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Abstract. Arterial Spin Labeling (ASL) is a noninvasive perfusion tech-
nique which allows the absolute quantification for Cerebral Blood Flow
(CBF). The perfusion is obtained from the difference between images
with and without magnetic spin labeling of the arterial blood and the
captured signal is around 0.5-2% of the magnitude of the labeling images,
so the noise is one of the main problems for further data analysis. Clas-
sical method, Mono-TI, for CBF quantification is averaging repetitions
with only one Inversion Time (TI) - the time delay between labeling and
acquisition to allow the labeled blood to arrive the imaging slice. It im-
proves the robustness to noise, however, cannot compensate the variety
of Arterial Arrival Time (AAT). In this paper, Diverse-TI is proposed
to exploit different TI sampling instants (sampling diversity) to improve
the robustness to variety of AAT and simultaneously average repetitions
with each TI (sampling repetitions) to improve the robustness to noise.
Generally, the sampling diversity is relatively small and can be consid-
ered as compressed measurements, thus the Compressive Matched Filter
(CMF) enlightened from sparsity is exploited to directly reconstruct CBF
and AAT directly from compressed measurements. Meanwhile, regard-
ing the CBF quantification performance, the compromise between the
sampling repetition and sampling diversity is discussed and the empiri-
cal protocol to determine the sampling diversity is proposed. Simulations
are carried out to highlight our discussions.

Keywords: ASL, CBF, Multi-TI, Diverse-TI, Compressive Matched Fil-
ter, Sparsity.

1 Introduction

The Arterial Spin Labeling (ASL) is an MRI (Magnetic Resonance Imaging)-
based perfusion technique which uses the magnetically tagged water as a freely
diffusible tracer to measure perfusion non-invasively. This blood water is first
labeled with a radio-frequency pulse in the neck of the patient. After a delay,
called Inversion Time (TI), which allows the labeled blood to arrive in the brain,
a labeled image of the brain is acquired. A control image is also acquired without



labeling and the CBF estimation is done on the difference between the control
and labeled image. For a fixed TI t, the perfusion signal is generally described
by a kinetic model introduced by Buxton et. al. in [1]:

M∆(t) =


0, t ∈ [0, ∆)

2αfM0b(t−∆)qp(t) exp(−t/T1b), t ∈ [∆,∆+ τ)

2αfM0bτqp(t) exp(−t/T1b), t ∈ [∆+ τ,∞)

(1)

where f is the CBF, α measures the labeling efficiency, M0b is the equilibrium
magnetization of arterial blood, ∆ is the Arterial Arrival Time (AAT) to the
interesting slice, τ is the temporal width of the bolus, T1b is the relaxation time
in blood and qp(t) is considered to be approximately equal to 1. Specifically, in
QUIPSS II [2], a saturation pulse is given to the tagged bolus after a fixed period
τ of the tagging time, thus the temporal width of the tagged bolus is known a
priori.

The principle task of ASL analysis is quantifying the absolute value of CBF
f . The traditional technique, which is called Mono-TI, only uses a single TI t
after which the acquisition is gathered, where t is assumed to be bigger than
∆+ τ to guarantee a delay long enough to let the magnetic tagged blood arrive
the interesting imaging slice. Then the quantification of CBF is a direct ratio
between the magnetization difference M∆ and the known terms, when t > ∆+τ .

However, two major problems prevent the efficiency of Mono-TI. At first,
as the amplitude of the difference ASL signal is usually around 0.5-2% of the
control image magnitude, its SNR is thus not sufficient for further analysis.
Commonly, numbers of sampling repetitions are acquired for single TI (typically
more than 30) and then averaged to improve the SNR. Secondly, the assumption
t > ∆+τ is not easy to be guaranteed in Mono-TI technique. Since ∆ is varying
between different patients, ages and physical situations. Even excluding these
factors, the AAT is still an uncertain value due to the presence of laminar and
turbulence flow, complicated vessel networks and cardiac pulsations [3]. This fact
leads that the magnetic labeled blood may not have reached the imaging slice if
the sampling time is too small and thus leads to underestimation of CBF. One
possible way is giving the TI large enough, however, the magnetization difference
M∆ might be too small if TI is too big and thus leads to very low SNR.

In this paper, another measuring procedure with different sampling times is
investigated for the CBF quantification, where the collected ASL data at dif-
ferent sampling times are captured during separate ASL RF pulse periods. It is
different from the classical Multi-TI [4,5,6] and thus called Diverse-TI to avoid
ambiguities. Multi-TI is a more recent and confidential sequence than Mono-TI
and is not currently available on most MR-Scanners, while Diverse-TI proposed
in this paper can easily be produced since it only uses regular ASL sequences.
Before further analysis on real ASL data, the first and also the essential step is
giving a protocol to concretely design the measuring procedures. It is clear that
some issues should be preferentially considered: (1) sampling repetition (for the
same sampling time), which is intended to improve SNR; (2) sampling diversity
(sampling at different times) which is intended to compensate for the inexact



knowledge of parameters such as ∆, etc. For practical considerations, the most
crucial criteria in real clinical studies is the total measuring time which is gen-
erally limited in a reasonable period. Thus the values of sampling repetition
and sampling diversity can not be designed as large as possible to improve CBF
quantification performance. A method to explicitly guide the design of these
parameters is applaudable. However, to the best knowledge of the authors, the
existing papers rarely focus on this point.

Consequently, as a preliminary study, the contribution of this paper is twofold.
First, it formulates the considered problem as an instance of Compressive Matched
Filter (CMF) [7]. Then, it numerically investigates the tradeoffs between rep-
etition and sampling diversity (for the same total measurement time) on CBF
estimation with CMF. In a word, the main question investigated in this paper is:
given a total measurement time, shall we favor repetitions or sampling diversity?

2 Diverse-TI Technique

Since parameters including τ, T1b, α,M0b and qp(t) are (or assumed to be) known
a priori, the signal model (1) can be simplified as M∆(t) = f ×g(∆; t) where the
time related term g(∆; t) will be called “wave form” and can be defined by (1)
with f = 1.

- Sampling Repetition
In practice, an important level of noise is affecting ASL measurements, hence
the signal captured at time t can be expressed as follows:

y(t) = M∆(t) + ε(t) = f × g(∆; t) + ε(t)

where ε(t) is the noise term and is assumed to be Gaussian in this paper. In our
setting, the measure at time t is repeated R times (sampling repetition), and
averaging all measures divides the noise variance by R and thus it will improve
the SNR according to the following equation:

QR = 10 log10R+Q1 (2)

where Q1 is the SNR of one repetition and QR is the SNR after R repetitions.

- Sampling Diversity
Define g(∆) = {g(∆, iTs)}Ni=1 where Ts is a reference regular sampling inter-
val and t1...tM (possibly irregular) time instants located on this regular grid,
where M � N . With different TI (sampling diversity) t1...tM , the ASL data
are respectively collected y , {y(t1), ..., y(tM )}T ∈ RM . Then we can write the
sampling model in the form of linear operation:

y = Φ(f × g(∆) + ε)

where Φ ∈ RM×N is a sensing matrix, which verifies ΦΦT = IM .
At last, the task is to find the CBF parameter f and the optimal ∆ that best

match the observations y. To fulfill it, Compressive Matched Filter (CMF) [7]
is exploited in the following sections.



3 Compressive Matched Filter

In the case considered in this paper, the CBF quantification problem can be
formed as a multiple detection problem to distinguish the following hypothesis:

Hi : y = Φ(fg(∆i) + ε), with i ∈ {1, ..., d}

where f is the CBF value, ∆1, ...,∆d are d possible AAT values that should be
assumed before and ε ∼ N (0, σ2IN ) is the white noise term. In this case, the
evidence under different hypothesis, for i ∈ {1, ...d}, can be written

p(y|Hi) =
exp

(
− 1

2 (y − Φfg(∆i))
T (σ2ΦΦT )−1(y − Φfg(∆i))

)
(2π)N/2|σ2ΦΦT |1/2

Then the final detection is carried out by finding the hypothesis with the biggest
conditional probability:

(fs,Hs) = arg max
f,Hi,i∈{1,...,d}

p(y|Hi)

Thus by differentiating w.r.t. f , we can obtain its estimation

f̂i =
yT (ΦΦT )−1Φg(∆i)

g(∆i)TΦT (ΦΦT )−1Φg(∆i)
(3)

and by taking logarithm we obtain an equivalent test that simplifies to

Hs = arg max
Hi,i∈{1,...,d}

(
y − 1

2
Φf̂ig(∆i)

)T
(ΦΦT )−1Φf̂ig(∆i)

= arg max
Hi,i∈{1,...,d}

1

2

(
yT (ΦΦT )−1Φg(∆i)

)2
g(∆i)TΦT (ΦΦT )−1Φg(∆i)

ΦΦT=I
====== arg max

Hi,i∈{1,...,d}

∣∣∣∣〈y, Φg(∆i)

‖Φg(∆i)‖2

〉∣∣∣∣
(4)

Above all, using (4) and (3), we can respectively obtain the estimation of

arrival time ∆̂ = ∆s and the estimation of CBF f̂ = fs.

4 Analysis and Simulations

Without loss of generality, the time used for one single sampling repetition can
be assumed to be TS , including the process of one time control imaging and
tagging imaging. Then the total measuring time can be expressed as:

T = M ·R · TS (5)

where M indicates the level of sampling diversity i.e. the number of TI and R the
number of sampling repetitions. For practical considerations, the most crucial



criteria in real clinical studies is the total measuring time which is generally
limited in a reasonable period. In one aspect, the sampling repetitions improve
the signal SNR; while in the other aspect, the sampling diversity promote the
robustness to the variety of AAT. Consequently, the compromise between the
sampling diversity and sampling repetitions needs to be determined. In other
words, given the maximum total time T , how to optimally choose R and M to
reach better CBF quantification? To answer it, we first compare the extreme
case when M = 1 to the other case when M > 1, then separately consider the
case when M > 1.

4.1 Mono-TI technique v.s. Diverse-TI technique

In fact, M = 1 is exactly the Mono-TI technique. In order to well illustrate
the performance of Mono-TI technique, a concrete simulation is carried on. In
the following, the parameters of ASL model (1) are arbitrarily set as: M0b =
100, α = 0.9, T1b = 1.2s and τ = 1s, and Fig. 1(left) shows one example when
AAT ∆ = 1 and CBF f = 10 mL/(100g)/min. Obviously, given constant noise
variance σ, the highest SNR of single repetition Q1 is reached when ti = ∆+ τ
while it will decrease as ti increasing.

The assumption on TI ti > ∆+ τ is supposed to be verified. At first, ti can
not be much smaller than ∆+ τ otherwise the tagged blood can not reached the
interest slice on time, as shown by the red diamond point in Fig. 1(left) when
ti = 1s; meanwhile, it can not be too big otherwise the captured signal will
be too small which makes the SNR Q1 very low, as shown by the green circle
point in Fig. 1(left) when ti = 4.5s. Then the CBF f can be calculated directly

by f̂ = y(ti)/g(∆; ti), however, the AAT ∆ can not be estimated in Mono-TI
technique.

Then Mono-TI technique is carried out in the following procedure. Fix the
CBF f = 10 mL/(100g)/min, give one AAT value ∆, sample at the time ti with
noise corruption, and then one single repetition of the ASL signal is simulated.
Without loss of generality, the time used for one single repetition is assumed
TS = 5s (this value is set identically for all simulations). Then as an example,
we can set the total time T = 30min, so according to (5) the Mono-TI technique
allows R = 360 repetitions. According to (2), the SNR can reach to QR =
30.56dB with Q1 = 5dB. However, this value is very sensible to the sampling
location, or equivalently, the AAT value. This fact can be well illustrated by
Fig. 1, where the result of Mono-TI is obtained by fixing ti = 1s, 3s or 4.5s,
then ranging AAT ∆ from 0.1s to 3s (the performance shown in Fig. 1(right) is
measured through the quantification SNR averaged over 1000 restarts). In Fig. 1,
the result when ti = 1s shows the situation when TI is too short, ti = 4.5s shows
the situation when TI is too long, even with proper TI ti = 3s, the performance
of quantification might largely decrease when AAT and the TI are mismatch.

In the framework of Diverse-TI , following the CMF algorithm, we first assess
a large interval where the value of AAT should locate. In this simulation, this



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−200

−100

0

100

200

300

400

500

600

t
i

M
∆

0.5 1 1.5 2 2.5
0

5

10

15

20

25

30

35

The real value of AAT

A
ve

ra
ge

d 
Q

ua
nt

ifi
ca

tio
n 

S
N

R
 (

D
B

)

 

 

Diverse−TI, AAT∈  [0.1,3]
Mono−TI, t

i
=1s

Mono−TI, t
i
=4.5s

Mono−TI, t
i
=3s

Fig. 1. (Left) Kinetic Model of ASL with ∆ = 1 (τ = 1s) and f = 10 mL/(100g)/min
(dark solid curve) and its noisy version with average SNR 5dB (grey dashed curve).
(Right) Comparison between Mono-TI and Diverse-TI (M = 10) methods for different
AAT with total time T = 30.

interval is set to ∆ ∈ [0.1, 3]. We choose the number1 of sampling diversity to
M = 10, and the sampling repetitions are set identically according to (5) with the
same total time as Mono-TI, then the CBF quantification performances through
CMF algorithm with different AAT value are obtained, as shown in Fig. 1.
Diverse-TI can give constant performance which is also better than Mono-TI
with a majority of AAT.

As a conclusion, in the case of M = 1, the CBF quantification quality might
be better thanM > 1, however, its performance is much sensitive to the sampling
time, which is not easy to be designed practically. Moreover, as a supplement,
Diverse-TI can also estimate the AAT.

4.2 Protocol to Sampling Diversity

In the last subsection, it has been shown that M = 1 is worse than M > 1,
while in this subsection, we will propose a method to answer the question that
how many sampling time locations are enough? Similarly, the total time T is the
crucial parameter in clinical studies. Consequently, given a fixed total time T ,
the relationship between the CBF quantification performance and the number
of sampling locations is essential to determine the required M .

In this simulation, the CBF f is fixed equal to 10mL/(100g)/min and the
AAT ∆ is randomly choosing from the interval [0.1, 2], then the ASL signal are
generated and corrupted by noises. Then to simulate the sampling procedure, the
total time T is fixed respectively to 5, 10, 30, 60min and the number of sampling
time locations M is varying from 2 to 30, thus the number of repetitions R is
determined via (5), then samples are collected. Since ∆ ∈ [0.1, 2] is assumed,
the CMF can be used to carry out the CBF quantification and AAT estimation,
and the SNR of CBF quantification and AAT estimation are respectively shown

1 This value is chosen according to empirical result, referring Fig. 2.



in Fig. 2 (bottom two figures). Meanwhile, the relationship between sampling
repetition and sampling diversity can also be drawn according to (5), as shown
in Fig. 2 (upper figure).
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Fig. 2. Performance Evolution with respect to different sampling diversities M via
CMF using different total time: CBF quantification (bottom left), AAT (bottom right)
and sampling repetitions (up).

From the results, as expected, we can find that as M increases, the perfor-
mance of Diverse-TI technique is improving before reaching an asymptotic value.
From this simulation, we can find that the convergent point is around M = 8, as
shown by the performance of CBF (or AAT) quantification in bottom figures of
Fig. 2. Then according to (5), the repetitions at one sample time R can be calcu-
lated. It is worth mentioning that this simulation is only an example of choosing
the number of multiple sampling time locations, for concrete applications, the
curve in Fig. 2 should be re-drawn with appropriate parameters, and then the
best value should be re-selected.

5 Conclusion and Future Works

Through this preliminary study, it is shown that the new Diverse-TI technique is
superior to the classical Mono-TI technique, since the first can give steady CBF



performance and is capable to estimate the AAT. Furthermore, the sampling di-
versity of Diverse-TI technique has also been investigated where an experimental
method is exploited and the protocol to design the sampling diversity, i.e. num-
ber of multiple sampling times, is proposed. Without loss of generality, from one
exemplar simulation, we conclude that giving a total measuring time, the CBF
quantification performance can be improved with the increase of the sampling
diversity. Consequently, the sampling diversity should be designed large enough.
On the other hand, when the sampling diversity is larger than a fixed value, the
performance becomes constant. Thus, together with an upper bound resulted
from the physical implementation constraints, the optimal region for sampling
diversity can be well located through the proposed protocol.

The future works will consist in applying the parameter design protocol to
guide the Diverse-TI technique in real ASL data acquisitions. Meanwhile, it is
possible to extend CMF algorithm by considering additional priors to regularize
the CBF estimation problem which might also improve the performance.
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