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Lévy area for Gaussian processes:
A double Wiener–Itô integral approach
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08193 Bellaterra (Barcelona) Spain.
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Abstract. Let{X1(t)}0≤t≤1 and{X2(t)}0≤t≤1 be two independent continuous centered Gaussian processeswith covari-
ance functionsR1 andR2. We show that if the covariance functions are of finitep-variation andq-variation respectively
and such thatp−1 + q−1 > 1, then the Lévy area can be defined as a double Wiener–Itô integral with respect to an isonor-
mal Gaussian process induced byX1 andX2. Moreover, some properties of the characteristic functionof that generalised
Lévy area are studied.
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1 Introduction

Let {W1(t) | 0 ≤ t ≤ 1} and{W2(t) | 0 ≤ t ≤ 1} be two independent standard Wiener processes defined on a probability
space(Ω,F , P ), and letA be the area included by the curve

x = W1(t) , y = W2(t) 0 ≤ t ≤ 1

and its chord. This random variable was first introduced by L´evy (1951), where it is described (up to the multiplicative
constant 1/2, that we skip to simplify the computations) by means of stochastic integrals as

A =
∫ 1

0

W1(t)dW2(t)−
∫ 1

0

W2(t)dW1(t) . (1)

Lévy (1951) computed its characteristic function, which is

ϕ(t) = E[eitA] =
1

cosh(t)
, t ∈ R . (2)

It is easy to show thatA has the law of an element of the second Wiener chaos generatedby a Brownian motion. This
can be proved directly due to the fact that the elements of thesecond Wiener chaos have a very particular characteristic
function (see Janson (1997), Chapter 6), and one realizes that (2) has this form thanks to the factorisation (see Abramowitz
and Stegun (1970), page 85)

cosh(z) =
∏
n≥0

(
1 +

4z2

π2(2n+ 1)2

)
=
∏
n∈Z

(1− 2izαn) e2izαn , (3)

whereαn = (π(2n+ 1))−1. Alternatively, the law ofA can be given as the law of a double Wiener–Itô integral

IB
2 (f) :=

∫∫
[0,1]2

f(s, t)dB(s)dB(t)

for an arbitrary Brownian motionB = {Bt | t ≥ 0}, where the kernelf is obtained in the following way: consider an
orthonormal basis ofL2([0, 1]), which for convenience - since each eigenvalue has multiplicity two (see Section 4) - we
write as{φn, ψn | n ∈ Z}, and define

f(s, t) =
∑
n∈Z

αnφn(s)φn(t) +
∑
n∈Z

αnψn(s)ψn(t) .

1Corresponding author. tel +34 935813470: fax: +34 935812790
E-mail-addresses: aferreiro@mat.uab.cat (A. Ferreiro-Castilla), utzet@mat.uab.cat (F. Utzet).
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Then
IB
2 (f) =

∑
n∈Z

αnH2(IB
1 (φn)) +

∑
n∈Z

αnH2(IB
1 (ψn)) ,

whereIB
1 (φ) =

∫ 1

0
φ(s)dB(s) andH2(x) = x2 − 1 is the Hermite polynomial of order two. Observe thatH2(IB

1 (φn))

andH2(IB
1 (ψn)) are all independent centeredχ2(1) random variables. From (3),A

law= IB
2 (f).

However, it is more difficult to get a strong representation of A as a double Wiener–Itô integral with respect to the
original Brownian motionsW1 andW2. To this end, it is necessary to rely on the construction of multiple Wiener–Itô
integrals for a general white noise, see for instance Nualart (2006), pages 8 and 14. There, both Brownian motionsW1

andW2 are embedded in a Gaussian noiseW on [0, 1]× {1, 2}. Forh ∈ L2([0, 1]× {1, 2}, dt⊗Card) ∼= L2([0, 1],R2),
where Card is the counting measure, we have∫

[0,1]×{1,2}
hdW =

∫ 1

0

h(s, 1)dW1(s) +
∫ 1

0

h(s, 2)dW2(s) .

Moreover, forf ∈ L2(([0, 1]× {1, 2})2) symmetric in the variables(s, i) ∈ [0, 1]× {1, 2}, we have

I2(f) = 2
2∑

i,j=1

∫ 1

0

∫ t

0

f((s, i), (t, j))dWi(s)dWj(t) , (4)

see Nualart (2006), page 23. For the sake of simplicity, we will indistinctly usefij(s, t) for f((s, i), (t, j)) from now on.
Define

fLij(s, t) =


0, if i = j
1
2 (1T1(s, t)− 1T2(s, t)), if i = 1, j = 2
1
2 (1T2(s, t)− 1T1(s, t)), if i = 2, j = 1

, (5)

where1C is the indicator function of the setC and

T1 := {(s, t) ∈ [0, 1]2 | s < t} , T2 := {(s, t) ∈ [0, 1]2 | s > t} . (6)

Note thatfL is symmetric. From (4) applied tofL, and (1) it follows thatA
a.s.= I2(fL). We will refer to (5) as the Lévy

kernel.
The aim of this paper is to extend the above strong construction in order to define the Lévy area for general Gaussian

processes under minimal conditions of their covariance functions, and to study its characteristic function. We will consider
two independent continuous centered Gaussian processes{X1(t) | 0 ≤ t ≤ 1} and{X2(t) | 0 ≤ t ≤ 1}with (continuous)
covariance functionsR1 andR2 and we prove that if the covariance functions are of finitep-variation andq-variation
respectively and such thatp−1 + q−1 > 1, then the Lévy area can be defined as an element of the second Wiener
chaos generated byX1 andX2. Such a kind of results have been obtained (for the non-antisymmetrized Lévy area∫ 1

0 X1(t) dX2(t)) in the context of rough path analysis by Friz and Victoir (2010a, 2010b), but, as far as we know, in
such generality they are new for classical Gaussian processes. Our results applied to two fractional Brownian motions
of Hurst parameterH andH ′ states that the Lévy area can be defined ifH + H ′ > 1/2. In particular, ifH = H ′,
then the condition isH ∈ (1/4, 1) which is a known result (see Neuenkirchet al. (2010) and the references therein) but
we present an alternative point of view based in the Huang andCambanis (1978) approach to stochastic integration for
Gaussian processes. Our results also extends the ones givenby Bardina and Tudor (2007) where the integral

∫ 1

0
XH

t dXH′
t

is defined using Malliavin calculus techniques forH ∈ (0, 1) andH ′ > 1/2.
We should point out that there are other ways to construct a L´evy area for Gaussian processes. In the light of Friz

and Victoir (2010a, 2010b) results, under the hypothesis ofthe present paper, both the mollifier and Karhunen–Loeve
approximations (see Friz and Victoir (2010b), page 413–416) to Lévy area are well defined. The main advantage of our
approach is that the probabilistic properties of a double integral Wiener–Itô integral are well known; in particular,the
structure of its characteristic function is described in terms of a Carleman–Fredholm determinant. It turns out that such
properties can be transferred to the more general context ofa double Wiener–Itô integral with respect to an isonormal
process, where our construction takes place.

The paper is organized as follows. We first introduce the general framework of the isonormal Gaussian processes,
and following the scheme of Huang and Cambanis (1978), we associate an isonormal Gaussian process to a pair of
independent Gaussian processes. We also give here a definition of a generalised Lévy area. In the next section we derive
the conditions on the covariance functions so thatfL generates a Lévy area. As an example we explore what happens
with two fractional Brownian motion (fBm) with the same covariance function, and the case with two different covariance
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function. This later case allows us to let one of the processes be as irregular as desired, that is no low bounds for its Hurst
parameter is assumed, provided that the other one is regularenough. Finally, we discuss about the representation of the
characteristic function of a double Wiener-Itô integral in terms of a Carleman–Fredholm determinant, that we apply to
compute the characteristic function ofA. Under a further condition of symmetry over the stochastic processes we will
show that the characteristic function of a generalised Lévy area has a Carleman-Fredholm determinant with symmetric
poles and even multiplicity.

2 Isonormal Gaussian processes and multiple integrals

Gaussian multiple integrals are defined in the framework of isonormal Gaussian processes. Main references are Nualart
(2006) and Peccati and Taqqu (2010). The more general abstract context of Gaussian Hilbert spaces developed by Janson
(1997) is also very useful and interesting.

LetH be a separable Hilbert space with inner product〈·, ·〉H. An isonormal Gaussian processX = {X(f) | f ∈ H} is
a centered Gaussian family of random variables such thatE[X(f)X(g)] = 〈f, g〉H. It is well known that the construction
of the multiple Wiener–Itô integrals with respect to a Brownian motion can be transferred to isonormal Gaussian processes:
see Nualart (2006), pages 7 and 8, or Peccati and Taqqu (2010), Section 8.4. For the convenience of the reader we recall
some important facts on that construction. LetH⊗n (resp. H⊙n) be thenth (Hilber) tensor power ofH (resp. the
nth symmetric tensor power); for detailed constructions of these Hilbert spaces see Janson (1997), Appendix E. Given
f1, . . . , fk ∈ H orthonormal, andn1, . . . , nk nonnegative integers such thatn1 + · · ·+ nk = n, define

In

(
Symm(f⊗n1

1 ⊗ · · · ⊗ f⊗nk

k )
)

=
k∏

j=1

Hnj (X(fj)),

whereHn(x) is the Hermite polynomial of ordern with leading coefficient equal to 1 (in Nualart (2006) the leading
coefficient ofHn(x) is 1/n!), and Symm is a canonical symmetrization. ThenIn can be extended to a linear isometry
betweenH⊙n (with the norm

√
n!‖ · ‖H⊗n) andL2(Ω), and this extension is called the multiple Wiener–Itô integral of

ordern with respect toX . The image space{In(f) | f ∈ H⊙n} is called the Wiener chaos of ordern associated withX .
WhenH = L2(M,µ) whereµ is σ-finite, the tensor powerH⊗n may be identified withL2(Mn, µ⊗n), and the

symmetric tensor powerH⊙n with the space of symmetric functions inL2(Mn, µ⊗n) (see Janson (1997), page 319).

2.1 The isonormal Gaussian process associated with two Gaussian processes

In this section we describe how two ordinary Gaussian processes can be imbedded into an isonormal Gaussian process.
We extend Huang and Cambanis (1978) approach, where that construction was done for one Gaussian process. Let
X1 = {X1(t) | t ∈ [0, 1]} andX2 = {X2(t) | t ∈ [0, 1]} be two independent continuous centered Gaussian processes,
both starting at zero, with (continuous) covariance function R1(s, t) andR2(s, t) respectively. We start reproducing
Huang and Cambanis (1978) construction adapted to our context. LetE denote the set of step functions on[0, 1]

φ(t) =
n∑

j=1

aj1(tj ,tj+1](t), aj ∈ R .

Forφ of the above form, define, fori = 1, 2,

Xi(φ) =
n∑

j=1

aj

(
Xi(tj+1)−Xi(tj)) ∈ L2(Ω),

which is a centered Gaussian random variable, and forφ1, φ2 ∈ E ,

E[Xi(φ1)Xi(φ2)] =
∫

[0,1]2
φ1(s)φ2(t)dRi(s, t),

where the above integral is defined by∫
[0,1]2

1(u,u′](s)1(v,v′](t) dRi(s, t) = Ri(u′, v′)−Ri(u′, v)−Ri(u, v′) +Ri(u, v) . (7)
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With the convenient identifications,

〈φ1, φ2〉Hi :=
∫

[0,1]2
φ1(s)φ2(t)dRi(s, t), φ1, φ2 ∈ E

is an inner product and we can construct the Hilbert spaceHi which is the completion ofE with respect to〈·, ·〉Hi . In
the notation of Huang and Cambanis (1978), we haveHi = Λ2(Ri). Then, the mapXi : E → L2(Ω) can be extended
to an isometry betweenHi andL2(Ω). The image space{Xi(f) | f ∈ Hi} is an isonormal Gaussian process. It is worth
to remark that whenXi is a Brownian motion, thenHi reduces toL2([0, 1], dt). However, in generalHi is not a space
of functions; for example, whenXi is a fractional Brownian motion of Hurst parameterH ∈ (1/2, 1), thenHi contains
distributions, see Pipiras and Taqqu (2001) and Jolis (2007).

In order to define an isonormal Gaussian process associated to bothX1 andX2, the set of appropriate elementary
functions, denoted byE2, is the set of the functions that can be written asf(t, i) = δ1iφ1(t) + δ2iφ2(t), for (t, i) ∈
[0, 1] × {1, 2}, whereφ1, φ2 ∈ E , andδij is the Kronecker’s delta. OnE2 we can consider the inner product (with the
convenient identifications):

〈f, g〉H = 〈f(·, 1), g(·, 1)〉H1 + 〈f(·, 2), g(·, 2)〉H2 =
∫

[0,1]2
f(s, 1)g(t, 1)dR1(s, t) +

∫
[0,1]2

f(s, 2)g(t, 2)dR2(s, t) .

Let us callH the Hilbert space which is the completion ofE2 with the above inner product. Note thatH ∼= H1 ⊕ H2,
whereH1 ⊕ H2 is the Hilbertian direct sum ofH1 andH2, that is, the Hilbert space which consists in all ordered pairs
(x1, x2) ∈ H1 ×H2 equipped with the inner product〈(x1, x2), (y1, y2)〉H1⊕H2 := 〈x1, y1〉H1 + 〈x2, y2〉H2 .

DefineX : E2 → L2(Ω) by
X(f) = X1(f(·, 1)) +X2(f(·, 2)).

From the independence betweenX1 andX2, it follows that

E[X(f)X(g)] = 〈f, g〉H, f, g ∈ E2.

So the mapX can be extended to an isometry onH, andX = {X(f) | f ∈ H} is an isonormal Gaussian process.

2.2 Generalised Ĺevy area

Our plan is to use a double Wiener–Itô integral to define the Lévy area, so we need to consider the Hilbert spaceH⊗2. A
construction of that space can be done in the following way: Let E⊗2

2 be the linear span of elements of typef1 ⊗ f2 for
f1, f2 ∈ E2, wheref1 ⊗ f2

(
(s, i), (t, j)) = f1(s, i)f2(t, j). On this set consider the inner product induced by

〈f1 ⊗ f2, g1 ⊗ g2〉H⊗2 := 〈f1, g1〉H 〈f2, g2〉H (8)

ThenH⊗2 is the completion ofE⊗2
2 by the inner product (8). Furthermore, we have

H⊗2 ∼= H⊗2
1 ⊕ (H1 ⊗H2)⊕ (H2 ⊗H1)⊕H⊗2

2 , (9)

which gives a very appropriate interpretation of the elementsf ∈ H⊗2 as2 by 2 matrices with entriesfij ∈ Hi ⊗Hj for
i, j = 1, 2. The above isomorphism also induces the decomposition

〈f, g〉H⊗2 =
2∑

i,j=1

〈fij , gij〉Hi⊗Hj , wheref = (fij)i,j=1,2, g = (gij)i,j=1,2, with fij , gij ∈ Hi ⊗Hj . (10)

In particular, whenf, g ∈ E⊗2
2 , the product can be expressed in terms of the covariance functions. In next Lemma, the

double integral is defined in an obvious way since we are integrating rectangles.

Lemma 2.1. Considerf, g ∈ E⊗2
2 , with f = (fij)i,j=1,2 andg = (gij)i,j=1,2. Then

〈f, g〉H⊗2 =
2∑

i,j=1

∫
[0,1]2

∫
[0,1]2

fij(s, u)gij(t, v)dRi(s, t)dRj(u, v) (11)
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Proof. By (10) it suffices to consider a term〈fij , gij〉Hi⊗Hj . Letfij = f1⊗f2 andgij = g1⊗g2, wheref1, f2, g1, g2 ∈ E2.
Then

〈fij , gij〉Hi⊗Hj = 〈f1, g1〉Hi〈f2, g2〉Hj =
∫

[0,1]2
f1(s)g1(t)dRi(s, t)

∫
[0,1]2

f2(u)g2(v)dRj(u, v)

=
∫

[0,1]2

∫
[0,1]2

f1(s)g1(t)f2(u)g2(v)dRi(s, t)dRj(u, v) =
∫

[0,1]2

∫
[0,1]2

fij(s, u)gij(t, u)(v)dRi(s, t)dRj(u, v). �

Following again Huang and Cambanis (1978), the symmetric tensor Hilbert spaceH⊙2 can be constructed using the
fact thatH⊗2 is generated by functions, and transferring to this space the notion of symmetric function. Specifically,
given a functionf

(
(s, i), (t, j)

)
the symmetrized function off is defined as

f̃
(
(s, i), (t, j)

)
=

1
2

(
f
(
(s, i), (t, j)

)
+ f

(
(t, j), (s, i)

))
.

A function f is symmetric if and only iff = f̃ . With the same steps as Huang and Cambanis (1978), page 593, the
symmetryzation procedure can be extended fromE⊗2

2 to the wholeH⊗2, and an element off ∈ H⊗2 is called symmetric
if f = f̃ . Then, the spaceH⊙2 can be identified with the subspace of the symmetric elementsin H⊗2. OnH⊙2 we can
define the double integralI2 in agreement with the comments in the first part of Section 2.

Now we are ready to define the Lévy area. The desirable definition would beI2(fL) wheneverfL ∈ H⊙2, where
fL was defined in (5). Unfortunately this is very difficult, if possible at all, to prove. We will circumvent this problem
by finding an element inH⊙2 which is indistinguishable (in a particular sense) fromfL and to which we will apply the
isometryI2(·). In other words, we will say that a symmetric functionf

(
(s, i), (t, j)

)
can be identified with an element

f̂ ∈ H⊙2 if

〈f̂ , g〉H⊗2 =
2∑

i,j=1

∫
[0,1]2

∫
[0,1]2

fij(s, u)gij(t, v)dRi(s, t)dRj(u, v), for all g = (gij)i,j=1,2 ∈ E⊗2
2 ,

where the above integrals are iterated two-dimensional Young–Stieltjes integrals (see Definition (3.6)),∫
[0,1]2

(∫
[0,1]2

fij(s, u)gij(t, v)dRi(s, t)
)
dRj(u, v).

Note that we are not enlarging the spaceH⊙2 but renaming the element̂f by f , since under the inner product inH⊙2

they are indistinguishable. Thus the mapI2 is well defined forf̂ and we putI2(f) := I2(f̂). This is a common procedure
to ease the identification of the elements of Hilbert spaces which have been constructed by completion, see Huang and
Cambanis (1978). Therefore we will define the generalised L´evy area in the following way:

Definition 2.2 (Generalised Lévy area). We say thatI2(fL) is a generalised Ĺevy area if there existŝfL ∈ H⊙2 such that

〈f̂L, g〉H⊗2 =
2∑

i,j=1

∫
[0,1]2

∫
[0,1]2

fLij(s, u)gij(t, v)dRi(s, t)dRj(u, v) , (12)

for all g = (gij)i,j=1,2 ∈ E⊗2
2 . ThenI2(fL) := I2(f̂L).

Another problem we have to face in order to make this definition tractable is that we do not know how to compute the
inner product〈f̂L, g〉H⊗2 . Indeed, Lemma 2.1 only shows how to calculate the inner product of elements ofE⊗2

2 . Hence
we will need to approximatêfL by elements ofE⊗2

2 and check equality (12) using a limit procedure.

3 Existence of a generalised Ĺevy area

This section gives the sufficient conditions on the processes {X1(t) | 0 ≤ t ≤ 1} and{X2(t) | 0 ≤ t ≤ 1} so a
generalised Lévy area exists (see Definition 2.2). In fact the conditions on the processes will be constrains on their
covariance functions, and indeed this is what the previous sections suggest as the Hilbert space of the domain ofI2 is
characterised by the covariance functions ofX1 andX2. Friz and Victoir (2010a) claim thep–variation of the covariance
function of a Gaussian process to be a fundamental quantity related to the process. Therefore, we first recall some
definitions on thep–variation of a function.
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3.1 Functions of finitep–variation and Young–Stieltjes integral

For the sake of completeness and to introduce notation, we here give some definitions on thep-variation of a function and
the Young–Stieltjes integral.

For a given interval of the real line[s, t] such thats ≤ t, we will denote the set of all partitions of[s, t] by

P([s, t]) := {{t0, . . . , tn} | s = t0 < t1 < . . . < tn = t, n ∈ N } .
ForD ∈ P([s, t]) we write |D| := maxti∈D{|ti − ti−1|}.
Definition 3.1. Let f : [s, t] → R be a function andp ≥ 1. We say thatf has finitep–variation if V 1

p (f, [s, t]) < ∞,
where

V 1
p (f, [s, t]) := sup

D∈P([s,t])

(∑
ti∈D

|f(ti+1)− f(ti)|p
)1/p

.

The superscript onV 1
p is to stress thatf is 1–dimensional in contrast to thep–variation of a2–dimensional function,

which it is defined below.

Definition 3.2. Letf : [s, t]× [u, v] → R be a function andp ≥ 1. We say thatf has finitep–variation ifV 2
p (f, [s, t] ×

[u, v]) <∞, where

V 2
p (f, [s, t]× [u, v]) := sup

D∈P([s,t])

D′∈P([u,v])

 ∑
(ti,t′j)∈D×D′

∣∣∣∣f ( ti
ti+1

,
t′j
t′j+1

)∣∣∣∣p
1/p

and

f

(
ti
ti+1

,
t′j
t′j+1

)
:= f(ti+1, t

′
j+1)− f(ti+1, t

′
j)− f(ti, t′j+1) + f(ti, t′j) .

Another important concept related to thep-variation is thecontrol map(see Friz and Victoir (2010b, 2011a). Write
∆ = {(s, t) : 0 ≤ s ≤ t ≤ 1}. In the following definition we will deal with a functionω defined on∆×∆, and we will
interpret apoint

(
(s, t), (u, v)

)
as a rectangle[s, t]× [u, v].

Definition 3.3. A 2D control is a mapω : ∆ × ∆ −→ [0,∞) continuous, zero if the rectangle has area zero, and
super–additive in the sense that ifR ⊂ [0, 1]2 is a rectangle, and{R1, . . . , Rn} is a finite partition ofR in rectangles,
then

n∑
i=1

ω(Ri) ≤ ω(R).

The relationship between the control and thep–variation is given by the following lemma, which is a directconse-
quence of Theorem 1 of Friz and Victoir (2011a) (see also Frizand Victoir (2011b) for a correction of Friz and Victoir
(2010b)).

Lemma 3.4. Let f : [0, 1]2 → R be a continuous function of finitep–variation. Then for everyε > 0 there is a2D
control mapω such that for every rectangleR ⊂ [0, 1]2

V 2
p+ε(f,R) ≤ ω1/(p+ε)(R) .

We need the following technical result about the product of control maps; see Friz and Victoir (2010b).

Lemma 3.5. Let ω1 andω2 be2D control maps andp, q > 0 such thatp−1 + q−1 ≥ 1, thenω1/p
1 ω

1/q
2 is also a2D

control map.

Finally, we recall the definition of the two-dimensional Young–Stieltjes integral and the statement of Young’s inequal-
ity for a 2-dimensional function as it is given in Towghi (2002) (see also Friz and Victoir (2010a)):

Definition 3.6. Let f, g : [0, 1]2 → R be two functions, and letD = {ti} andD′ = {t′j} be two partitions of[0, 1].
Consider the Riemman–Stieltjes type sum

L(f, g,D,D′) =
∑
i,j

f(si, s
′
j)g
(

ti
ti+1

,
t′j
t′j+1

)
wheresi, s

′
j ∈ [ti, ti+1] × [t′j , t

′
j+1]. If L(f, g,D,D′) converges whenlim max{|D|, |D′|} = 0, then the limit, denoted

by
∫
[0,1]2 f dg, is called the Young–Stieltjes integral off with respect tog.
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Remark 3.7. Note that1(0,u]×(0,v] and1[0,u]×[0,v] are Young–Stieltjes integrable with respect toRi, and both integrals
are equal toRi(u, v), so notation (7) is coherent with this definition.

Theorem 3.8. (Towghi (2002)). Assumep−1 + q−1 > 1. Letf, g : [0, 1]2 → R be functions andg continuous such that

||f ||W 2
p ([0,1]2) := V 2

p (f, [0, 1]2) + V 1
p (f(0, ·), [0, 1]) + V 1

p (f(·, 0), [0, 1]) + |f(0, 0)| <∞
andV 2

q (g, [0, 1]2) <∞. Then the Young–Stieltjes integral off with respect tog exists, and∣∣∣∣∣
∫

[0,1]2
f dg

∣∣∣∣∣ ≤ c(p, q)||f ||W 2
p ([0,1]2)V

2
q (g, [0, 1]2) ,

wherec(p, q) is a constant independent off andg.

Remark 3.9. The definition of finitep–variation could be stated forp > 0 both in the1–dimensional and in the2–
dimensional case, but we restrict ourselves top ≥ 1. This is because a1–dimensional continuous function of finite
p–variation forp < 1 is constant (see Friz and Victoir (2010a), page 78). This is not true for the2–dimensional case: For
example the functionf(x, y) = x+ y has finitep–variation for allp > 0. However, for continuous covariance functions
coming from processes that start at 0 it is true (see next result). We will see in the next section that the hypotheses related
with the finite variation are always with respect to continuous covariance functions. Therefore, without lost of generality,
we considerp–variations forp ≥ 1.

Lemma 3.10. A continuous functionf on [0, 1]2 such thatf(0, 0) = f(s, 0) = f(0, t) for all t, s ∈ [0, 1] and of finite
p–variation withp < 1 is constant.

Proof. For a fixeda ∈ [0, 1], the functiony → f(a, y) − f(0, y) is a 1–dimensional continuous function of finite
p–variation and hence constant. Indeed, it is zero sincef(a, 0) = f(0, 0), and the result follows. �

3.2 Main result

The main result of the paper is proved in this section. We construct a sequence of elements ofE⊗2
2 which converges

almost everywhere to the Lévy kernel and show that it is a Cauchy sequence inH⊗2, and finally, we also show that its
limit satisfies Definition 2.2.

We start by a technical lemma which will ease the proof of the main result, but, before that, let us introduce some
notation. Let{tni = i2−n | i = 0, . . . , 2n − 1} be the dyadic partition of the interval[0, 1] for a givenn, and consider the
dyadic partition of the trianglesT1 andT2 (see (6))

T n
1 :=

⋃
i<j

In
i × In

j T n
2 :=

⋃
i>j

In
i × In

j ,

whereIn
i := (tni , t

n
i+1]. Then a natural approximation of the Lévy kernel by symmetric functions ofE⊗2

2 is

fn((s, i), (t, j)) :=


0, if i = j
1
2 (1T n

1
(s, t)− 1T n

2
(s, t)), if i = 1, j = 2

1
2 (1T n

2
(s, t)− 1T n

1
(s, t)), if i = 2, j = 1

.

Lemma 3.11. LetR1 andR2 be two continuous covariance functions on[0, 1]2. LetR1 be of finitep–variation andR2

of finiteq–variation and assume thatp−1 + q−1 > 1, then

lim
n→∞
m→∞

2∑
i,j=1

∫
[0,1]2

∫
[0,1]2

(fL − fn)ij(s, u) · (fL − fm)ij(t, v)dRi(s, t)dRj(u, v)︸ ︷︷ ︸
(⋆)

= 0 .

Proof. Write Jn,m
k,l := In

k × Im
l and note that

(fL − fn)ij(s, u) · (fL − fm)ij(t, v) =
(1 − δij)

4

2n−1∑
k=0

2m−1∑
l=0

1(Jn,m
k,l )2(s, t, u, v)(1{(v−t)(u−s)>0} − 1{(v−t)(u−s)<0}) .
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Figure 1. Decomposition of rectangleJn,m
k,l for a fixed(u, v) ∈ Jn,m

k,l used in the integration (**).

Therefore the double integral of the(⋆)-term is split into a sum of double integrals over(Jn,m
k,l )2. These integrals are

iterated integrals and they can be further reduced, according to Figure 1, to

(⋆) =
1
4

2∑
i,j=1
i6=j

2n−1∑
k=0

2m−1∑
l=0

∫
Jn,m

k,l

Fn,m,i
k,l (u, v)dRj(u, v)︸ ︷︷ ︸
(⋆⋆)

,

where

Fn,m,i
k,l (u, v) :=

∫
A1

dRi(s, t)−
∫

A2

dRi(s, t)−
∫

A3

dRi(s, t) +
∫

A4

dRi(s, t)

= Ri

(
u
tnk+1

,
v
tml+1

)
−Ri

(
tnk
u
,

v
tml+1

)
−Ri

(
u
tnk+1

,
tml
v

)
+Ri

(
tnk
u
,
tml
v

)
.

Note that in the above definition we have used Remark 3.7.

It is enough to prove that the(⋆⋆)-term goes to zero asn,m → ∞ for i = 1 andj = 2. The key point is to apply
Young’s inequality to each sumand of the(⋆⋆)-term, and in that way we will prove the existence of the integrals and get
a bound for them. In order to do so note the following identities which relate the functionFn,m,1

k,l with the functionR1

Fn,m,1
k,l

(
u
u′ ,

v
v′

)
= 4R1

(
u
u′ ,

v
v′

)
, Fn,m,1

k,l (tnk , v)− Fn,m,1
k,l (tnk , v

′) = 2R1

(
tnk
tnk+1

,
v
v′

)
,

Fn,m,1
k,l (tnk , t

m
l ) = R1

(
tnk
tnk+1

,
tml
tml+1

)
and Fn,m,1

k,l (u, tml )− Fn,m,1
k,l (u′, tml ) = 2R1

(
u
u′ ,

tml
tml+1

)
.

Now, sincep−1 + q−1 > 1, there existp′′ > p′ > p andq′ > q such that(p′′)−1 + (q′)−1 > 1. Thus,R1 is also of finite
p′andp′′–variation, andR2 is of finite q′-variation. Now use the above equalities to obtain

V 2
p′′(F

n,m,1
k,l , Jn,m

k,l ) = 4V 2
p′′(R1, J

n,m
k,l ) , V 1

p′′ (F
n,m,1
k,l (tnk , ·), [tml , tml+1]) ≤ 2V 2

p′′(R1, J
n,m
k,l ) ,∣∣∣Fn,m,1

k,l (tnk , t
m
l )
∣∣∣ ≤ V 2

p′′(R1, J
n,m
k,l ) and V 1

p′′(F
n,m,1
k,l (·, tml ), [tnk , t

n
k+1]) ≤ 2V 2

p′′(R1, J
n,m
k,l ) ,

whereJn,m
k,l is the closure ofJn,m

k,l . This consideration is a technicality required by the definition of the finite variation.

According to the notation of Theorem 3.8 the above inequalities imply that||Fn,m,1
k,l ||

W 2
p′′ (J

n,m
k,l )

≤ 9V 2
p′′(R1, J

n,m
k,l ), and

thus we can apply Young’s inequality to every integral of the(⋆⋆)-term to get

|(⋆⋆)| ≤ c(p′′, q′)
2n−1∑
k=0

2m−1∑
l=0

||Fn,m,1
k,l ||

W 2
p′′ (J

n,m
k,l )

V 2
q′ (R2, J

n,m
k,l ) ≤ 9c(p′′, q′)

2n−1∑
k=0

2m−1∑
l=0

V 2
p′′ (R1, J

n,m
k,l )V 2

q′ (R2, J
n,m
k,l ) .

Recall Lemma 3.4 to associate the finitep′–variation ofR1 (respectively theq′–variation ofR2) to a control mapω1 (resp.
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ω2). Thus

|(⋆⋆)| ≤ C

2n−1∑
k=0

2m−1∑
l=0

 sup
D∈P(In

k )

D′∈P(Im
l )

 ∑
(ti,t′j)∈D×D′

∣∣∣∣R1

(
ti
ti+1

,
t′j
t′j+1

)∣∣∣∣p
′′
1/p′′

V 2
q′(R2, J

n,m
k,l )

≤ C sup
|u−u′|≤2−n

|v−v′|≤2−m

∣∣∣∣R1

(
u
u′ ,

v
v′

)∣∣∣∣
p′′−p′

p′′ 2n−1∑
k=0

2m−1∑
l=0

(V 2
p′ (R1, J

n,m
k,l ))p′/p′′V 2

q′ (R2, J
n,m
k,l )

≤ C sup
|u−u′|≤2−n

|v−v′|≤2−m

∣∣∣∣R1

(
u
u′ ,

v
v′

)∣∣∣∣
p′′−p′

p′′ 2n−1∑
k=0

2m−1∑
l=0

ω
1/p′′
1 (Jn,m

k,l )ω1/q′
2 (Jn,m

k,l )

≤ C sup
|u−u′|≤2−n

|v−v′|≤2−m

∣∣∣∣R1

(
u
u′ ,

v
v′

)∣∣∣∣
p′′−p′

p′′ 2n−1∑
k=0

2m−1∑
l=0

ω̂(Jn,m
k,l ) ≤ Cω̂([0, 1]2) sup

|u−u′|≤2−n

|v−v′|≤2−m

∣∣∣∣R1

(
u
u′ ,

v
v′

)∣∣∣∣
p′′−p′

p′′
,

whereC is a constant which is renamed when necessary, and we appliedLemma 3.5 to deduce thatω̂ := ω
1/p′′
1 ω

1/q′
1 is a

control map. Finally note that the last supremum goes to zeroasn,m→∞ by the uniform continuity ofR1. �
Now to finalize the construction of the generalized Lévy area we need to prove that the sequence{fn} in Lemma 3.11

is a Cauchy sequence and its limit,f̂L, satisfies Definition 2.2.

Theorem 3.12. Let {X1(t) | 0 ≤ t ≤ 1} and {X2(t) | 0 ≤ t ≤ 1} be two continuous centered Gaussian processes
such thatX1(0) = X2(0) = 0, independent, and with covariance functionsR1 andR2 respectively. LetR1 be of finite
p-variation andR2 be of finiteq-variation and assume thatp−1 + q−1 > 1, then the sequence{fn}n≥1 is a Cauchy
sequence inH⊗2. Moreover, if we denote its limit bŷfL, we have that

〈f̂L, g〉H⊗2 =
2∑

i,j=1

∫
[0,1]2

∫
[0,1]2

fLij(s, u)gij(t, v)dRi(s, t)dRj(u, v) (13)

for all g = (gij)i,j=1,2 ∈ E⊗2
2 .

Proof. Note thatfn − fm ∈ E⊗2
2 . Therefore by Lemma 2.1 we have that

||fn − fm||H⊗2 =
2∑

i,j=1
i6=j

∫
[0,1]2

∫
[0,1]2

(fn − fm)ij(s, u) · (fn − fm)ij(t, v)dRi(s, t)dRj(u, v)

=
2∑

i,j=1
i6=j

∫
[0,1]2

∫
[0,1]2

(fn − fL + fL − fm)ij(s, u) · (fn − fL + fL − fm)ij(t, v)dRi(s, t)dRj(u, v) .

Each term of the above product was denoted as a(⋆)-term in Lemma 3.11 and thus goes to zero asn,m→∞.

For the second part of the proof it suffices to prove the equality for a functiong such thatg12(s, t) = 1[a,b]×[c,d](s, t)
where[a, b]× [c, d] ⊆ [0, 1]2 andgij(s, t) ≡ 0 for i = j. Sincef̂L is the limit of{fn}n≥1 in H⊗2 then

lim
n→∞〈fn, g〉H⊗2 = 〈f̂L, g〉H⊗2 .

Our objective is to prove thatlimn→∞〈fn, g〉H⊗2 equals the right hand side of equation (13). From the definition of the
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Lévy kernel we have that

2∑
i,j=1

∫
[0,1]2

∫
[0,1]2

fLij(s, u)gij(t, v)dRi(s, t)dRj(u, v)

=
1
2

∫
[0,1]2

∫
[0,1]2

(1s>u(s, u)− 1s<u(s, u))1[a,b]×[c,d](t, v)dR1(s, t)dR2(u, v)

=
1
2

∫
[0,1]×[c,d]

dR2(u, v)
∫

[0,1]×[a,b]

(1s>u(s, u)− 1s<u(s, u))dR1(s, t)

=
1
2

∫
[0,1]×[c,d]

[
R1

(
u
1 ,

a
b

)
−R1

(
0
u
,
a
b

)]
dR2(u, v) . (14)

The above integral is a well defined Young–Stieltjes integral. Then, forD ∈ P([0, 1]) andD′ ∈ P([c, d]),

2∑
i,j=1

∫
[0,1]2

∫
[0,1]2

fLij(s, u)gij(t, v)dRi(s, t)dRj(u, v)

=
1
2

lim
|D|→0

|D′|→0

∑
ξi∈D
ζj∈D′

[
R1

(
νi

1 ,
a
b

)
−R1

(
0
νi

,
a
b

)]
R2

(
ξi
ξi+1

,
ζj
ζj+1

)

=
1
2

lim
|D|→0

∑
ξi∈D

[
R1

(
νi

1 ,
a
b

)
−R1

(
0
νi

,
a
b

)]
R2

(
ξi
ξi+1

,
c
d

)
, (15)

whereνi ∈ [ξi, ξi+1]. On the other hand, from Lemma 2.1 we have that

〈fn, g〉H⊗2 =
1
2

2n−1∑
k,l=0
k>l

∫
In

k×[a,b]

∫
In

l ×[c,d]

dR1(s, t)dR2(u, v)− 1
2

2n−1∑
k,l=0
k<l

∫
In

k×[a,b]

∫
In

l ×[c,d]

dR1(s, t)dR2(u, v)

=
1
2

2n−1∑
k,l=0
k>l

R1

(
tnk
tnk+1

,
a
b

)
R2

(
tnl
tnl+1

,
c
d

)
− 1

2

2n−1∑
k,l=0
k<l

R1

(
tnk
tnk+1

,
a
b

)
R2

(
tnl
tnl+1

,
c
d

)

=
1
2

2n−1∑
l=0

[
R1

(
tnl+1

1 ,
a
b

)
−R1

(
0
tnl

,
a
b

)]
R2

(
tnl
tnl+1

,
c
d

)
. (16)

Note that in equation (15) we could replace the firstνi by ν1
i and the secondνi by ν2

i , whereν1
i , ν

2
i ∈ [ξi, ξi+1]. This is

because the integral (14) could be split into two. Indeed we can chooseν1
i = ξi andν2

i = ξi+1, and then equation (16)
becomes a particular election of the partitionD in equation (15) and thus

lim
n→∞〈fn, g〉H⊗2 =

∫
[0,1]2

∫
[0,1]2

fL12(s, u)g12(t, v)dR1(s, t)dR2(u, v)

from where the result follows. �

3.3 The case of the fractional Brownian motion

One case of special interest is to explore what happens with the generalised Lévy area for a fractional Brownian motion
(fBm) of Hurst parameterH ∈ (0, 1). It is known that when fBm has Hurst parameterH ≤ 1

2 then its covariance function
is of finite 1

2H -variation (see Friz and Victoir (2010b) page 405), and whenH > 1
2 then its covariance function is of

bounded variation. Then the Lévy area can be defined for two independent fBm with parametersH andH ′ as long as
H + H ′ > 1

2 . Hence we can let one of the processes be as irregular as desired provided that the other one is regular
enough. That is, we can let one of the fBm be of Hurst parameterH < 1

2 as long as the other independent fBm has Hurst
parameterH ′ > 1

2 −H . WhenH = H ′ then the condition isH > 1
4 .
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4 On the characteristic function of the Lévy area

Consider an isonormal Gaussian processX = {X(h) | h ∈ H}, where the separable Hilbert spaceH is of the form
L2(M,µ), whereµ is σ–finite. As we commented before, in this caseH⊗2 is isomorphic toL2(M2, µ⊗2). To each
elementf ∈ L2(M2, µ⊗2) corresponds a Hilbert–Schmidt operatorF : H → H defined by

(F (h))(t) =
∫

M

f(s, t)h(s)µ(ds) .

Assume thatf is symmetric. Then it can be expressed asf(s, t) =
∑

n αnϕ(s)ϕ(t), where{ϕn | n ≥ 1} is an enumera-
tion of the (orthonormal) eignefunctions ofF and{αn | n ≥ 1} are the corresponding eigenvalues (that appear repeated
according to its multiplicity) (see, for example, Dunford and Schwartz (1988), page 1087, or Neveu (1968), Proposition
6.18). Working in a similar way as in the example of the Lévy area in the Introduction, it is deduced that

E[ezI2(f)] =
1√∏∞

n=1(1− 2zαn)e2zαn

for 2|ℜ(z)|σ(F ) < 1 ,

whereσ(F ) = supn≥1{|αn|}, which is the formula given by Janson (1997) page 78. The infinite product of the above
expression is called a generalised determinant or a Carleman–Fredholm determinant ofF (see Dunford and Schwartz
(1988), page 1036).

There are many works about the characteristic function of quadratic Wiener functionals. In our case we are interested
in a particular functional viewed in different Wiener spaces, therefore the aim of this section is to explicit the procedure
to compute the eigenvalues as much as possible. It is worthwhile to state the relationship between elements of the second
Wiener chaos and Hilbert–Schmidt operators by working out aparticular example and then extending the results to the
general case. To this end we study the case of the Lévy area for two standard Wiener processes, as we commented in the
Introduction. In this case,R1(s, t) = R2(s, t) = s ∧ t, and the Hilbert spaceH is isomorphic toL2([0, 1]× {1, 2}, dt⊗
Card). Then the Lévy kernelfL defines the Hilbert–Schmidt operator

F : L2([0, 1]× {1, 2}) → L2([0, 1]× {1, 2})
h 7→

∫
[0,1]×{1,2}

fLij(s, t)hi(s)ds⊗ Card,

which is reduced to the form

F (h)j(t) =
δ2j

2

(∫ t

0

h1(s)ds−
∫ 1

t

h1(s)ds
)
− δ1j

2

(∫ t

0

h2(s)ds−
∫ 1

t

h2(s)ds
)
. (17)

Let h be an eigenvector of eigenvalueα, F (h) = αh, therefore it is continuous because it is defined by an integral, and
applying again the same argument it is differentiable. Thenwe differentiate the above expression and obtain the matrix
differential equation (

h′1(t)
h′2(t)

)
=

1
α

(
0 −1
1 0

)(
h1(t)
h2(t)

)
=

1
α
M

(
h1(t)
h2(t)

)
(18)

with solution given byh(t) = eM t
αh(0). From (17) it is clear thath(1) + h(0) = 0 and thus the eigenvalues satisfy the

equation

eM 1
α =

(
cos(α−1) − sin(α−1)
sin(α−1) cos(α−1)

)
=
(−1 0

0 −1

)
= −Id2 .

Therefore the eigenvalues,αn, are{±(π(2n + 1))−1 | n ∈ N} with multiplicity 2 since the space of solutions of
the ordinary differential equation has dimension2. Finally we compute the Carleman-Fredholm determinant to obtain
E[eitA] = cosh(t)−1.

Now we use the same sort of ideas into the abstract setting presented in Section 2. Letf ∈ H⊗2 and define the
operatorF := Ψ ◦ Φf : H −→ H, whereΨ : H∗ −→ H is the duality isomorphism, andΦf : H −→ H∗ is defined in the
following way: forg ∈ H setΦf (g) : H → R as

Φf (g)(h) := 〈f, g ⊗ h〉H⊗2 , h ∈ H .

ThenF is a Hilbert–Schmidt operator (see Neveu (1968) Proposition 6.16). Note thatg ∈ H is an eigenvector of the
operatorF with eigenvalueα if and only if 〈f, g⊗h〉H⊗2 = α〈g, h〉H for all h ∈ H. Writing g(t, i) = δ1ig1(t)+δ2ig2(t)
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wheregi ∈ Hi and similarly forh, theng ∈ H is an eigenvector of eigenvalueα if and only if

2∑
i,j=1

〈fij , gi ⊗ hj〉Hi⊗Hj = α

2∑
i=1

〈gi, hi〉Hi , ∀h1 ∈ H1, ∀h2 ∈ H2 .

We will say that two covariance functionsR1 andR2 are equivalent if the associated Hilbert spacesH1 andH2 are the
same, i.e. they are composed by the same functions with the same scalar product. Under this symmetry of the processes
we recover the spectrum structure of the classical Lévy area.

Proposition 4.1. Let {X1(t) | 0 ≤ t ≤ 1} and {X2(t) | 0 ≤ t ≤ 1} be continuous centered independent Gaussian
processes with equivalent covariance functionsR1 andR2 respectively. Assume that the generalized Lévy area exits.
Then the corresponding Hilbert–Schmidt operator has eigenvalues with even multiplicity and symmetric with respect to
zero. As a consequence, the characteristic function of the generalized Ĺevy area is of the form

ϕ(t) =
∏
n≥1

1
(1 + 4α2

nt
2)mn

,

wheremn ≥ 1.

Proof. From the factorisation (9) it is clear that the symmetry of the approximation of the Lévy kernel{fn}n≥1 is
transferred tôfL. Then, from equation

2∑
i,j=1
i6=j

〈f̂Lij , gi ⊗ hj〉Hi⊗Hj = α

2∑
i=1

〈gi, hi〉Hi ∀h1, h2 ∈ H1 = H2 , (19)

it is deduced that ifg(t, i) = δ1ig1(t) + δ2ig2(t) is an eigenvector with eigenvalueα, theng̃(t, i) = δ1ig2(t)− δ2ig1(t) is
an eigenvector with eigenvalueα, andĝ(t, i) = δ1ig2(t) + δ2ig1(t) is an eigenvector with eigenvalue−α. If g = λg̃ for
λ 6= 0, theng1 = λg2 = −λ2g1 and henceg ≡ 0, thusg andg̃ are linear independent. On the other hand, it can be proved
that if {g1(t, i), g̃1(t, i), . . . , gk(t, i), g̃k(t, i), h(t, i)} is a family of linear independent eigenvectors of eigenvalueα, then
alsoh̃ is independent of that set. Thereforeα has even multiplicity. Note that this suffices to deduce the same property for
the eigenvalue−α and by construction the multiplicity ofα and−α is the same. Finally, we recover the same structure
for the spectrum of the Hilbert–Schmidt operator that we have in the classical Lévy area. �

Example. From the explicit calculations made for the classical Lévyarea we can easily work out a bit more general
case. LetXi(t) =

∫ t

0 f(s)dWi(s), for two independent Brownian motionsW1 andW2, wheref ∈ L2([0, 1], dx). Then

Ri(s, v) =
∫ s∧v

0
f2(u)du,Hi = L2([0, 1], f2(u)du) and equation (18) can be written as(

h′1(t)
h′2(t)

)
=
f2(t)
α

(
0 −1
1 0

)(
h1(t)
h2(t)

)
. (20)

Therefore the general solution is

h(t) = exp
{∫ t

0

f2(u)
α

du

(
0 −1
1 0

)}
h(0) .

Finally the characteristic function ofA in this setting isE[eiξA] = sech
(
ξ||f ||2L2

)
.

A comment on the fractional Brownian motion. To find the eigenvalues of the Lévy area for the fractional Brownian
motion is an open problem. The main difficulty is that the Hilbert spaceH corresponding to such a process is complicate;
for example, as we comment in Subsection 2.1 for a Hurst parameterH > 1/2 that space is not a space of functions.
Then it is not evident how to get an equation for the eigenfunctions as equation (18) in the Brownian motion or equation
(20) in the previous example.
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