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Abstract: Allocation of resources to schools in a centrally managed State system, as the Tunisian 

one, should depend on the performance of the individual institutions. The optimal size is of 

crucial importance in this context and we need accurate measurement for sound policies. This 

paper discusses and implements a nonparametric statistical test procedure for organization scale 

efficiency. This procedure allows us to test whether the observed scale efficiency is optimal or 

not using a smooth bootstrap methodology for efficiency measures estimated using DEA 

methods. Because school principals do not control for the size of their institution, i.e. the capital 

available at decision time, the scale efficiency measures are defined so as to include quasi-fixed 

inputs. The results show that scale efficiency measures are subject to sampling variation. We also 

found that the schools that are scale efficient are usually mid-sized and large schools, when size 

is measured by the number of students. This contradicts the largely shared view among decision 

makers that small schools were optimal. 

 

Keywords: Returns to scale, Data envelopment analysis, Bootstrap, Quasi-fixed inputs, Tunisia 

School Efficiency, Optimal School Size. 
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1. Introduction 

Public education systems, like the Tunisian one, face scarce resources that have to be shared 

between educational institutions. One of the objectives of a well designed educational policy is to 

allocate these resources to the right number of schools. It implies that identifying the optimal size 

of the institutions is crucial for the organization of the education system. But this debate raises 

some arguments by proponents of different views of the system. Smaller institutions are said to 

be able to create a motivating environment and a comfortable sense of proximity for the students, 

e.g. Coladarci and Cobb (1996) or Monk (1987), while larger institutions have the advantage of 

gathering together a large amount of resource and offering an optimal mix of services, e.g. 

Kuziemko (2006). In fact, arguments can be made for both types of school as it is shown in the 

literature review by Leithwood and Jantzi (2009). 

Costs have been central to the analysis of schools optimal size. Most of the earlier studies 

focused on concepts of average cost. Morris (1964) shows that the cost per student is the lowest 

in high school with less than 500 students while Turner and Thrasher (1970) find that cost 

improvements are very slim beyond 1000 students in the same institution. Monk (1987) shows 

that beyond 400 students, there are no rooms for economies of scale. These results are consistent 

with the view that the average cost function of schools must be U-shaped (Fox, 1981). McGuire 

(1989) finds results consistent with an increasing average cost for schools that reach a certain size 

(beyond 2,000 students, the unit costs starts to be increasing). More recently, Colgrave and Giles 

(2005) concluded that the optimal efficient scale for a high school is 1,540 students, while 

Foreman-Peck and Foreman-Peck (2006) are in the range of 540 students. It is also common to 

find a negative relationship between the average cost and the size for school with less than 1,000 

students (e.g. Stiefel et al., 2009, Chabotar, 1989, and Kumar 1983). 

In this paper, we offer an element of response to this debate by addressing the question of 

the qualitative measurement of returns to scale in organizations. This measure allows us to 

determine if organizations’ activities are characterized by either increasing, decreasing or 

constant returns to scale. Based on this assessment, we can determine the optimal size of a 

school. The methodology is applied to a sample of Tunisian high school and we use it to give 

some insight on the way education policies might be oriented.  
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Our approach is anchored in the DEA tradition. Returns to scale have received substantial 

attention, leading to three measurement methods under the DEA approach: the scale efficiency 

method (Färe and Grosskopf (1985) and Färe et al. (1994)), the sum of intensity variables method 

of Banker (1984), Banker and Thrall (1992) and Färe and Grosskopf (1994), and the dual 

variable-sign-method of Banker et al. (1984). Banker et al. (1994) have shown that these three 

methods are equivalent. It is not uncommon however, that practitioners using these methods 

neglect the statistical content of the efficiency measures and do not distinguish between the true 

value and the estimator. 

If the data are generated by a distribution with bounded support, based on the real 

production set, then the scale efficiency is measured with respect to an estimated frontier with 

data obtained from an unobserved Data Generating Process (DGP). Under this framework, the 

observed organization’s efficiency is a statistical estimate potentially noisy and spoiled by 

statistical noises. That is, efficiency measurements are subject to sampling variations. 

Consequently, it is necessary to adopt a formal statistical methodology that differentiates between 

the real efficiency value and its estimator in order to evaluate the statistical significance of the 

results concerning the returns to scale of an organization. This is what the procedure developed 

by Simar and Wilson (2002) offers. Their method consists in smoothing the probability 

distribution of the efficiency scores with a convolution kernel. Then the authors use a reflection 

method (Silverman, 1986 and Schuster, 1985) to correct the estimator of the probability density 

in the neighborhood of the boundaries. However, Essid et al. (2010b) show that this test 

procedure rests on a statistic that can assume infeasible values. That is, the test is defined as the 

ratio of two efficiency scores, those being measured under two different assumptions on the 

return to scale. Then, in the bootstrap simulations, the efficiency scores are generated from two 

different DGPs. This might ultimately lead to values of the score that are not admissible: The 

scale efficiency pseudo-scores may end up taking values above one and this is clearly not 

allowed, by definition.  

Essid et al. (2010b) have proposed a solution to this drawback of an otherwise working 

procedure. They have developed a smooth bootstrap method that ensures that the pseudo-scores 

of the efficiency scale assume only admissible values and they base the test procedure on a 

consistent DGP of the scale efficiencies. Furthermore, instead of considering a global test for 

returns to scale, a test specific to each decision making unit (DMU) is implemented.  
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The methodology used in this paper to measure and test the scale efficiency of Tunisian 

high school is based on Essid et al. (2010b). We have adapted this method to take into account 

the fact the school principals do not control the physical size of their institution. This means that 

we include quasi-fixed inputs (also known as non-discretionary inputs) in the DEA model as it 

was done in Banker and Morey (1986). 

The Tunisian high school network offers a perfect study case. Firstly, the education 

system is state run and resource allocation is centralized. The Department of education creates 

and implements the programs, it hires the teachers and administrative staff and dispatch them 

based on the estimated needs of the schools and finally it allocates the operating budget between 

the different institutions. (The share of the money from the private sector is minimal.) This is to 

ensure that all schools have more or less the same resources per student. Secondly, the size of the 

schools measured by the number of students varies a lot over the country. This offers a perfect 

environment to study the correlation between the size of schools and their returns to scale 

characterizations. Thirdly, policy makers in the Tunisian Department of Education strongly 

believe that smaller the institution is, better the performance will be. This raises the problem of 

the optimal size of the institution and of the scale characterization that schools need to have to 

profit from the scale efficiency.  

This paper offers a test of the scale efficiency of high schools in Tunisia and we check on 

the claim made by the department of education decision makers that smaller schools are required. 

We also check the robustness of our results with respect to the simulation methods used. This is 

done by comparing the results obtained under a homogenous bootstrap procedure to those 

obtained using a heterogeneous bootstrap procedure. 

2. Production technology and returns to scale 

Consider a production activity that uses two sets of inputs, one containing those under the direct 

control of the decision maker, { }
1 1 1, 1, ,ix x i m= = … , and one containing those not under her 

control at decision time, { }
2 2 2, 1, ,iz z i m= = … , to produce the output vector, { }, 1, ,ry y r s= = … . 

The production possibility set of this activity is defined as: 

( ) ( ){ }1 2, , , ,  is feasiblem m sx z y x z y+ +
+Ψ = ∈ℝ .                                                               (1) 
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We suppose that the production set Ψ  is closed, satisfies free disposal of inputs, is 

bounded for finite inputs and positive outputs require positive inputs. Except for our inclusion of 

quasi-fixed inputs in the production process, these are standard assumptions on the technology 

and are discussed in Färe (1988), among others.  

To characterize the returns to scale environment of the firms and to test for their type, 

specific production sets are required. The returns to scale are characterized by the way one can 

either expand the scale in the production set or shrink it or both. That is, the technology exhibits 

non increasing (nirs), non decreasing (ndrs) or constant (crs) returns to scale depending on the 

value assumed by the positive scalar α in the following set: 

( ) ( ){ }, , , , for all α α α αΨ = ∈ Ψ ∈ Ψ ∈Κk kx z y x z y , for k=nirs, ndrs, crs                                 (2) 

where [0,1)nirsΚ = , [1, )ndrsΚ = ∞  and [0, )crsΚ = ∞ . A technology that exhibits ndrs, nirs or crs 

in different regions of the production frontier is said to be characterized by variable returns to 

scale (vrs). This production possibility set is denoted vrsΨ . 

 It is possible to define an input oriented technical efficiency measure in the sense of 

Farrell (1957) with respect to the various assumptions concerning the returns to scale. That is: 

( ) ( ){ }, , min , ,θ θ θ= ∈ Ψk kx z y x z y , where k= nirs, ndrs, crs and vrs.                                       (3) 

The scalar ( ), ,x z yθ  is a radial measure of efficiency that gives the maximal factor by which we 

can reduce x so that y can still be produced, given the quasi-fixed input vector z. 

From Färe and Grosskopf (1985), the (technical) efficiency measures defined in (3) can be 

used to construct scale efficiency measures for each organization. A scale efficiency measure is 

the ratio of the efficiency measure under crs technology and a vrs type technology. That is: 

( ) ( )
( )1

, ,
, , 1

, ,

θ
θ

= ≤
crs

vrs

x z y
S x z y

x z y
.                                                                                                          (4) 

We say that the production technology is of the crs type if ( )1 , , 1=S x z y . To determine the 

returns to scale of the technology when ( )1 , , 1<S x z y  we compute a second ratio that is less 

restrictive than the initial ratio. That is: 

Page 7 of 24

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 7

( ) ( )
( )2

, ,
, , 1

, ,

θ
θ

= ≤
nirs

vrs

x z y
S x z y

x z y
.                                                                                                        (5) 

When ( )2 , , 1=S x z y  the technology is said to exhibit decreasing returns to scale and for values 

strictly less than one, i.e. ( )2 , , 1<S x z y , it is said to exhibit increasing returns to scale. 

3. Efficiency estimation and statistical model 

The description of the technology presented in the previous section characterizes the true 

unobserved model. This means that the frontier and the scale efficiency measures ( )1 , ,S x z y  and 

( )2 , ,S x z y  are not observed. These quantities must be estimated using data. 

Consider a sample of n observations, ( ){ }0
1

, ,
n

j j j
j

x z y
=

Ψ = . Since the true production set 

Ψ  is not observed, the efficiency score, defined as the gap between the frontier of that set and 

the units observed performance, is not available. Consequently, the best we can do is to estimate 

it from the sample, 0Ψ , by estimating the “missing” frontier of the production set. To do this, we 

use the convex hull of the sample. The smallest convex envelop of the data gives the DEA 

estimator in the vrs case. That is: 

( ){ }1 2

1 1 1 1
ˆ , , , ,  , 1  1, ,

j n j n j n j nm m svrs
j j j j j j jj j j j

x z y x x z z y y j nλ λ λ λ= = = =+ +
= = = =

Ψ = ∈ ≥ ≥ ≤ = ∀ = …∑ ∑ ∑ ∑ℝ .   (6) 

To obtain the estimators for the other types of returns to scale, ̂Ψ nirs , Ψ̂ ndrs  and Ψ̂ crs  it is 

sufficient to slightly alter the constraint on the sum of the λ j . That is, in the nirs case we have 

1
1λ=

=
≤∑

j n

jj
, and in the ndrs 

1
1λ=

=
≥∑

j n

jj
 must hold and finally, to obtain a crs envelop, no 

constraints on the λ j  are necessary other than non negativity of the λs. 

Farrell’s efficiency measures are obtained by substituting Ψ̂ k  to Ψk  in equations (3). 

This gives:  

( ) ( ){ }ˆ ˆ, , min , ,k kx z y x z yθ θ θ= ∈ Ψ  k=vrs, nirs, ndrs, crs.                                                     (7) 
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The resulting scale ratio estimators are ( ) ( )1̂
ˆ ˆ, , / , ,θ θ= crs vrsS x z y x z y and 

( ) ( ) ( )2
ˆ ˆ ˆ, , , , / , ,θ θ= nirs vrsS x z y x z y x z y. 

To insure the consistency of the estimator, it is necessary to have an explicit 

understanding of the way the data are generated. In other words, we have to specify a statistical 

model that allows us for a full to characterization of the data generating process (DGP). This is 

the content of the following assumption. 

Assumption A1: The set of observations ( ){ }
1

, ,
n

j j j
j

x z y
=

 are identically and independently 

distributed (i.i.d.) random variables with probability density function ( ), ,f x z y  defined on Ψ . 

Because Farrell’s efficiency measure is radial and because the vector of input x has an 

equivalent polar representation to the usual Cartesian representation, we have three equivalent 

representation of the input-output combination. That is: 

( ) ( ) ( ), , , , , , , ,ω η θ η⇔ ⇔x z y z y z y,                                                                                             (8) 

where ( ) Tx x x xω = = , ( )
1 11 1, , ,i mη η η η −= … …  and ( ) [ ] 1 1

0, / 2
m

xη η π −= ∈  is the angle. Using 

the law of conditional probability, the joint probability density of ( ), , ,z yθ η  can be decomposed 

to obtain: 

( ) ( ) ( ) ( ) ( ), , , , , ,f z y f z y f z y f z y f yθ η θ η η= .                                                                     (9) 

Assumption A2: The probability density function ( ), ,f x z y  is continuous on the interior of Ψ , 

and ( )( ), , , 0f x z y z y∂ >  where ( ) ( ), , ,x z y x z y xθ∂ =  is any point on the frontier of Ψ . 

Note that points that are not feasible, i.e. the points not in Ψ , have zero probability and 

the density is identically equal to zero. 

Assumption A3: The efficiency measure ( ), ,x z yθ  is differentiable in x, y, and z. 

This assumption gives the necessary smoothness of the frontier function. Kneip et al. 

(1998) have shown that the convergence rate of the estimator depends on this smoothing 

condition. However, the smoothing condition we have used is slightly stronger than the one 
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required for convergence. As shown by Kneip et al. (1998), it is sufficient that the efficiency 

measure satisfy a Lipschitz condition.  

Assumption A1, A2 and A3 together define the statistical model that allows us to 

characterize the DGP, denoted ℑ . In fact, the DGP is entirely characterized by the production 

possibility set Ψ  and the density f. That is, ( ), fℑ = Ψ . 

This statistical model ensures the convergence of the estimator and permits a 

characterization of the asymptotic properties of nonparametric estimators of the DEA type. In 

particular, Kneip et al. (1998) have shown the consistency of the DEA estimator in the 

multidimensional case. They show that for a vrs technology with m inputs, the rate of 

convergence is of order 2/ 1m sn− + +  where n is the number of DMU. Park et al. (2010) show that for 

a crs technology, the convergence rate of the DEA estimator is faster, as it is of the order 2/m sn− + . 

These results do not make the difference between discretionary and non discretionary inputs.  

However, Essid et al. (2010c) show that, as long as the efficiency measure is radial, the 

convergence of the estimator is kept independently of the returns to scale the technology exhibits. 

An important point made is that since it is a nonparametric estimator, the convergence rate is 

subject to the curse of dimensionality, and the rate of convergence decrease rapidly with the 

number of quasi-fixed inputs. Bootstrap simulation procedures are used to construct confidence 

intervals, to correct the estimator’s bias and to test statistical hypothesis, as it is now the norm. 

4. Hypothesis testing and returns to scale 

The traditional approach to qualitative returns to scale measures starts from Färe and Grosskopf 

(1985). The central argument of the approach is that the ratio of efficiency measures calculated 

under different returns to scale assumptions, ( ) ( )1̂
ˆ ˆ, , / , , 1θ θ= ≤crs vrs

j j j j j j jS x z y x z y , reveal some 

information on the nature of the returns to scale of the DMU. When 1̂ 1=jS , the triple ( ), ,j j jx z y  

or its projection on the estimated frontier belong to a technology characterized by constant 

returns to scale (crs-technology). When 1̂ 1<jS , the observation or its projection is not on a vertex 

or a side where the technology is crs. When returns to scale are not constant, this approach can be 

extended to determine the exact nature of the returns to scale, as we will see below. 
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Obviously, the scale ratio is computed using an estimated frontier, not the true one. 

Suppose that for an observation, say ( ), ,j j jx z y , we obtain 1̂ 1<jS , then without a formal 

statistical test procedure it is impossible to identify if this is a true scale inefficiency or the result 

of sampling variations. That is, since the scale ratio is calculated based on an estimated frontier, a 

score strictly smaller than one can be attributed to sampling variations. Consequently, we have to 

test the hypothesis that ( )1 , , 1=j j j jS x z y  using the statistic ( )1̂ , ,j j j jS x z y  to determine if the 

DMU is really scale inefficient. 

The test procedure is in two steps. The first step consists in testing the null that a given 

triple ( ), ,x z y  is scale efficient, i.e. its technology is of the crs type. The alternative hypothesis 

has to be less restrictive. One natural hypothesis is that the triple ( ), ,x z y  is characterized by a 

vrs-technology. Then we have: 

( )
( )

0 1

1

#1: : , , 1

             : , , 1

=
<A

Test H S x z y

H S x z y
 

If the hypothesis 0H  is rejected, we still have to identify whether the returns to scale are 

increasing or decreasing. This will work if we can find a “new” null hypothesis that is less 

restrictive than the one in the first test. One way of doing this is to suppose that under the null 

hypothesis the triple ( ), ,x z y  is subject to decreasing returns to scale (drs). Then, the alternative 

hypothesis would be that the triple ( ), ,x z y  is subject to an increasing return to scale (irs) 

technology, since constant returns to scale have already been rejected in the first test. Thus, the 

second test is: 

( )
( )

'
0 2
'

2

#2 : : , , 1

             : , , 1

=
<A

Test H S x z y

H S x z y
 

The test statistics for the first and second test are ( ) ( ) ( )1̂
ˆ ˆ, , , , / , ,θ θ= crs vrsS x z y x z y x z y 

and ( ) ( ) ( )2
ˆ ˆ ˆ, , , , / , ,θ θ= nirs vrsS x z y x z y x z y, respectively. Given a critical value 0α >c  for a given 
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test size, α, the decision rules are such that we reject 0H  each time ( )( )1̂1 , , α− ≥S x z y c in the 

first case and each time ( )( )2
ˆ1 , , α− ≥S x z y c  in the second case. 

This test procedure is applied to each observation ( ), ,j j jx z y  in 0Ψ . Consequently, we 

have at least n identical hypothesis testing procedure to run, leading to n decisions concerning the 

returns to scale for each of the n individual organizations represented in 0Ψ . 

To apply these tests we need to either choose the critical value cα  for a given test size or 

alternatively we can estimate the p-value for each test. In both cases, it is necessary to have the 

distribution of the test statistics. This is the problem discussed in the next section. 

5. Bootstrapped test statistics 

To determine the critical values and the decision rules, we use the approach developed in Essid, 

et al. (2010b), which is based on Simar and Wilson (2002). This approach allows us to find an 

approximation of the sampling distribution of the estimators of both scale efficiency ratios, 1̂S  

and 2Ŝ . This approximation rests on the bootstrap method that consists in identically replicating 

the empirical DGP many times and study the behavior this set of bootstrapped estimates. To 

implement the procedure, we first generate, from the original sample 0Ψ , B pseudo-samples: 

*
bΨ , 1, ,b B= … . Then, the original estimation method (DEA in our case) is applied to each 

pseudo-samples to obtain the bootstrap estimator of the test statistic *
1

ˆ
bS  for 1̂S  (and *

2
ˆ

bS  for 2Ŝ ). 

This procedure allows us to estimate the empirical distribution of ( )*
1 1

ˆ ˆ−S S  (and of course 

( )*
2 2

ˆ ˆ−S S ), used to approximate the unknown distribution of the statistic ( )1 1
ˆ −S S  (and 

( )2 2
ˆ −S S ), under the null hypothesis. 

The bootstrap relies on the principle that the pseudo-samples *
bΨ  are generated so that: 

( ) ( )*
1 1 1

ˆ ˆ ˆ ˆ1− ℑ − ℑ∼

approx
crs crsS S S  for Test # 1                                                                                  (10) 

and 
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( ) ( )*
2 2 2

ˆ ˆ ˆ ˆ1− ℑ − ℑ∼

approx
nirs nirsS S S  for Test # 2,                                                                                (11) 

where ℑ̂  is a consistent estimator of the DGP ℑ  under the hull hypothesis, i.e. crs in the first 

case and nirs in the second case. 

To generate the pseudo-efficiencies *ˆ crsθ , *ˆ vrsθ  and *ˆ nirsθ , and then the statistics *1̂S  and 

*
2Ŝ , we first use a homogenous bootstrap methodology developed by Simar and Wilson (1998). 

This procedure rests on the assumption that the efficiency structure is homogenous. That is, the 

efficiency score θ  is independent of ( ), ,z yη : ( ) ( ), ,f z y fθ η θ= . A consistent estimator of f, 

obtained using a kernel estimator and corrected by Schuster’s (1985) and Silverman (1985) is 

defined as follows: 

ˆ2 ( ) if 1ˆ ( )
0 otherwise

c g t t
f t

≤
= 


, where ( )
1

ˆ ˆ21
ˆ

2

j n j j

j

t t
g t

nh h h

θ θ
φ φ=

=

    − − +
 = +   
        

∑ .                         (12) 

We use a normal Gaussian kernel, denoted φ , and the bandwidth, h, is set following the normal 

reference rule (Silverman (1986)). 

The robustness of the testing procedure with respect to the simulations is checked by 

relaxing the homogeneity assumption in a second simulation experiment. We run a smooth 

heterogeneous bootstrap simulation, based on a methodology developed in Simar and Wilson 

(2000). Then the test procedure is re-run with the new bootstrapped dataset. In this case, the 

density f is estimated by:1  

( ) ( )ˆ2   if ˆ
0  otherwise

c f u u
f u

 ∈Ω= 


,                 (13) 

where ( )
1 2 1 21

1ˆ
2

j n j Rj

m m s j

u u u u
f u K K

nh h h

=

+ + =

 − −    
= +    

    
∑ , ( )lK i  is the probability density of a 

normal vector with zero mean and variance-covariance matrix ˆ  , 1,2l lΣ = , ( ), , ,j j j j ju z yθ η= , 

                                                 
1 Both simulation procedures are presented in Essid et al. (2010a). 
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and ( )2 , , ,Rj j j j ju z yθ η= − . The bandwidth parameter is set according to Silverman’s normal 

rule. 

The pseudo-scores are generated in three steps. We begin by presenting the procedure for 

the first test: 

Step 1: Generate *θ̂  from ˆcrsθ . 

Step 2: Generate the pseudo-sample ( ){ }* * * *, ,x z yΨ =  using the estimator ̂ cf  of f given by 

equation (12), in the case of the homogenous bootstrap and using equation (13) in the case of the 

heterogeneous bootstrap. 

Step 3: Compute *ˆ crsθ  and *ˆ vrsθ  using the same pseudo sample *Ψ  for both measures, insuring 

that the pseudo-score * * *
1̂

ˆ ˆ/θ θ= crs vrsS  has an admissible value, i.e. * * *
1̂

ˆ ˆ/θ θ= crs vrsS ≤1.2 

This three step procedure is then replicated B times to obtain the statistic 

( ) ( )1̂
ˆ ˆ, , / , ,θ θ= crs vrs

j j j j j j jS x z y x z y  for each triple ( ), ,j j jx z y  in the dataset 0Ψ . Then we obtain 

B pseudo-values ( ) ( )* * *
1̂

ˆ ˆ, , / , , , 1, ,θ θ= = …
crs vrs

jb b j j j b j j jS x z y x z y b B for all 1, ,j n= … . 

To obtain the pseudo-scores * * *
2

ˆ ˆ ˆ/θ θ= nirs vrsS , we only need to bootstrap ˆnirsθ  instead of 

ˆcrsθ  in Step 1 above to recover the pseudo-sample *Ψ  used to compute the pseudo-efficiencies. 

Then, the test statistic ( ) ( )2
ˆ ˆ ˆ, , / , ,θ θ= nirs vrs

j j j j j j jS x z y x z y  is replicated B times, i.e. 

( ) ( )* * *
2

ˆ ˆ ˆ, , / , ,θ θ= nirs vrs
jb b j j j b j j jS x z y x z y , 1, ,b B= … , for each triple in 0Ψ . 

To obtain the critical values and infer the decision rules of both tests, we use the bootstrap 

analog of the true size of the test, denoted α  (i.e. the probability of Type 1 error). For the first 

and second tests they are respectively defined as ( )* *
1 1 0
ˆ ˆ ˆPr , crsS S c Hα α≤ − ℑ =  and 

( )* *
2 2 0

ˆ ˆ ˆPr ,α α≤ − ℑ =nirsS S c H , where *cα  is an approximation of the critical value cα . 

                                                 
2 This at this stage that we make sure that the DGP is consistent with the hypothesis tested. With this procedure, the 
test statistic is always less than or equal to one because both efficiency measures are calculated from data coming 
from the same DGP. 
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To obtain these critical values, we start by sorting in ascending order the pseudo-scores 

( )*
1 1
ˆ ˆ−bS S  (or ( )*

2 2
ˆ ˆ−bS S ) for 1, ,b B= … . Then, we eliminate ( )1 100α− ×  percent of the values 

at the right end of the ordered sequence of bootstrapped statistics. The critical value *cα−  is then 

the right end of this truncated sequence. Thus, the decision rule is the following: reject the null 

hypothesis if, for a given size α , *
1̂ 1 α≤ −S c  for the first test and *

2
ˆ 1 α≤ −S c  for the second. 

Hypothesis tests can be more convincingly used by giving the marginal probability of 

rejections, or p-value. The bootstrap analog of the p-value for 0H  is ( )*
1 1 0
ˆ ˆ ˆˆ Pr ,= ≤ ℑcrsp S S H  for 

the first test and ( )*
2 2 0

ˆ ˆ ˆˆ Pr ,= ≤ ℑnirsp S S H  for the second. For each test, we reject null hypothesis 

when p̂ α≤ , for a given size α . 

6. Application to Tunisian high schools 

The report of the World Bank (2008) on the state of education on the Middle East and North 

Africa (MENA) concluded that the education system does not satisfy the needs of the society and 

does not meet the growing ambitions of the people. It is said that the failure to achieve positive 

results rests mostly on a misallocation of the resources devoted to the education system and to 

schools operating inefficiently. In the case of Tunisia, Essid et al. (2010a) show that high schools 

would be able to deliver the same amount of services with 12% less resources on average. Other 

than the internal working of institutions, the overall organization of the education system has 

been under scrutiny.  

To improve the internal performance of the education system, the department of education 

has made a priority of reducing the size of the schools. Table 1 shows that the number of schools 

and the number of teachers have increased during the period 2001-2005 to keep up with the 

constant increase in enrolment. It is noteworthy that the number of schools has increased 

sufficiently rapidly that the average size of the schools, measured by the number of students, has 

decreased over the same period: from 965 in 2001/2002 it fell to 946 in 2002/2003 and to 911 in 

2004/2005. That is, the average size of the Tunisian secondary education establishments has 

continuously decreased since 2001. This is consistent with the belief of the Tunisian department 

of education that smaller units are performing better. This clearly raises the question concerning 
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the scale characterization of schools and how the optimal size must be determined so that the 

schools operate at their optimal scale. 

Table 1: Evolution of the number of schools and their average size 
Academic 

Year 
Number of 

Schools 
Enrolment Number of student-

class 
Number of 
Teachers 

Average School 
Size 

01/02 

02/03 

03/04 

04/05 

1,065 

1,117 

1,161 

1,191 

1,027,812 

1,057,233 

1,076,238 

1,084,878 

31,146 

32,300 

33,103 

33,811 

49,331 

51,738 

55,717 

59,132 

965 

946 

927 

911 

Source: « Bureau des études, de la planification et de la programmation », Department of Education, Tunisia 

Here we would like to characterize the returns to scale and test whether the government is 

right about the optimal size of schools. In order to do this, we apply our bootstrap methodology 

to a sample of 332 Tunisian high schools. (This sample contains roughly 28% of the schools for 

the reference year 2003/2004.). The Bureau des études, de la planification et de la 

programmation of the Tunisian department of education has provided data for each school for the 

academic year 2003/2004. The data include total enrolment, the number of students graduating 

(successfully completing the baccalauréat), the number of teachers and non-teaching staffs, the 

number of students in residence (accommodation provided by the institution), the number of 

general teaching and specialized classrooms, and the operating budget. We have used price 

indices from the Tunisian National Institute of Statistics (consumer price index for 2004). Using 

these data, we have constructed our output measures and the quantities of quasi-fixed and 

variable inputs for each high school.3 

Tunisian high schools supply two types of services: education and residence (full-board 

accommodation). We use the number of beds (BEDS) and the number of meals served (MEALS) 

to measure the residence services. The education services are measured using total enrolment 

(STUDENTS) and the baccalauréat4 results (RBAC) which corresponds to the number of 

successful students per school. 

To produce “students”, high schools use variable and quasi-fixed inputs. The variable 

inputs are the total number of teachers (TEACHERS), the number of administrative personnel 

(ADM), the number of blue collars, essentially maintenance and cleaning staff (BLUECOL), and 

                                                 
3 For details on the data construction the reader is referred to Essid et al. (2010a). 
4 The baccalauréat is the diploma obtained at the end of high school; it is the equivalent of a high school diploma 
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finally from the operating budget and the consumer price index, we construct a proxy for food 

and material supplies (F&MAT). The quasi-fixed factors are given by the number of general 

classrooms (GROOM) and the number of specialized classrooms (SROOM). Descriptive 

statistics of the data are given in Table 2. 

Table 2: Descriptive Statistics 
 

 Variable Mean Standard 
error 

Minimum Maximum 

Outputs 

STUDENTS 1292,25 461,64 346 2769 

BEDS   123,65 188,31 0 931 

MEALS  173,35 220,00 0 931 

RBAC 180,66 94,05 18 526 

Variable 
inputs 

TEACHERS    72,53   24,32 26 152 

ADM      9,53     4,68 1 28 

BLUECOL    14,11     7,63 3 48 

F&MAT  641,95 377,63   147,08 1983,86 

Quasi-fixed 
inputs 

GROOM   26,18    8,77 11 59 

SROOM   10,58    4,37 3 31 
 

Table 3 and 4 contains a summary of the scale efficiency measurement results.5 It 

includes the standard DEA results and the test of hypothesis using the homogenous and 

heterogeneous bootstrap simulations of our model. The number of bootstrap simulation is equal 

to 2,000 (B=2,000). 

Table 3 presents the results with the schools grouped by size (measured by the number of 

students). Small schools have less than one thousand students (97 schools), the middle group 

(129 schools) includes schools with a number of students between 1,000 and 1,500 and the last 

group includes the large schools, that is, the schools with more than 1,500 students (106 

schools).6 The total number of schools is 332. Except for the first line, each cell contains a triple. 

The three entries are respectively the number of schools that exhibits increasing returns to scale, 

constant returns to scale and decreasing returns to scale. 

                                                 
5 Full results are in an Appendix available from the authors upon request.  
6 There is no formal definition of “small”, “medium” and “large” institutions in the literature. The corresponding 
sizes change considerably from one study to the other (see Stiefel et al. (2009) for a complete survey of the 
problem). We have kept in this paper a breakdown of the schools sizes such that the distribution is relatively 
homogenous between groups. 
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Table 3: Results of the test for the homogenous and the heterogeneous bootstrap 

 School Size 
Total 

Small Medium Large 

Number of schools 97 129 106 332 

Scale Efficiency: 
Number of schools per 

RTS type 
(irs, crs, drs) 

(85, 11, 1) (86, 23, 20) (26, 13, 67) (197, 47, 88) 

Scale Efficiency Test: 

1) Homogenous Bootstrap: 

α = 1% (20, 77, 0) (6, 123, 0) (0, 106, 0) (26, 306, 0) 

α = 5% (35, 62, 0) (14, 115, 0) (0, 105, 1) (49, 282, 1) 

α = 10% (46, 51, 0) (20, 109, 0) (0, 101, 5) (66, 261, 5) 

2) Heterogeneous Bootstrap 

α = 1% (33, 64, 0) (0, 129, 0) (0, 106, 0) (33, 299, 0) 

α = 5% (10, 87, 0) (0, 129, 0) (0, 106, 0) (10, 322, 0) 

α = 10% (19, 78, 0) (0, 129, 0) (0, 106, 0) (19, 313, 0) 
 

We first present the traditional scale efficiency scores proposed by Färe et al. (1994). The 

results are grouped by school sizes and each triple contains the number of schools belonging to 

each category of returns to scale. Clearly, most DMUs are not scale efficient (more than 85%). 

More than half of the schools exhibit increasing returns to scale, this result being concentrated in 

the small and medium size schools (85 small and 86 medium size high school). The majority of 

the large schools (67 out of 106) exhibit decreasing returns to scale. There are fourteen percent of 

the high schools that exhibit constant returns to scale. These schools are deemed scale efficient. 

Half of these schools are medium size institutions. The other half is spread evenly between the 

small and large schools. Clearly, the first analysis using the standard approach does not provide 

any indication on the optimal size for a school. Therefore, we have to look for an answer 

somewhere else in order to get guidance in choosing the optimal size. A potential direction to 

look for is suggested by the fact that these results on the optimal size are based on the raw scores 

and do not take into account potential sampling variations. 

Such a traditional presentation of the results does not include the possibility that the scale 

efficiency scores might be estimators of a parameter. As explained above, the scores are not 

measured with respect to the true frontier, but with respect to an estimated frontier. Consequently, 

the scale efficiency scores are themselves estimates of the true scores, thus subsumed to statistical 

regularities; hence the results reported above must be accompanied by an estimate of their 
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precision. In other words, reported cases of scale inefficiencies in the traditional approach might 

be the result of sampling variations. 

The bootstrap general simulations results are displayed in last rows of Table 3, while 

Table 4 presents some specific cases. The simulations results are always reported for three 

different test sizes: α = 1%, α = 5% and α = 10%. The application of the test procedure we 

developed in the previous sections confirms the intuition that sampling variations play a 

significant role in the estimation of scale efficiencies. The bottom part of Table 3 confirms that 

the vast majority of the schools operate under constant returns to scale. That is, more than 78% of 

the institutions are now deemed scale efficient at all test sizes for both simulation methods, in 

strong contrast with what we found initially. In other words, the scale inefficiencies identified by 

the brute scores are spoiled by some noise and most of the decision units are in fact scale 

efficient. These results are not sensitive to the type of bootstrap procedure, homogenous or 

heterogeneous, so even the simplest statistical procedure raises some concerns on the 

interpretation of the straight scores of scale efficiencies without its statistical content. The results 

in Table 3 allow us to show the existence of a significant relationship between high school sizes 

and scale efficiency scores. The highest concentration of scale-efficient schools is found among 

the medium or large size institutions. At test size α = 5%, out of the 282 schools deemed scale 

efficient using the homogenous bootstrap method, 115 are medium size high schools and 105 are 

large institutions. For the same test size, the results using the heterogeneous bootstrap simulations 

lead us to a fairly similar conclusion (out of 322 scale efficient institutions we have 122 medium 

and 106 large institutions). This also raises the point that when a school is small it is more likely 

to be scale-inefficient. This casts some doubts on the policy promoted by the department of 

education that organized a systematic reduction of the school sizes. In lights of our results, this 

movement is not totally optimal, as in general smaller schools are more likely to have difficulties 

to be scale efficient than medium and large size institutions. 

Table 4 presents the result for specific units. Our approach has focused on unit specific 

test procedure by contrast to Simar and Wilson (2002) that consider a global test. It compares 

directly the simulation results obtained using the homogenous and heterogeneous bootstrap to the 

standard results (ignoring the statistical content of the analysis). Some specific examples of 

DMUs are presented in the Table and serve to illustrate some general trends. 
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[INSERT TABLE 4 HERE] 

The homogenous bootstrap results confirm our intuition as it is impossible to reject the 

hypothesis of scale efficiency (crs) at a size equal to 5% for 282 high schools (more than 84% of 

the sample). Most of those schools are of either medium or large size (roughly 80% of the scale 

efficient schools). There are 49 high schools (more than 14% of the sample) that exhibit 

increasing returns to scale. Most of these institutions are small schools. That is, 35 high schools 

(70% of the group) have less than one thousand students. High school L1115, with an enrolment 

of 1801 students, is the only case of decreasing returns to scale (significant at 5%) and not 

surprisingly it is a large school. These results are robust to the size. At size α = 10%, we continue 

to observe a fairly large proportion of high schools, mostly medium and large institutions, that 

exhibits constant returns to scale (more than 78% of the sample). There is also a smaller 

proportion of the high schools (about 20%), mostly of a small size, that exhibit increasing returns 

to scale. There are only at most five high schools which can be deemed to operate under 

decreasing returns to scale and they are all large institutions. 

In theory, the heterogeneous bootstrap simulations would provide results closer to the 

reality of the institutions because they account for the specificities of the production process. The 

cost for this is important as the procedure is quite involved. The comparison of its performance 

with the homogenous procedure is thus interesting. The last columns of Table 4 present specific 

cases for this procedure and must help to understand what is going on in both procedures. A 

striking point is that the results are very similar to those of the homogenous bootstrap, something 

we interpret as a confirmation of the robustness of the test procedures and their results. The 

number of scale efficient DMU increases to 90% for all three test sizes. In both simulations, most 

of the DMU exhibit the same type of returns to scale. The heterogeneous bootstrap tends to 

ascribe the scale efficient label to schools more often than the homogenous procedure, however. 

None of the high schools exhibit decreasing returns to scale at all three sizes for the 

heterogeneous bootstrap. One striking feature of these results is the relationship between the 

types of returns to scale and the enrolment, our size indicator of the schools. The heterogeneous 

bootstrap simulations are clear on that point: schools of medium and large sizes are all scale 

efficient. That is, they are deemed to have an optimal size at α equal to 1%, 5% and 10%. The 
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DMU that are not efficient, for which the null hypothesis is rejected at α equal to 1% in the first 

test, are all schools with less than one thousand students, the smallest schools of our sample. 

This result is in line with the conclusion we reached for the homogenous bootstrap 

simulations. It seems that most medium and large schools are scale efficient, while their smaller 

counterparts are not. The latter exhibit increasing returns to scale and from the inverse 

relationship identified between returns to scale and size measured by the number of students, we 

would be inclined to believe that these schools are too small. Clearly, these conclusions are not 

good for the policy promoted by the Tunisian department of education. It seems that the route to 

improve the efficiency of the education system in Tunisia does not go through a systematic 

reduction of the size of the high schools. To the contrary, the smallest institutions tend to boast 

bad results in terms of scale efficiency. Some small schools seem to sit on potential performance 

gains than cannot be exploited due to their size. 

7. Conclusion 

A very entrenched claim by program designers and education system decision makers is that 

small establishments are better than bigger one for the students (Schneider et al. (2007) for a 

discussion of this point). Despite the pedagogical arguments to that effect, for economists this 

problem is directly related to the scale efficiency. In other words, what is the school optimal size 

so that all resources devoted to the institution are optimally used to produce well educated 

students? To respond to this question and orient correctly the education policy we need a formal 

way to determine the optimal size of given educational institutions.  

In this article we have developed a procedure to test non parametric statistical hypothesis 

concerning the scale efficiency of organization, readily implementable to schools. Because there 

is no asymptotic distribution for the test statistic under the null hypothesis, we used a smooth 

bootstrap methodology to approximate it. This approach allows us to estimate the p-values of the 

test and to determine a decision rule to accept or reject the null hypothesis. The results of our 

application of this methodology to the Tunisian secondary schools show on the one hand that 

scale efficiencies are strongly sensitive to sampling variation and on the other hand that the claim 

made by the decision makers in the Department of Education in Tunisia that the country should 

aimed at reducing as much as possible the size of the schools is not verified. Smaller schools are 

not better and in fact we have shown that they are probably the only one that are systematically 
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not of the right size as they are exhibiting increasing returns to scale. It is in medium and large 

institutions that we can find high schools fully benefiting from scale efficiencies.  

We have ignored the socio-economic characteristics of students and the localization of the 

schools, however. This may eventually force us to qualify our results as rural schools may not be 

able to increase the number of students because of weak population density for instance. 

Nonetheless, we do not expect these considerations to change radically the picture we drew of the 

school efficiency in Tunisia. 
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Table 4: Homogenous and the heterogeneous bootstrap test results: some specific cases 
DMU Enrolment  Homogenous bootstrap simulation results Heterogeneous bootstrap simulation results 

1
ˆ

jS  2
ˆ

jS  Initial 
Scale 

efficiency ( )
ˆ     

 1

jp

Test
 

( )
ˆ     

 2

jp

Test
 

Scale efficiency test 

( )
ˆ     

 1

jp

Test
 

( )
ˆ     

 2

jp

Test
 

Scale efficiency test 

α=0,01 α=0,05 α=0,1 α=0,01 α=0,05 α=0,1 

L111 1517 0,9986 0,9986 Irs 0,6775 0,2855 crs crs crs 0,8305 0,5325 crs crs crs 
L1111 1205 0,9929 0,9929 Irs 0,4950 0,4490 crs crs crs 0,6195 0,4725 crs crs crs 
L1112 1910 0,9696 1,0000 drs 0,3730 0,9555 crs crs crs 0,5790 0,9450 crs crs crs 
L1113 1875 1,0000 1,0000 drs 0,1995 0,9695 crs crs crs 0,9075 0,9405 crs crs crs 
L1115 1801 0,9294 1,0000 drs 0,0395 0,9045 crs drs drs 0,4040 0,9480 crs crs crs 
L1126 1746 1,0000 1,0000 crs 0,9570 0,9690 crs crs crs 0,9850 0,9515 crs crs crs 
L1235 632 0,9630 0,9630 irs 0,5420 0,5420 crs crs crs 0,3620 0,3280 crs crs crs 
L1545 1404 1,0000 1,0000 crs 0,9360 0,9925 crs crs crs 0,9845 0,9915 crs crs crs 
L1464 669 0,8910 0,8910 irs 0,0005 0,0005 irs irs irs 0,1480 0,1455 crs crs crs 
L3183 615 0,8549 0,8549 irs 0,0090 0,0090 irs irs irs 0,1085 0,1060 crs crs crs 
L41120 1564 0,9874 1,0000 drs 0,0955 0,9740 crs crs drs 0,7040 0,9495 crs crs crs 
L43134 962 0,9446 0,9446 irs 0,0115 0,0115 crs irs irs 0,3475 0,3020 crs crs crs 
L43143 1689 0,9608 1,0000 drs 0,0540 0,8920 crs crs drs 0,5105 0,9500 crs crs crs 
L52168 1620 0,9844 1,0000 irs 0,0850 0,1995 crs crs drs 0,6710 0,6060 crs crs crs 
L84305 1910 0,9254 1,0000 drs 0,0695 0,8880 crs crs drs 0,3940 0,9405 crs crs crs 
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