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Abstract

Model selection is a crucial issue in machine-
learning and a wide variety of penalisation methods
(with possibly data dependent complexity penal-
ties) have recently been introduced for this purpose.
However their empirical performance is generally
not well documented in the literature. It is the goal
of this paper to investigate to which extent such
recent techniques can be successfully used for the
tuning of both the regularisation and kernel param-
eters in support vector regression (SVR) and the
complexity measure in regression trees (CART).
This task is traditionally solved via V -fold cross-
validation (VFCV), which gives efficient results for
a reasonable computational cost. A disadvantage
however of VFCV is that the procedure is known
to provide an asymptotically suboptimal risk esti-
mate as the number of examples tends to infinity.
Recently, a penalisation procedure called V -fold pe-
nalisation has been proposed to improve on VFCV,
supported by theoretical arguments. Here we re-
port on an extensive set of experiments comparing
V -fold penalisation and VFCV for SVR/CART cal-
ibration on several benchmark datasets. We high-
light cases in which VFCV and V -fold penalisation
provide poor estimates of the risk respectively and
introduce a modified penalisation technique to re-
duce the estimation error.

∗Author for correspondence (charanpal.dhanjal@lip6.fr)

1 Introduction

Learning algorithms generally depend on a small
number of real-valued or discrete parameters such
as the size of a tree in hierarchical methods, the
stopping criteria in boosting algorithms or explicit
regularisation/smoothing parameters. These pa-
rameters naturally determine the complexity of the
output function, and by doing so, also strongly in-
fluence generalisation ability. In a general sense the
more ”complex” the learnt function is, the more
likely it is to overfit to the data. On the contrary,
a simple predictor will be suboptimal if the data
is informative with regard to the learning prob-
lem. From the model selection point of view the
challenge consists in selecting values of the param-
eters of interest with a theoretical risk as small
as possible. From a global perspective, there ex-
ist essentially two major approaches to model se-
lection: methods related to data-splitting, with
cross-validation [1] and its variants, and methods
related to penalisation of the empirical risk (that
obtained on the training set), with in particular
the Structural Risk Minimisation principle [36].
Penalisation-based approaches aim to approximate
the ideal model by adding a penalty or complexity-
based term to the empirical risk, generally based
on theoretical arguments (i.e. on probabilistic
distribution-free upper bounds for the excess of
risk). V -fold cross-validation (VFCV in abbrevi-
ated from) is widely used in machine-learning prac-
tice due to its (relative) computational tractabil-
ity and empirical evidence of its good behaviour.
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However, there is little theoretical justification con-
cerning VFCV [3] and the question of an auto-
matic choice of the parameter V remains widely
open [8]. On the other hand, penalisation proce-
dures generally suffer from two possible drawbacks,
despite the fact that they are theoretically well-
founded: either they are designed in a simplified
framework and thus are not robust to complex sit-
uations (typically the case for Mallows’ Cp in re-
gression [26]), or they are of general purpose, as
for instance the so-called Rademacher complexities
[4], but are inaccurate in many cases. In order to
refine Rademacher penalties, several authors pro-
posed localisation techniques, giving rise to local
Rademacher complexities [23], but these more ac-
curate capacity functions are essentially of theoret-
ical interest and cannot be used in practice due to
the presence of unknown constants in their defini-
tion.
Combining both the robustness of cross-

validation estimates and theoretical guarantees of
penalisation procedures, a new type of general pur-
pose penalisation procedures, called V -fold penal-
isation, has been recently proposed [2]. Both em-
pirical and mathematical evidence of its efficiency
have been shown in a heteroscedastic with ran-
dom design regression framework, when considering
the selection of finite-dimensional histogram mod-
els. While the selection of regressograms studied in
[2] is convenient for theory since it allows precise
mathematical investigations and is however gen-
eral enough to show some relevant complex phe-
nomena, we investigate in this paper the behaviour
of V -fold penalties, and compare it to VFCV, for
the tuning of the hyperparameters involved in the
Support Vector Regression algorithm (SVR, [14])
and Classification and Regression Trees (CART,
[6]) for regression. Indeed, these algorithms are
two of the most extensively used regression tools
in a wide variety of areas and the choice of efficient
hyperparameters is known to be a decisive step of
the learning process to attain good generalisation
performance. Model selection for SVR has been
addressed by several authors and many attempts,
theoretically well-founded, have been proposed to
answer this problem, among which: estimation of
the hyperparameters from the data and the level
of noise [34][24][12], leave-one-out bounds for SVR
[11]. However, methods based on resampling pro-
cedures for the evaluation of the risk of each model

have been proven to be significantly better than
most of the other proposed automatic procedures
[12, 29] and VFCV is generally the chosen method
in practice [35]. For CART regression, the issue
of model selection has not received as much at-
tention, however [18] provides a theoretical valida-
tion of the standard CART pruning criterion. In
this paper, our aim is to study V -fold penalisa-
tion for model selection and give insights into situ-
ations when one can improve on VFCV in practice.
Particularly, the comparison of V -fold penalisation
with VFCV on the problem of SVR and CART cal-
ibration takes importance, due to the highlighted
relevance of VFCV in this central issue.

The remainder of this paper is organised as fol-
lows: Section 2 describes the statistical frame-
work related to model selection for kernel SVR and
CART. In Section 3 we recall VFCV and related
works, we introduce in Section 4 V -fold penalisa-
tion and our improved penalisation approach. Ex-
periments are addressed in Section 6, and conclu-
sions are presented in Section 8.

2 Background and Prelimi-

naries

As a first go, we outline the statistical setting of
the model selection we shall subsequently study
(generally referred to as the distribution-free re-
gression setup). Here and throughout, a column
vector is written in bold lowercase e.g. x. Let
X × Y be a measurable space endowed with an un-
known probability measure P , with Y = R. X
is called the input space and is usually a compact
subset of Rd, d ≥ 1, and Y is the target space. We
observe n i.i.d. labelled observations or examples
S = {(x1, y1) , . . . , (xn, yn)} ⊂ X × Y. Further-
more, (X,Y ) denotes a generic random variable,
independent from the data S, drawn from P . Let
S be the set of all measurable functions s : X → Y
mapping from the input to target space. In the
present paper, focus is on the mean absolute devi-
ation:

L(s) = E[|s(X)− Y |].

The regression task can thus be rewritten in these
notations as finding minimum of the so-called least
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absolute Bayes loss s∗, defined by:

L(s∗) = min
s:X→Y

L(s).

2.1 Support Vector Regression

The SVR prediction function is of the form f(x) =
〈w,x〉+ b where w ∈ R

d is a weight vector and b is
a constant. In this case, one is interested in errors
greater than a user-defined value ǫ ∈ R

+ (known as
the ǫ-insensitive loss). Hence the optimisation task
can be written as:

t = argminw,b
1
2‖w‖2 + C

∑n
i=1(ξi + ξ∗i )

s. t. yi − 〈w,xi〉 − b ≤ ǫ+ ξi
〈w,xi〉 − yi + b ≤ ǫ+ ξ∗i
ξi, ξ

∗
i ≥ 0,

(1)

where ξi and ξ∗i are slack variables, and C is a user-
defined trade-off between minimising the norm of
the weight vector w (which can be seen as reg-
ularisation) and penalising errors greater than ǫ.
A high value of C thus corresponds to a low reg-
ularisation level and the objective becomes then
closer to that of minimising the empirical risk. The
value of ǫ affects the number of Support Vectors
(SV’s in short), with larger values resulting in fewer
SV’s. In a slight abuse of notation, minimum val-
ues of w and b form a prediction function t. The
SVR algorithm is often performed using kernels to
model non-linear functions, where a kernel func-
tion κ : X×X →R is used to find the inner product
of the transformation of the input space X into
its associated Reproducing Kernel Hilbert Space
(RKHS), denoted by Hκ. Note that κ can be writ-
ten in terms of a transformation φ from input to
kernel space 〈u,v〉Hκ

= 〈φ(u), φ(v)〉 = κ(u,v).
Kernels functions usually depend on one or a few
hyperparameters, e.g. polynomial, Gaussian Ra-
dial Basis Function (RBF) and sigmoid kernels [32].
The Gaussian RBF kernel is one of the most com-
monly used kernels and Boser, Guyon and Vapnik
suggested its widespread use [5][19][37]. In the ex-
periments described in Section 6, we therefore con-
sider the Gaussian RBF kernel,

κγ(x,x
′) = exp(−γ ‖x− x

′‖
2
),

which depends on one real-valued positive parame-
ter γ. In the following we denote the Gaussian RBF
kernel κγ , γ ∈ R+. The optimal value of the reg-
ularisation parameter C can significantly change,

and depends on the data. To ensure the perfor-
mance in prediction of the SVR algorithm, the reg-
ularisation parameter, as well as the kernel, should
thus be calibrated in each application. Formally,
the question to be addressed is to find the best pa-
rameters (γ, C, ǫ) in terms of prediction. We thus
aim at estimating the oracle, which is the model
with the smallest risk, (where t (γ, C, ǫ) is the SVR
learnt using parameters γ, C, ǫ),

arg min
(γ,C,ǫ)∈R

3
+

L (t (γ, C, ǫ)) ,

which is unknown since it depends on the law P of
data and which optimises the least squares error.

2.2 CART Regression

Another important algorithm for regression is
CART in which one learns a tree like the one exem-
plified in Figure 1. To regress a new example x, it
is filtered down to a leaf node via a decision at each
link and then assigned a real number target. In the
illustration, if the first feature of x, x(1) ≤ θ1, for
some threshold θ1, then it is labelled 0.0. Simi-
larly, if x(1) > θ1 and x(2) > θ3 then the example
is labelled −0.3. Regression trees have been suc-
cessfully used in a variety of applications in such
as vector quantisation [13], meteorology [10] and
medicine [38] for example, and have the crucial ad-
vantage of being easy to interpret and easy to com-
pute. To construct a regression tree one starts with

1

3

54

x(1)>θ1x(1)<=θ1

x(2)>θ3x(2)<=θ3

0.0

2

-0.3 0.1

Figure 1: An example of a decision tree.

the root node which contains all of the training ex-
amples S0 = S. One then decides how to split the
examples based on a feature k and a threshold θ.
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Given a choice of these values, the left child con-
tains the examples SL = {(x, y) ∈ S0 | x(k) ≤ θ}
and the right one is SR = {(x, y) ∈ S0 | x(k) > θ}.
The optimal feature-threshold pair k∗, θ∗ is found
by minimising the squared error of the split, i.e.
k∗, θ∗ are found using:

argmin
k,θ

∑

(x,y)∈SL

(y − µSL
)2 +

∑

(x,y)∈SR

(y − µSR
)2

s. t. SL = {(x, y) ∈ S0 | x(k) ≤ θ}
SR = {(x, y) ∈ S0 | x(k) > θ},

where µSL
= 1

|SL|

∑

(x,y)∈SL
y and µSR

=
1

|SR|

∑

(x,y)∈SR
y are the mean labels for the left and

right nodes and hence (y−µS0)
2 is the squared er-

ror between y and the mean label. A simple way
to solve this optimisation is to iterate through each
feature and threshold and choose the one with the
lowest objective value. After splitting on the root
node, one recursively splits on the resulting child
nodes until no more splits are possible, i.e. a node
contains fewer examples than a user defined value
ℓ. Following the growing phase, one prunes the
resulting tree as smaller trees have been shown to
improve generalisation error. In CART, one uses an
approach called cost complexity pruning which gen-
erates a series of trees pruned from the original tree
and then selects one of the trees in the sequence.
For the ith node in the unpruned tree which con-
tains examples Si, one computes the error if the
tree was pruned at that node and compares it to
the error if the subtree starting at that node Ri is
kept. The difference in these errors divided by the
number of leaves of the subtree gives an indication
of the error difference per leaf, i.e.

αi =
L̃(Si, R̂i)− L̃(Si, Ri)

|Ri|l − |R̂i|l
,

in which L̃(Si, Ri) is the squared error of a set of
examples Si using subtree Ri, R̂i is the root of Ri,
and |Ri|l is the number of leaves in Ri. In sim-
ple terms, the higher the value of αi, the bigger
the reduction in error of the subtree per leaf. One
can compute αi for all nodes in the tree and hence,
if we prune nodes with αi greater than a threshold
σ ∈ {α1, . . . α|T |}, where |T | is the number of nodes
in the tree, we obtain a sequence of trees which de-
crease in size as σ increases. Instead of choosing
σ directly in the model selection stage, we pick a

threshold t and choose the largest tree smaller or
equal in size to t. Therefore, as before, the model
selection task can be written in terms of search for
the parameter t. We aim at estimating the oracle
(where f (t) is the decision tree learnt using param-
eter t),

argmin
t∈Z

L (f (t)) ,

Estimating the oracle is a model selection task, each
model being represented here by a fixed value of t,
where penalisation is a natural way to proceed, as
explained in Section 4 below. However, let us first
briefly recall the method which is usually employed
for model selection, namely V -fold cross-validation.

3 V -fold Cross Validation

The idea of cross-validation for model selection is
to estimate the risk of the considered estimator
on each model by using a repeated data-splitting
scheme, and then to select the model that min-
imises these estimates of the risk. The fact that
data-splitting strategies give accurate estimates of
the risks only relies on the independence between
each training and testing set. Consequently, the
interest of CV is that it is based on a heuristic
that can be applied with great universality. Many
data-splitting rules have been proposed, such as
leave-one-out (LOO, [1]), leave-p-out (LPO, [33]),
balanced incomplete CV (BICV, [33]), repeated
learning-testing (RLT, [7]). V -fold cross-validation
(VFCV) was introduced by Geisser [17], see also [7]
as a computationally efficient alternative to LOO
cross validation. We will consider primarily VFCV,
which is certainly the most commonly used cross-
validation rule in practice. Moreover, it is gener-
ally the procedure which is considered for the cal-
ibration of the SVR hyperparameters [35] [21]. In
VFCV, the examples are partitioned into V sub-
samples of n/V examples each (with a maximal
deviation of one) B1, . . . , BV . At the jth fold one
trains on S \ Bj and then evaluates the error on
Bj , and one averages the errors over all V folds.
For model selection this is repeated over a grid of
parameters in order to select those with the lowest
error. Despite the generality of the heuristic un-
derlying the procedure, there are two drawbacks in
the V -fold cross-validation method for model selec-
tion. First, at a fixed V , the procedure is known
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to be asymptotically suboptimal in the sense that
the risk of the selected estimator is not equivalent
to the risk of the oracle when the number of data
tends to infinity. More precisely, [2] shows in a het-
eroscedastic with random design regression frame-
work, that VFCV with fixed V satisfies an oracle
inequality with a constant A > 1 which relates the
excess risk of the selected model to the excess risk
of the oracle, and that this suboptimal constant
cannot be improved asymptotically. The keystone
of such a result is that at a fixed V , the VFCV cri-
terion is biased compared to the true risk [9][31].
Indeed, since the validation sets are independent
of their respective training sets, the expectation of
the VFCV criterion can be related to the expecta-
tion of the true risk E[critVFCV s (Q)] for a learner
s with parameter set Q ∈ Q as follows,

E

[

L
(j)
S

(

s(−j) (Q)
)]

= E

[

L
(

s[−1] (Q)
)]

,

where s[−1] (Q) is the output of the learner trained
with (1− 1/V )n i.i.d. examples, s(−j) is the

learner trained with S \ Bj , and L
(j)
S is the loss

with respect to the partition Bj of S. Since the true
risk generally decreases with more data, it appears
that the expectation of VFCV criterion roughly
overestimates the expectation of the true risk, and
that this bias should be decreasing whenever V in-
creases. The previous observation suggests that,
in order to mimic the oracle in terms of perfor-
mance in prediction, one should take a V which is
as large as possible. This is where appears the sec-
ond drawback concerning VFCV: there is no rule
in practice to choose the optimal V . Indeed, the
best CV estimator of the risk is not necessarily the
best model selection procedure, and [8] highlight
that LOO is the best estimator of the risk, whereas
10-fold cross-validation is more efficient for model
selection purpose. This can be explained by the
fact the bias in the VFCV estimation of the risk
is actually an advantage for model selection with
a few or medium number of examples, contrary to
the asymptotic framework. Indeed, as claimed in
[2] a slightly over-pessimistic estimation of the risk,
as in VFCV, gives for a fixed number of observa-
tions a more robust model selection procedure and
roughly contradicts the bad effects of the variance
of risk estimation.

4 V -fold Penalisation

Penalisation is a natural strategy for the task of
estimating the oracle s (Q∗). Indeed, the definition
of the oracle can be rewritten as the sum of the
empirical loss and an unknown term, which is thus
an ideal penalty in the sense that it allows one to
recover the oracle:

arg min
Q∈Q

LS (s (Q)) + penid (Q) ,

in which s(Q) is a function mapping from input
to target space under hyperparameters Q, and the
ideal penalty is as follows,

penid (Q) = L (s (Q))− LS (s (Q)) .

Hence, penalisation aims at mimicking the oracle
by selecting, for a known penalty function the esti-
mator

arg min
Q ∈Q

LS (s (Q)) + pen (Q) .

A good penalty in terms of prediction is one which
gives an accurate estimate of the ideal penalty
penid. The central idea of V -fold penalties pro-
posed in [2] is to directly estimate the ideal penalty
by a subsampled version of it. For some constant
CV ≥ V − 1, the V -fold penalty penVF (Q) is

CV

V

V
∑

j=1

[

LS(s
(−j)(Q))− L

(−j)
S (s(−j)(Q))

]

,

and so the corresponding selected hyperparameters
are given by

arg min
Q∈D

LS (s (Q)) + penVF (Q) ,

where D is a discrete grid upon the set Q. The
V -fold penalty indeed mimics the structure of the
ideal penalty, in such a way that the quantities re-
lated to the unknown law of data P (respectively
to the empirical measure PS) are replaced by quan-
tities related to the empirical measure PS (respec-

tively to the subsampling measures P
(−j)
S ), in the

same analytic manner. The design of the V -fold
penalties is thus an adaptation of Efron’s resam-
pling heuristics [15] to the subsampling scheme of
the V -fold procedure. It has been shown in [2] by
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considering the selection of regressograms in a het-
eroscedastic regression framework, that V -fold pe-
nalisation with CV = V − 1 is asymptotically op-
timal for a fixed V , whereas in this case, VFCV
is asymptotically suboptimal, due to its bias on
the estimation of the risk. Moreover, the choice of
CV = V − 1 in the definition of the V -fold penalty
corresponds to the Burman’s corrected VFCV cri-
terion [9]. Therefore, we use in our experiments
CV = V − 1 although we also explore different
values. Another advantage, highlighted in [2], of
V -fold penalisation, compared to VFCV, is that it
seems to be more regular with respect to the choice
of V . At a heuristic level, this can be explained by
observing that since V -fold penalisation corrects
the bias of VFCV, it is only variability of V -fold
estimates that matters here, a variability which is
smaller for a larger V . Finally, it should be noted
that the constant CV in the definition of the V -fold
penalty can be viewed as a degree of freedom, which
potentially allows to deal with the bias of the pro-
posed risk estimation, without varying the value of
V , contrary to VFCV where only V fixes simultane-
ously and in a tricky manner, the bias and variance
of the risk estimation. In [2] it is shown that choos-
ing CV to overpenalise (i.e. penVF is larger than
penid even in expectation) can improve prediction
performance when the signal to noise ratio is small.
The choice is a difficult one however, and accord-
ing to empirical results on synthetic datasets, it
depends on the sample size, noise level and smooth-
ness of the regression function.

5 A Complexity-Based Selec-

tion of CV

In practice, as we shall later see, for a fixed train-
ing set and V , the approximate penalty as given by
penVF often poorly approximates the ideal penalty
and it cannot be improved by varying the penalisa-
tion constant CV . To study the cause of the prob-
lem we analyse the penVF criterion relative to the
ideal penalty. Consider the first term in the sum of
penVF, LS

(

s(−j) (Q)
)

, and write it in terms of the

loss on the training and test set:

1

n

∑

i∈S(−j)

ℓi(s
(−j)(Q)) +

1

n

∑

i∈S(j)

ℓi(s
(−j)(Q))

=
V − 1

V
L
(−j)
S (s(−j)(Q) +

1

V
L
(j)
S (s(−j)(Q),

in which ℓi(·) is the loss for the ith example. The
link between the lines can be seen by noting that

L
(−j)
S (s(−j)(Q) =

V

(V − 1)n

∑

i∈S(−j)

ℓi(s
(−j)(Q)).

When we put the above form of LS

(

s(−j) (Q)
)

into
penVF we obtain

CV

V

[

1

V

V
∑

j=1

(

L
(j)
S

(

s
(−j) (Q)

)

− L
(−j)
S

(

s
(−j) (Q)

))

]

,

and the term inside the square brackets is the em-
pirical expectation of the error on the test set mi-
nus the error on the training set. One can say that
this an approximation of the ideal penalty using
(V − 1)n/V examples since the loss term on the
right side is computed over S \ Bj . A variety of
error bounds have the penalty proportional to a
complexity measure and inversely proportional to
the number of examples to some power of a learning
rate β(Q) (see [25] for example). In other words,
for a learner s with parameters Q we consider the
following form of the penalty:

penV (Q) =
CV

V

D(Q)

(n(V − 1)/V )β(Q)
(2)

where D(Q) is the complexity of s(Q) and β(Q)
is a learning rate, and we have replaced the
square bracketed term in penVF with D(Q)/(n(V −
1)/V )β(Q). A learning rate of 0 implies a large
penalty and that we have overfitted the data and
hence, for a fixed V and sample size we do not
learn anything (in other words one predicts on a
test set randomly). As the sample size increases
one continues to overfit and hence the penalty term
is CV D(Q)/V regardless of the sample size. In con-
trast when β(Q) = 1 the penalty is small, and
rapidly decreases with the sample size, and also
with V . A limit of 1 for β(Q) is natural for the
learning rate since this is the bound often used in
complexity bounds. The ideal penalty has the form
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D(Q)/nβ(Q) for n examples and hence we would
like to choose CV above so that

CV

V

D(Q)

(n(V − 1)/V )β(Q)
=

D(Q)

nβ(Q)
, (3)

and solving gives CV = (V − 1)β(Q)/V β(Q)−1. A
learning rate of 0 which occurs with complex mod-
els (e.g. large decision trees) implies CV = V and
similarly for small models where β(Q) = 1 we have
CV = V − 1 as suggested asymptotically above. In
this latter case we recover exactly the value of CV

suggested in [2]. On the whole, penV (Q) is an es-
timation of the ideal penalty using penVF and the
model complexity D(Q). It remains to consider
how one computes the learning rate. We equate
Eq. (2) with penVF and then taking logs results in
log(penV F (Q)/CV ) equal to

− log(V )− β(Q) log(n(V − 1)/V ) + log(D(Q)).

One finds the gradient of log(penV F (Q)/CV ) +
log(V ) versus log(n(V − 1)/V ) for a selection of
different V values whilst fixing Q and n, in order
to find the learning rate β(Q).

6 Experimental Setup

We study the behaviour of VFCV and V -fold pe-
nalisation on a collection of benchmark datasets.
The scikit-learn library in Python [30] is used to
generate the output of the RBF SVR and CART
algorithms.

In total, 10 datasets from the UCI machine learn-
ing repository [16] and DELVE [28] are used. Each
dataset is split into 100 training and test realisa-
tions/sets after being processed so that the exam-
ples and labels have zero mean and unit standard
deviation. Details are provided in Table 1. When
comparing model selection algorithms, a statisti-
cally significant improvement of one method over
another is such that the mean error is greater and
by using a paired t-test. For the t-test we take the
sample of errors over all realisations for 2 methods,
then compute a p value and reject the null hypoth-
esis, that the means are equal, if p < 0.1. In all
experiments we use the mean absolute error, i.e.
for a prediction function f : X → Y, the error is
1
n

∑n

i=1 ‖f(xi)− yi‖1.

Dataset Learn Test d Abrv.
abalone 835 3342 8 ab
add10 2937 6855 10 ad
comp-activ 2457 5735 22 ca
concrete 309 721 8 cc
parkinsons-motor 2937 2938 20 pm
parkinsons-total 2937 2938 20 pt
pumadyn-32nh 3276 4916 32 pd
slice-loc 26750 26750 385 sl
winequality-red 1066 533 11 wr
winequality-white 3265 1633 11 ww

Table 1: Information on the benchmark datasets
used. There are 100 learn/test splits for each
dataset.

6.1 Model Selection

In all of the following experiments we use a grid
to approximate the set of hyperparameters. The
SVR penalty is chosen as C ∈ {2−10, 2−8, . . . , 212},
the kernel width as γ ∈ {2−10, 2−8, . . . , 22}, and
ǫ ∈ {2−4, 2−3}. More sophisticated ways of search-
ing in the hyperparameter space actually exist,
such as the iterative process derived from the so-
called active sets method and used in [20, 12, 29]
to walk along the entire path of the SVR: γ is fixed
and all values of C are considered. Others heuris-
tics involve e.g. genetic algorithms [22], local search
methods [27]. However, some degeneracies can oc-
cur and so, a search on a grid should be more sta-
ble. Moreover, the grid-search has also the advan-
tage of being easily parallelised, because each value
of (γ, C, ǫ) is independent from the others. In the
case of CART regression, we pick the bound on the
tree size t from {21−1, round(21.5−1), . . . , 27−1}.

An important characterisation of the model
picked during the selection phase is its complex-
ity. In all of the model selection techniques we
choose a set of parameters over n(V − 1)/V ex-
amples however the final predictor is training using
all n examples. Ideally, we would like the com-
plexity to be identical in both model selection and
whilst training using all examples, since the penalty
is a function of complexity (Equation 2). For the
SVR the norm of the weight vector is the measure
of complexity used in error bounds (see [35]). For
this reason, we compute the mean norm of the SVR
weight vector ‖w‖, for each value of C, γ, ǫ used in
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model selection and store ‖w∗‖, the norm corre-
sponding to the lowest error, as well as the corre-
sponding values γ∗, ǫ∗. When we train using all n
examples, we again compute ‖w‖’s corresponding
to each value of C, for γ∗, ǫ∗, and choose C with
corresponding norm closest to ‖w∗‖. In the case
of CART trees, we can be slightly more direct: for
the optimal bound on the tree size, t∗, we compute
the real mean tree size found during model selec-
tion and round to the nearest integer t̂. The value
of t̂ is then used to train over all n examples.

6.2 Primary Setup

In order to test the model selection techniques we
take random training subsamples of either 50, 100
or 200 examples of the learning sets to observe
model selection on a limited number of examples.
Furthermore, we test using 2, 4, . . . , 12 folds. Model
selection is performed using each subsample and
then SVR or CART is trained using the optimal
parameters and the entire subsample. This is re-
peated for each realisation and results are aver-
aged over the entire set of realisations. As well as
recording the error obtained using model selection
over the realisations, we also store the difference be-
tween the “ideal” and approximated penalty. This
former quantity is computed simply as the differ-
ence between the V -fold penalty and the penalty
as computed using the test set. All results for V -
fold penalisation are evaluated with CV = (V −1)α
with α ∈ {0.6, 1.2, . . . , 1.6} being the multiplier for
the penalisation. We denote the types of model
selection methods as: VFCV, V - fold penalisation
(PenVF) and V -fold penalisation using a learning
rate (PenVF+).

For the PenVF+ method one needs to compute
learning rates for each model (set of parameters).
We use the same training sets as above and vary
V from the set {2, 3, . . . , 12}. The quantities
log(penV (Q)) + log(V ) versus log(n(V − 1)/V ) are
computed and the gradient, found using linear re-
gression, provides β(Q) which in turn is used to
calculate CV = (V − 1)β(Q)/V β(Q)−1. As this es-
timation of β(Q) can be unstable especially with
small training sets we clip its value to lie within
the valid range [0, 1].

7 Experimental Results

7.1 Comparison of Penalisation and

VFCV with V = 2

We start by studying the SVR results in Ta-
ble 2 which shows errors for all datasets when
V = 2, α = 1.0. We consider V = 2 in this
case since it provides the greatest distinction be-
tween the model selection methods. For PenVF+

many of the results are comparable to VFCV
when we also consider the standard deviations.
As the same time, PenVF+ does not always im-
prove upon PenVF. In contrast PenVF can perform
significantly worse than both VFCV and PenVF+,
for example with abalone, winequality-red and
winequality-white. Also of note is that the dif-
ference in error between VFCV and PenVF does not
improve with m = 200 with abalone for example:
it is 0.08, 0.089, 0.089 with m = 50, 100, 200.
Also shown at the bottom of Table 2 is the equiv-

alent CART results. It is evident that error rates
are generally worse than the SVR with the ex-
ception of pumadyn-32nh. Also, we see that pe-
nalisation provides a larger advantage relative to
VFCV in this case. One explanation is that CART
is more sensitive to its hyperparameters. We ob-
serve that PenVF+ is equivalent or improves over
VFCV in nearly every case, and there are 5, 7, 7
wins for m = 50, 100, 200 respectively. Again
we see that PenVF performs poorly with abalone,
winequality-red and winequality-white.

7.2 Paired t-test Comparison with

VFCV

Table 3 shows the results of the paired t-tests to
compare PenVF with α = 1.0 and PenVF+ with
VFCV. Consider first the SVR results. Here we
see that as one might expect, there are few sta-
tistically significant differences between 10-fold CV
and PenVF. Indeed, results indicate that as V in-
creases the penalisation methods and VFCV be-
come more similar. In particular we see that
PenVF+ is identical to VFCV in all but one or two
cases, with the main exception being 5 draws with
m = 200 and V = 2, in which there are 2 im-
provements and 3 losses (abalone, pumadyn-32nh
and winequality-red). PenVF fares worse against
VFCV: we see more wins but at the same time more
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m = 50 m = 100 m = 200
VFCV PenVF+ PenVF VFCV PenVF+ PenVF VFCV PenVF+ PenVF

SVR

ab .544 (.031) .549 (.033) .624 (.036) .514 (.017) .519 (.027) .603 (.026) .497 (.013) .501 (.019) .584 (.012)
ad .471 (.037) .471 (.031) .473 (.036) .409 (.020) .401 (.022) .404 (.023) .330 (.021) .320 (.016) .320 (.013)
ca .236 (.052) .227 (.055) .220 (.060) .172 (.051) .165 (.048) .165 (.048) .130 (.026) .127 (.021) .128 (.021)
cc .472 (.046) .478 (.050) .485 (.050) .413 (.025) .415 (.031) .430 (.036) .366 (.021) .350 (.021) .366 (.020)
pm .272 (.030) .274 (.030) .282 (.032) .237 (.012) .240 (.017) .254 (.024) .217 (.009) .215 (.010) .219 (.010)
pt .116 (.024) .116 (.025) .114 (.024) .092 (.012) .092 (.013) .090 (.014) .080 (.009) .078 (.009) .078 (.010)
pd .814 (.032) .813 (.037) .806 (.026) .796 (.021) .797 (.028) .793 (.015) .778 (.014) .783 (.018) .779 (.015)
sl .423 (.037) .427 (.043) .415 (.037) .341 (.023) .346 (.022) .334 (.020) .290 (.012) .292 (.018) .279 (.009)
wr .712 (.064) .709 (.062) .745 (.057) .660 (.034) .667 (.041) .710 (.048) .637 (.021) .643 (.030) .704 (.037)
ww .728 (.028) .734 (.039) .752 (.034) .704 (.025) .710 (.035) .731 (.034) .680 (.025) .679 (.023) .707 (.031)

CART

ab .699 (.057) .696 (.065) .713 (.065) .665 (.044) .667 (.049) .691 (.052) .633 (.028) .632 (.040) .661 (.036)
ad .750 (.063) .725 (.066) .720 (.072) .637 (.055) .616 (.048) .624 (.040) .567 (.036) .556 (.027) .571 (.030)
ca .330 (.116) .305 (.100) .303 (.099) .220 (.052) .215 (.051) .215 (.050) .186 (.031) .180 (.023) .182 (.023)
cc .681 (.084) .642 (.068) .624 (.056) .569 (.069) .535 (.051) .526 (.045) .459 (.037) .444 (.030) .438 (.029)
pm .348 (.055) .331 (.038) .323 (.036) .282 (.037) .268 (.028) .262 (.027) .210 (.025) .204 (.022) .202 (.021)
pt .268 (.160) .259 (.161) .257 (.161) .213 (.077) .198 (.044) .198 (.045) .161 (.020) .158 (.020) .157 (.020)
pd .812 (.036) .821 (.054) 1.039 (.089) .796 (.014) .794 (.048) .947 (.104) .751 (.051) .694 (.057) .808 (.077)
sl .679 (.128) .604 (.105) .594 (.102) .484 (.088) .453 (.071) .444 (.069) .362 (.048) .344 (.032) .340 (.030)
wr .812 (.067) .797 (.065) .799 (.072) .776 (.059) .756 (.061) .765 (.066) .738 (.045) .721 (.044) .730 (.048)
ww .789 (.052) .786 (.065) .807 (.072) .771 (.040) .762 (.041) .782 (.059) .760 (.035) .744 (.038) .768 (.053)

Table 2: Error rates (with standard deviations in parentheses) for cross validation with the SVR (top)
and CART (bottom) and penalisation for V = 2, α = 1.0. Statistically significant improvements over
VFCF are in bold. With the SVR, PenVF+ is generally comparable to VFCV and PenVF is more variable.
With CART, the penalisation methods both improve over VFCV a number of times.

losses. Our later analysis will shed light on why this
is the case. We also compared the “ideal” model,
in which the test set is used during model selec-
tion, with VFCV and found that one can generally
gain improvements except in the case of slice-

loc, which has a large number of features. In ev-
ery case the ideal model selector can improve over
2-fold CV.

The CART results at the bottom of Table 3 show
that for V > 4 penalisation is identical to VFCV.
Clearly the bias with low values of V in conjunc-
tion with VFCV is more prominent in this case.
We have already examined the V = 2 case and
with V = 4 we see improvements in one case for
PenVF+ for m = 50, 200. With the ideal errors
we see that with more of the datasets compared
to SVR, performance cannot be improved by using
the test realisation and furthermore as m increases
improvements over VFCV are increasingly difficult
except for the 2-fold case.

7.3 Optimal Penalisation Constant

is Dataset Dependent

To discover the effect of overpenalisation, observe
Figure 2 which shows the errors on 2 datasets as
α varies when V = 10. The effect of α is clearly
dataset dependent: on abalone observe that the
error tends to decrease with the SVR with more pe-
nalisation, and hence a slight amount of overpenali-
sation (α = 1.2) is recommended. In contrast, over-
penalisation increases the error with slice-loc.
In total, 5 of the datasets benefited from overpe-
nalisation and 3 improved with underpenalisation.
With pumadyn and parkinsons-total, a value of
α = 1.0 as predicted by the theory gave optimal
results. Results were similar with CART except
that 7 of the datasets benefit from underpenalisa-
tion. Notice that as sample size m increases the
choice of α becomes less important since estimates
of error for each model are more reliable and the
penalty terms become small. We noticed that with
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2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12
SVR

PenVF+ 0 0 0 1 0 0 10 10 10 9 10 10 0 0 0 0 0 0
PenVF 5 4 3 1 1 0 3 5 7 9 9 10 2 1 0 0 0 0
Ideal 0 0 0 0 0 0 0 1 1 1 1 1 10 9 9 9 9 9
PenVF+ 0 1 0 0 0 0 9 9 10 10 10 10 1 0 0 0 0 0
PenVF 5 5 3 3 2 1 3 3 6 6 8 9 2 2 1 1 0 0
Ideal 0 0 0 0 0 0 0 1 1 1 1 1 10 9 9 9 9 9
PenVF+ 3 1 0 1 0 0 5 9 10 9 10 10 2 0 0 0 0 0
PenVF 3 4 3 3 2 1 5 5 6 6 7 8 2 1 1 1 1 1
Ideal 0 0 0 0 0 0 0 1 1 1 1 1 10 9 9 9 9 9

CART
PenVF+ 0 0 0 0 0 0 5 9 10 10 10 10 5 1 0 0 0 0
PenVF 2 1 0 0 0 0 3 6 10 10 10 10 5 3 0 0 0 0
Ideal 0 0 0 0 0 0 1 2 2 2 2 2 9 8 8 8 8 8
PenVF+ 0 0 0 0 0 0 3 10 10 10 10 10 7 0 0 0 0 0
PenVF 2 3 0 0 0 0 3 5 10 10 10 10 5 2 0 0 0 0
Ideal 0 0 0 0 0 0 1 2 4 3 4 3 9 8 6 7 6 7
PenVF+ 0 0 0 0 0 0 3 9 10 10 10 10 7 1 0 0 0 0
PenVF 2 2 0 0 0 0 5 8 10 10 10 10 3 0 0 0 0 0
Ideal 0 0 0 0 0 0 0 4 4 4 5 4 10 6 6 6 5 6

Table 3: Number of statistically significant losses (left block), draws (middle block) and wins (right
block) against standard errors for CV and across different numbers of folds using α = 1.0. The sample
size m is 50 (top), 100 (middle), and 200 (bottom). As V increases the penalisation methods become
more similar to VFCV. In particular for CART, when V > 4 penalisation is identical to VFCV.

CART, VFCV consistently underestimates the tree
size whereas PenVF chooses larger sizes in general
and this can be an advantage or disadvantage de-
pending on the variation of error with t. Also ob-
served is that as expected VFCV provides a pes-
simistic error compared to the ideal case and PenVF

is generally more accurate than VFCV, however, as
in model selection since we pick the model with the
lowest error, this does not always translate into the
best predictor.

7.4 On the Estimation of the Ideal

Penalty

Next we study the approximated penalty and how
it differs from the “ideal” penalty in the case of
CART with V = 2, see Figure 3. Notice that
the curves for PenVF and PenVF+ are shorter than
the ones for the “ideal” penalty since only half the
examples are used for training, limiting the tree
size. The PenVF method diverges from the ideal
case when we grow large trees, but is close to the

ideal case for small trees. This change occurs with
relatively small trees: size 4 with m = 50 and
size 11 with m = 100. This pattern was observed
with most of the datasets. When we looked at a
greater number of folds, PenVF was close to the
ideal penalty. In contrast, PenVF+ does not di-
verge as the tree size increases, however it seems
to slightly overestimate the penalty.

The question remains about which cases PenVF

improves over VFCV for low values of V for CART.
Figure 4 demonstrates that the error estimation
for PenVF is generally optimistic as model size in-
creases. With abalone for example the optimal
tree was of size 7 nodes, however PenVF chooses
one of size 22. In contrast, on some datasets large
trees did not overfit the test set and hence in these
cases PenVF can perform better than VFCV. This
also sheds some light on Figure 2 where we see that
overpenalisation helps in some cases but not in oth-
ers. PenVF+ provides the best estimate of the error
in general, however it also results in a larger tree
size that the ideal case.
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7.5 Extended Setup

In this final set of experiments we explore further
the distinction between penalisation and VFCV
with CART by considering m = 500 and using the
same set of folds as in the original setup, see Ta-
ble 4. The interesting figures in this case are those
corresponding to 2 and 4 folds in which we see that
PenVF+ wins for 8 and 2 datasets respectively. In
fact, since in the ideal case one can only win 8 times
with V = 2 this certainly demonstrates the effec-
tiveness of PenVF+ and bias in VFCV in this case.

7.6 Key Points

Our experimental analysis has painted a detailed
picture of penalisation versus cross validation for
model selection. The bias in VFCV is evident
with small values of V and small training sets,
and we observed that as V and the training set
sizes increase the model selection methods become
more similar. With the SVR, PenVF makes a num-
ber of loses relative to VFCV and these losses are
nearly all corrected with our modified penalisation
PenVF+. Penalisation is more effective in general
with CART: when V > 4 both PenVF and PenVF+

are not statistically significantly different to VFCV,
and for V = 2, PenVF+ is at least as good as VFCV
or improves over it in nearly every case, winning
5, 7, 7 times for m = 50, 100, 200 examples. In
contrast PenVF is more variable in comparison to
VFCV and one reason for this is that it underes-
timates the penalty to a large degree with large
models. On some datasets larger trees did not in-
crease the error and hence in these cases PenVF per-
forms well. In general PenVF+ provides a much bet-
ter approximation of the ideal penalty compared to
PenVF. The most striking results were with CART
and V = 2 in which we saw that PenVF+ improves
over VFCV in 8 out of 10 cases with m = 500 ex-
amples.

8 Conclusions

Model selection is a critical part of machine learn-
ing as it can dramatically affect generalisation per-
formance. In practice, cross validation over a grid
of parameter values is often used, and it has been
shown to be very effective in a variety of cases. We

studied V -fold penalisation which is a general pur-
pose penalisation procedure that aims at improv-
ing on VFCV by correcting its bias and is proved
in [2] to be asymptotically optimal in a histogram
regression setting. V -fold penalisation is simple to
implement and the penalised error can be computed
using the same predictions as cross validation and
hence at negligible additional computational cost.
Furthermore, we propose an improvement of pe-
nalisation, called PenVF+, which takes into account
learning rates in order to correct under-penalisation
with large models.
We conducted an extensive empirical investiga-

tion into VFCV and V-fold penalisation over a col-
lection of 10 well known benchmark datasets using
an SVR with the RBF kernel and CART. With
low values of V , penalisation can provide an ad-
vantage over VFCV but this advantage rapidly di-
minishes as V increases. Furthermore, in some
cases penalisation fared worse than cross validation.
When we compare the penalty with the “ideal”
penalty, we observed that PenVF underestimates
the penalty with large models and PenVF+ improves
penalty estimation in these cases. Hence, there is
no fixed overpenalisation constant even for a par-
ticular dataset, but rather the penalisation should
vary with model complexity as with PenVF+.
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(a) SVR, abalone (top) and slice-loc (bot-
tom)
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(b) CART, winequality-white (top) and
slice-loc (bottom)

Figure 2: The variation in error with α for some
sample datasets with V = 10. The plots are or-
dered from top to bottom: m = 50, 100, 200, for
example for winequality-white and CART the re-
spective curves are dotted, solid with crosses and
solid with pluses. With abalone and the SVR, and
winequality-white with CART overpenalisation
improves results, however it makes them worse with
slice-loc for both the SVR and CART.
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(a) m = 50
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(b) m = 100

Figure 3: The variation in penalty for CART in
the “ideal” case relative to PenVF α = 1.0, and
PenVF+ with V = 2 and abalone. PenVF+ es-
timates the ideal error well across a range of t’s,
whereas PenVF underestimates it for large t.
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Figure 4: The error for CART in the “ideal” case
relative to PenVF α = 1.0, and PenVF+ with V = 2
and abalone, m = 50. PenVF provides a poor es-
timation of the error for large values of t. PenVF+

gives better error estimates but results in the selec-
tion of larger trees than VFCV.
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