral

For the sake of completeness and to introduce notation, veegie some definitions on thevariation of a function and
the Young-Stieltjes integral.
For a given interval of the real ling, ¢] such that < ¢, we will denote the set of all partitions &f, ¢] by

P([s,t]) :={{to,.-stn} |s=to<t1 <...<tp,=t,neN}.
ForD € P([s, t]) we write|D| := maxy,ep{|t; — ti—1|}.

Definition 3.1. Let f : [s,t] — R be a function angp > 1. We say thaff has finitep—variation if Vpl(f, [s,t]) < oo,
where

1/p
V) (f.[s,1]) == sup (Z | f(tiv1) f(ti)|p> :

DeP([s.4) \ /2D

The superscript oih’p1 is to stress thaf is 1-dimensional in contrast to the-variation of a2—dimensional function,
which it is defined below.

Definition 3.2. Let f : [s, ] X [u,v] — R be a function angh > 1. We say thajf has finitep—variation if‘/;f(f, [s,t] x
[u,v]) < oo, where
ti t
& J
f( tivr 7 i )

f < b f3 ) = ftiv1,tyyn) — fltivns ) — fti th) + f(t, 1)) -

/
tig1 |t

» 1/p

Vp2(f7 [37t] X [’U,,U]) = sup
DeP([s,t])
D'eP([u,v])

(ti,t;)€DXD’

and

Another important concept related to thevariation is thecontrol map(see Friz and Victoir (2010b, 2011a). Write
A ={(s,t): 0<s<t<1}. Inthe following definition we will deal with a functiow defined oA x A, and we will
interpret apoint ((s, t), (u,v)) as a rectanglgs, t] x [u, v].

Definition 3.3. A 2D control is a mapw : A x A — [0,00) continuous, zero if the rectangle has area zero, and

super—additive in the sense thatfif C [0, 1] is a rectangle, and Ry, . .., R,,} is a finite partition ofR in rectangles,
then P

> w(Ri) <w(R).

i=1

The relationship between the control and thevariation is given by the following lemma, which is a direcinse-
qguence of Theorem 1 of Friz and Victoir (2011a) (see also &mit Victoir (2011b) for a correction of Friz and Victoir
(2010b)).

Lemma 3.4. Let f : [0,1]2 — R be a continuous function of finite-variation. Then for every > 0 there is a2D
control mapw such that for every rectangle C [0, 1]

Vi (f R) < w/PH(R) .
We need the following technical result about the productooitml maps; see Friz and Victoir (2010b).

Lemma 3.5. Letw; andw, be2D control maps ang, ¢ > 0 such thatp=! + ¢~ > 1, thenw}/pwg/q is also a2D
control map.

Finally, we recall the definition of the two-dimensional Y+ Stieltjes integral and the statement of Young'’s inequal
ity for a 2-dimensional function as it is given in Towghi (2002) (sesodfriz and Victoir (2010a)):

Definition 3.6. Let f, g : [0,1]> — R be two functions, and leb = {t;} and D’ = {t/} be two partitions of0, 1].
Consider the Riemman-Stieltjes type sum

t; t
L(f7g7DaDl): f(SL,S/)g< ’ ) J )
; PPNt T iy

wheres;, s € [ti, tip1] x [t},t)4]. If L(f, g, D, D’) converges whelim max{|D|, [D’[} = 0, then the limit, denoted
by f[o 12 f dg, is called the Young—Stieltjes integral Hvith respect tqy.

6



Remark 3.7. Note thatl g ;% (0,0] @and1[g .)x[0,0) @re Young-Stieltjes integrable with respectitg and both integrals
are equal taR; (u, v), So notation (7) is coherent with this definition.

Theorem 3.8. (Towghi (2002)) Assume—! + ¢=* > 1. Letf, g : [0,1]? — R be functions ang continuous such that

Hf”Wg([O,l]Q) = ‘/202(](7 [07 1]2) + Vpl(f((), ')’ [07 1]) + Vpl(f('vo)v [07 1]) + ‘f(070)| <0

and Vq2 (9,[0,1]?) < . Then the Young-Stieltjes integral pfvith respect tg; exists, and

/ fdg
[0,1]2

wherec(p, ¢) is a constant independent gfandg.

< C(p, q)HfHWg([O,l]Q)Vv(f(gv [07 1}2) )

Remark 3.9. The definition of finitep—variation could be stated for > 0 both in thel-dimensional and in the—
dimensional case, but we restrict ourselvepte> 1. This is because a—dimensional continuous function of finite
p—variation forp < 1 is constant (see Friz and Victoir (2010a), page 78). Thistsnue for the2—dimensional case: For
example the functiorf(x, y) = x + y has finitep—variation for allp > 0. However, for continuous covariance functions
coming from processes that start at O it is true (see nexltye®ée will see in the next section that the hypotheseseelat
with the finite variation are always with respect to continsgovariance functions. Therefore, without lost of gelitgra
we considep—variations forp > 1.

Lemma 3.10. A continuous functiorf on [0, 1]? such thatf(0,0) = f(s,0) = f(0,t) for all ¢, s € [0,1] and of finite
p—variation withp < 1 is constant.

Proof. For a fixeda € [0, 1], the functiony — f(a,y) — f(0,y) is a 1-dimensional continuous function of finite
p—variation and hence constant. Indeed, it is zero sfifee0) = f(0,0), and the result follows. W

3.2 Main result

The main result of the paper is proved in this section. We ttoasa sequence of elements &f* which converges
almost everywhere to the Lévy kernel and show that it is acBaisequence if(®?, and finally, we also show that its
limit satisfies Definition 2.2.

We start by a technical lemma which will ease the proof of thenmmesult, but, before that, let us introduce some
notation. Let{¢t =427 |i=0,...,2" — 1} be the dyadic partition of the intervgil, 1] for a givenn, and consider the
dyadic partition of the triangleg;, andT> (see (6))

me=Jrxr 1= <1,
1<j i>7
whereI! := (¢7,t,,]. Then a natural approximation of the Lévy kernel by symiodtmctions of€5’* is
) ifi=j
(1T1n(8,t) —1T2n(87t)), if 1 = 1,]22
(Irp(s,t) —Lrp(s,t), ifi=2j=1

fn((87i)7 (t7j)) =

N = O

Lemma 3.11. Let R; and R, be two continuous covariance functions[0n1]?. Let R; be of finitep—variation andR,
of finite g—variation and assume that'* + ¢~ > 1, then

n—00
m—o0 4 j=1

2
i S0 [ [ () (7 = s ) s R 00) =0,

()
Proof. Write J;'}" := I}* x I and note that

2"—12m—1

1— 0,
(fﬁ — fn)ij(s,u) - (f£ — fm)ij(t,v) = % Z Z 1(,]:.}"1')2(3,157uav)(l{(v—t)(u—s)>0} - 1{(U—t)(u—s)<0}) .
k=0 =0

7
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Figure 1. Decomposition of rectanglg,;™ for a fixed(u, v) € J;'}" used in the integration (**).

Therefore the double integral of tiie)-term is split into a sum of double integrals m(eiiﬁ’lm)?. These integrals are
iterated integrals and they can be further reduced, acogtdiFigure 1, to

2m—12m—1

Z Z Z/ F:lm’uv)dR(uv)
i,j=1 k=0 I=
i#]
(%)
where
F u,v) = dR;(s,t) — dR,-(sJ)f (s, 1 +/ dR;(s
' A As Ay

R U v _ R t" v R, ty ot
C\ Ut T \w ka ’ \u v ’

Note that in the above definition we have used Remark 3.7.
It is enough to prove that thie)-term goes to zero as,m — oo for i = 1 andj = 2. The key point is to apply

Young's inequality to each sumand of thex)-term, and in that way we will prove the existence of the inégand get
a bound for them. In order to do so note the following ideesitivhich relate the functioR;";™ with the functionR,

’ ’ ’ tTL v
Fn,m,l u v — 4 v Fn,m,l n . Fn,m,l no _
k,l o Ry u/ " > k,l (tkv v) k,l (tk » U ) 2Ry tZJrl " ,
Frmign gmy = gy (U d Fm gy — Fm ey = ory (4, B
wl ) = vl o t'm an el () = BT (L) = T tm .
k+1 l+1 I+1

Now, sincep~! + ¢~ > 1, there exisp” > p’ > p andq’ > g suchthalp”)~! + (¢')~! > 1. Thus,R; is also of finite
p’andp”’—variation, andR; is of finite ¢’-variation. Now use the above equalities to obtain

n,m,l “n,m Tn,m n,m,1 n,m
VE(ES™ ) = AVE(RG ™), Ve (B I ) <0 2VE (R, I
Frmiptm)| < VE(RGTLT) and V(R ""”( ) o thal) < 2V (R T

WhereJ " is the closure of],?lm This consideration is a technicality required by the d#éiniof the finite variation.
Accordmg to the notation of Theorem 3.8 the above inegealimply that] \F,Zlm ! Frm) < 9Vp2,, (R, J,Zlm), and

thus we can apply Young’s inequality to every integral of tke)-term to get

2" —12"—1 2" 12" —1
)| < e, d) DY ||F,;3"”L1||Wz T Vi (Ray ) < 9¢(v”, ') V2 (R, T WVE(Re, ™)
k=0 1[=0 k=0 1[=0

Recall Lemma 3.4 to associate the finitevariation ofR; (respectively thg’'—variation ofR,) to a control mapu; (resp.



LL)Q). Thus

2" —-12m—-1

%) < C sup Z

k=0 1=0 | DEPID) \(t,,t})eDxD’
D’e’]j([l’rrb)

2 n,m
V2(Ra, T

u v

p=p’ on_q19m_1
< c sup Rl( u/ ) v/ ) (V2(Rla‘]n m))p /" V (RQa‘]/::;n

lu—w'|<27" k=0 1=0
l[o—v'[<27™
71”;7,1" om_12m_1
u v 1/p"” Fmmy 1/4 ;Fm,m
<C sup Rl(u” v’) E w7 (T w (")
lu—u'[<27" k=0 1=0
[o—o’|<27™
//;p/ on_19m_q p//;p/
u v ? ~(Tn,m ~ 2 u v P
<C sup Ry ’yo W(Jkl )S CW([(L 1] ) sup Ry ry o 5
lu—u'|<27" u v k=0 1=0 ' lu—u'|<27 " u v
[v—v'|<27™ lv—v’|<27™

whereC is a constant which is renamed when necessary, and we apglecha 3.5 to deduce that:= wi/”//wi/q/ isa
control map. Finally note that the last supremum goes toasmm — oo by the uniform continuity o?,. M
Now to finalize the construction of the generalized Lévysame need to prove that the sequefi¢g} in Lemma 3.11

is a Cauchy sequence and its limji€, satisfies Definition 2.2.

Theorem 3.12. Let {X;(¢) | 0 < t < 1} and{X»(¢) | 0 < ¢t < 1} be two continuous centered Gaussian processes
such thatX;(0) = X5(0) = 0, independent, and with covariance functidRs and R, respectively. LeR; be of finite
p-variation and R, be of finiteg-variation and assume that™* + ¢=! > 1, then the sequencgf,,},>1 is a Cauchy
sequence ifH®2. Moreover, if we denote its limit b§®, we have that

9)ner = Z /01 /01 £(s,u)gij (t, v)dR; (s, )dR; (u, v) (13)

1,7=1

forall g = (gj)i j=1.2 € ES2.

Proof. Note thatf,, — f,, € 5592. Therefore by Lemma 2.1 we have that

o — Fonllrgen = Z/

i,7=1 0,
i#]

/01] U £ 5 i) (= 55 4 55 0,00 B DR (1,0)

/  Fa)ig(50) - (o — Fon)ig () AR (s, )R (1, 0)
1]2 01]2

7,j=1
i#]

Each term of the above product was denoted @g-#erm in Lemma 3.11 and thus goes to zermas: — oc.
For the second part of the proof it suffices to prove the etfai a functiong such thaigio(s,t) = 1(4,4)x[c,a (5, t)
where[a, b] x [¢,d] C [0,1]? andg;;(s, t) = 0 fori = j. Sincef* is the limit of { f,, },>1 in H®? then

lim (£, ghreee = (F£,g)en -

n

Our objective is to prove thatm,, . {fn, g)xe2> equals the right hand side of equation (13). From the dedmitif the



Lévy kernel we have that

/01 /01 (5,u)gij (t, v)dR;(s, t)dR;(u,v)

7,7=1
5 / / ] (15>u($au) - 1s<u(sau))1[a,b]><[c,d] (taU)de (s,t)ng(u,v)
0,1 0,1]2
= —/ dRz(u,U)/ (Lssu(s,u) — Locu(s,u))dRy(s,t)
2 Joaixe,d [0,1]%[a,b]

1 u 0
5-[0,1]><[c,d] [Rl( 1% ) _Rl ( u’ b >:| dR2(u U) (14)

The above integral is a well defined Young-Stieltjes integraen, forD € P([0, 1]) andD’ € P(][c,d]),

Z /0 1]2 /[0 1]2 5 (s,w)gi(t, 0)dRi(s,t)dR; (u, v)

i,j=1 ,
-3} o) 0 &i i
2 |[1}|IEO Z [R1< L b) Rl(l/i , b)}32<&+1 Cjil >

71, vi a '\ 0 a & c
e (1) (a8 )

wherey; € [&;, &+1]. On the other hand, from Lemma 2.1 we have that

2” 1

1
(fr, @)ne2 = 3 / / dRy (s, t)dRa(u,v) / / dR;(s,t)dRs(u,v)
ki=0 il X [a,b] JI" x[c,d] kl 0 7 x[a,b] J I x[c,d]
k>l
1 = ty a t c 1 = ty a tn c
[ R k R l _ = R k R l
3 2 1<tz+1’ b> 2<tr+1’d> 2 Z: 1<tz+1’ b) Q(tz;l’d)

k>1 k<l
= 12”2_:1 R, @) g () R 0 (16)
- 9 1 1 ’h 1 tn ’ b 2 t?+1 " d .

Note that in equation (15) we could replace the firsby v} and the second; by v? Whereu7 V2 € [£,&i41]). Thisis

because the integral (14) could be split into two. Indeed arechoose; = ¢; andz/ = ¢;+1, and then equation (16)
becomes a particular election of the partitibrin equation (15) and thus

lim (f, g)pez :/ / 5 (s, u)g12(t, v)dRy (s, t)d Ry (u, v)
nee [0,1]2 J[0,1]2

from where the result follows. B

3.3 The case of the fractional Brownian motion

One case of special interest is to explore what happens hatigeneralised Lévy area for a fractional Brownian motion
(fBm) of Hurst parameteH € (0, 1). Itis known that when fBm has Hurst paramefer< 3 L then its covariance function

is of finite —-varlatlon (see Friz and Victoir (2010b) page 405), and when- 1 then its covariance function is of
bounded varlatlon Then the Lévy area can be defined for ndepgendent fBm W|th parametefs and H' as long as
H+ H > % Hence we can let one of the processes be as irregular asdigsovided that the other one is regular
enough. That is, we can let one of the fBm be of Hurst param‘étex% as long as the other independent fBm has Hurst

parameteid’ > % — H. WhenH = H' then the condition ig7 > %.

10



4 On the characteristic function of the Léevy area

Consider an isonormal Gaussian proc&ss= {X (h) | h € H}, where the separable Hilbert spakeis of the form
L?(M, 1), wherep is o—finite. As we commented before, in this ca¥&? is isomorphic toL?(M?, u®?). To each
elementf € L?(M?, u®?) corresponds a Hilbert—-Schmidt operafor H — H defined by

(F(h))(t) = = f(s,t)h(s)p(ds) .

Assume thayf is symmetric. Then it can be expressedfés t) = > an¢(s)¢(t), where{p, | n > 1} is an enumera-

tion of the (orthonormal) eignefunctions #fand{«,, | n > 1} are the corresponding eigenvalues (that appear repeated
according to its multiplicity) (see, for example, DunfonddaSchwartz (1988), page 1087, or Neveu (1968), Proposition
6.18). Working in a similar way as in the example of the Léwgaain the Introduction, it is deduced that

1
VI (1= 2za,,)e2on

whereo (F) = sup,,~,{|ax|}, which is the formula given by Janson (1997) page 78. Theitaffiroduct of the above
expression is called a generalised determinant or a CanleRradholm determinant df (see Dunford and Schwartz
(1988), page 1036).

There are many works about the characteristic function aflcatic Wiener functionals. In our case we are interested
in a particular functional viewed in different Wiener spactherefore the aim of this section is to explicit the praged
to compute the eigenvalues as much as possible. It is woitéhtestate the relationship between elements of the second
Wiener chaos and Hilbert—Schmidt operators by working opariicular example and then extending the results to the
general case. To this end we study the case of the Lévy aréadestandard Wiener processes, as we commented in the
Introduction. In this caseR; (s,t) = Rz(s,t) = s A t, and the Hilbert spack is isomorphic taL?([0,1] x {1,2},dt ®
Card). Then the Lévy kernef* defines the Hilbert-Schmidt operator

]E[ezlz(f)} —

for 2|R(z)|c(F) < 1,

F:L%([0,1] x {1,2}) — L2([0,1] x {1,2})

h = f5 (s, t)hi(s)ds @ Card,
[0,1]x{1,2}

which is reduced to the form

F(h);(t) = % (/Othl(s)ds 4 /tl hl(s)ds) - % (/Ot ha(s)ds — /t1 hg(s)ds> . a7)

Let h be an eigenvector of eigenvalue F'(h) = «h, therefore it is continuous because it is defined by an iategnd
applying again the same argument it is differentiable. Therdifferentiate the above expression and obtain the matrix

differential equation /
() =205 70) () = 2o (1)

with solution given byh(t) = eM«h(0). From (17) itis clear thak(1) + 2(0) = 0 and thus the eigenvalues satisfy the

equation
mi _ (cos(e™) —sin(e™h)\ _ (=1 0} _
AV 4 (sin(a‘l) cos(a”t)) —\ 0 —-1) Idy .

Therefore the eigenvalues,,, are {+(7(2n + 1))~! | n € N} with multiplicity 2 since the space of solutions of
the ordinary differential equation has dimensibnFinally we compute the Carleman-Fredholm determinantotaio
E[e®4] = cosh(t)~!.

Now we use the same sort of ideas into the abstract settirgpipied in Section 2. Let € ‘H®? and define the
operatorF' := W o &y : H — H, where¥ : H* — H is the duality isomorphism, anél; : H — H* is defined in the
following way: forg € H set®;(g) : H — R as

Pr(g)(h) = (f, g ® h)pe, heH.

Then F is a Hilbert—Schmidt operator (see Neveu (1968) Propasiid6). Note thay € H is an eigenvector of the
operatorF’ with eigenvaluex if and only if (f, g ® h) 322 = (g, h)yx forall h € H. Writing g(t,¢) = 0191 (t) + d2:92(t)

11



whereg; € ‘H; and similarly forh, theng € H is an eigenvector of eigenvalueif and only if

2 2
Z (fij>9: @ hj)r,om, = Oéz<gi>hi>m , Vhi € Hyi, Vhy € Hy.

ij=1 i=1

We will say that two covariance functiod® andR, are equivalent if the associated Hilbert spabigsandH, are the
same, i.e. they are composed by the same functions with the sealar product. Under this symmetry of the processes
we recover the spectrum structure of the classical Lévg.are

Proposition 4.1. Let {X1(¢) | 0 < ¢t < 1} and{X»(t) | 0 < t < 1} be continuous centered independent Gaussian
processes with equivalent covariance functidtisand R, respectively. Assume that the generalizédy area exits.
Then the corresponding Hilbert—Schmidt operator has aigkres with even multiplicity and symmetric with respect to
zero. As a consequence, the characteristic function of ¢éineiglized Evy area is of the form

1
o) =11 7z
s (14 4a2t?)

wherem,, > 1.

Proof. From the factorisation (9) it is clear that the symmetry of #ipproximation of the Lévy kerndlf,,},>1 is
transferred tof£. Then, from equation

2 2

Z (f5.9i ® hi)r.om, = Oéz<gi7hi>m Vhi,he € H1 = Ha, (19)

7,j=1 =1

i
itis deduced that ifi(¢,7) = d1:91(t) + d2:92(¢) is an eigenvector with eigenvalue theng(t, ) = 01:g2(t) — d2:91(t) is
an eigenvector with eigenvalue andg(t, i) = d1,92(t) + 02i91(¢) is an eigenvector with eigenvaluenr. If g = A\g for
A # 0,theng; = Ago = —)\2g; and hencg = 0, thusg andg are linear independent. On the other hand, it can be proved
thatif {g1(¢,4),g1(¢, %), ..., gx(t,9), gr(t, 1), h(t, i)} is a family of linear independent eigenvectors of eigernwaluthen
alsor is independent of that set. Thereferéias even multiplicity. Note that this suffices to deduce #raes property for
the eigenvalue-« and by construction the multiplicity af and—« is the same. Finally, we recover the same structure
for the spectrum of the Hilbert—-Schmidt operator that weehavthe classical Lévy area. B

Example. From the explicit calculations made for the classical Lawya we can easily work out a bit more general

case. LetX;(t) = fof f(s)dW;(s), for two independent Brownian motio&; andW,, wheref € L2([0,1],dz). Then

Ri(s,v) = [;™" f2(u)du, H; = L*([0,1], f?(u)du) and equation (18) can be written as

(OY=LO (0 1) (o).

h(t) = exp { /0 o 2(5“) du <g’ ‘é) } h(0) .

Finally the characteristic function of in this setting isE[e*4] = sech(¢||f||2.).

Therefore the general solution is

A comment on the fractional Brownian motion. To find the eigenvalues of the Lévy area for the fractionavrian
motion is an open problem. The main difficulty is that the ldittspacé+ corresponding to such a process is complicate;
for example, as we comment in Subsection 2.1 for a Hurst patenfi > 1/2 that space is not a space of functions.
Then it is not evident how to get an equation for the eigeniones as equation (18) in the Brownian motion or equation
(20) in the previous example.
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