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Abstract—Seeing is not just done through the eyes, it involves
the integration of other modalities such as auditory, proprio-
ceptive and tactile information, to locate objets, persons and
also the limbs. We hypothesize that the neural mechanism of
gain-field modulation, which is found to process coordinate
transform between modalities in the superior colliculus and
in the parietal area, plays a key role to build such unified
perceptual world. In experiments with a head-neck-eye’s robot
with a camera and microphones, we study how gain-field
modulation in neural networks can serve for transcribing one
modality’s reference frame into another one (e.g., audio signals
into eyes’ coordinate). It follows that each modality influences
the estimations of the position of a stimulus (multimodal
enhancement). This can be used in example for mapping
sound signals into retina coordinates for audio-visual speech
perception.

I. INTRODUCTION

Perceiving objects in space is one of first tasks babies have

to deal with during infancy. It is a rather difficult problem

since infants have to represent one object with multiple sen-

sory modalities (vision, sound, tactile) encoded in different

reference frames (e.g., eye-centered, head-centered or hand-

centered). This curse of dimensionality corresponds to the

so-called binding problem across the modalities for which

there is still debates on its underlying neural mechanisms

and its associated computational models. In this paper, we

propose to inspire ourself from current computational models

of spatial cognition and to investigate a neural system that

potentially satisfies developmental evidences and biological

mechanisms.

A reason for the weakness of spatial cognition in infants

is that motor development is not fully mature during the first

year. Infants calibrate the basic sensory-motor relationships

during motor babbling; e.g., he locates his hand with its eyes

because he moves the hand only when it crosses the eye-field.

By doing so, he estimates its position in space relative to his

head for example, on a univocal reference frame [1], [2].

The superior colliculus plays an important role for building

such spatial map [3], [4]. Its principal functions serve for

simple orientation tasks toward a target, like guiding saccadic

eye movements to the locations of both auditory and visual

stimuli.

Similar properties are observed in the parietal cortex,

which is also hypothesized to maintain a mapping of sensory

coordinates of objects into motor coordinates [5], [6].

From a biological viewpoint, it is interesting to note

that both structures, the superior colliculus and the parietal

cortex, which are found important for spatial cognition

and multimodal integration, rely on the two same neural

mechanisms, namely (1) timing integration and (2) gain-

field modulation [7]. The first mechanism, the timing in-

tegration in sensory-motor circuits, means the detection of

temporal events like synchrony or rhythmicity, it leads the

perceptual enhancement or discrepancy in attentional tasks

by reinforcing the links of contingent neurons, as emphasized

in Hebb’s law [8]. The second mechanism, the gain-field

modulation, describes the phenomenon where the motor and

the sensor signals mutually influence the amplitude activity

of their afferent parietal neurons [9]. Differently said, these

neurons encode stimulus location simultaneously in more

than one reference frame using “gain fields” [5], [7]. For

instance, there is a non-linear dependency on eye position for

certain visual neurons in posterior parietal neurons (PNNs)

whose reference frame is centered on the head, whilst others

are found to be influenced more by the coding of somatic

information into hand/arm-centered reference frame.

Gain modulation contributes therefore as a major compu-

tational mechanism for coordinates transformation and for

the compensating of distortions caused by movements [10].

Its role is even broader as PNNs are found also important

for reaching targets, goal-directed movements [11] and even

for intentional acts [12]. Pouget and Deneve suggest that the

parietal neurons behave as a population of basis functions

that are continuously adapting their dynamics to the current

coordinate frame relative to the task [5], [13]. All-in-all,

these considerations suggest that exploiting the mechanisms

of synchronization and of gain modulation may permit to un-

derstand how multimodal maps compute spatial processing.

Many computational frameworks have been proposed

for multimodal integration, which are for some of them

biologically-inspired. For instance, Fuke et al. [14] follow

the models exploiting hebbian learning, using self-organizing

maps (SOMs) to model the ventral intra-parietal (VIP)

neurons responsible for facial somatic-visual integration. In

their simulation, the SOMs estimate the relative arm position

with respect to the face for visuo-tactile face representation

where the synaptic links of the most contiguous visual and

tactile neurons are reinforced over time. Besides, Chinel-

lato et al. [15] follow the model proposed by Pouget and

Deneve [13], which exploits the gain-field mechanism for

multimodal integration. In a computer simulation of an eye-

hand system, they use radial basis function networks (RBFs)

for visuomotor transformations, for gazing and for reaching

2012 12th IEEE-RAS International Conference on Humanoid Robots
Nov.29-Dec.1, 2012. Business Innovation Center Osaka, Japan

978-1-4673-1369-8/12/$31.00 ©2012 IEEE 297



Fig. 1. Overall framework based on the gain-field modulation of parietal neurons for coordinate transform and multimodal integration; adapted from
Pouget et al. [6]. Parietal neurons translate and coordinate the stimuli information from the visual, the auditory and the proprioceptive signals in eye-,
head-, body-reference frame, by varying their gain levels.

Fig. 2. Reentrant mechanism. The unimodal neurons fed univocal sensory
signals to the gain-field neurons and to the downward neurons, and receive
back the multimodal response; adapted from [22], [13] and [23].

actions. Despite their respective advantages, both lack the

physical embodiment in real robots who face the curse of

complexity across the different modalities during motion and

temporal integration.

In this paper, we propose to combine these two mecha-

nisms for modeling within robots the development of multi-

modal integration and spatial cognition in neonates [4], [16].

For this purpose, we use a robot-head with a unique eye and

two bionic ears to model visual, audio and proprioceptive

integration for objects spatial localization and coordinate

transformation. This work pursues several models of the

parieto-motor system on which we studied the contributions

of motor and spatial development to social cognition [17]. In

previous researches, we used spiking neural networks for the

detection and learning of synchrony based on the mechanism

of spike timing-dependent plasticity [18], either in robotic

experiments or in computer simulations [19], [20]. Here, we

investigate similar principles using this time the rank-order

coding mechanism (ROC) exploited for its rapid spike-based

processing [21]. We enlarge its use to the gain-field effect

across different modalities.

Our robot head locates visual and audio stimuli relative

to their respective reference frame, even during motion. The

neurons replicate the gain-field effect of parietal neurons for

different spatial locations from audio, visual and propriocep-

tive pairings. Using a re-entrant mechanism, the processed

information is then fed back to the unisensory maps. It fol-

lows that the assembled audio-visual signal can then estimate

back the position of a stimulus in each modality. We can

observe then phenomena such as multimodal enhancement of

spatial perception, which can serve for audio-visual speech

perception; i.e., correlations between dynamical face and

acoustic cues.

II. ARCHITECTURE AND NEURAL MECHANISMS

In this section, we present the neural architecture and the

mechanisms that govern the dynamics of the neurons, gain-

field modulation and reinforcement learning. We describe

first the bio-inspired mechanism of rank-order coding from

which we derive the gain-modulated activity of parietal

neurons.

A. Rank-Order Coding Algorithm

The Rank-Order Coding (ROC) algorithm has been pro-

posed by Thorpe and colleagues as a discrete and faster

model of the derivative integrate-and-fire neuron [21]. ROC

neurons are sensitive to the sequential order of the incoming

signals; that is, its rank code. The distance similarity to this

code is transformed into an amplitude value. A scalar product

between the input’s rank code with the synaptic weights

furnishes then a distance measure and the activity level of the

neuron. More precisely, the ordinal rank code can be obtained

by sorting the signals’ vector relative to their amplitude levels

or to their temporal order in a sequence. If the rank code of

the input signal matches perfectly the one of the synaptic

weights, then the neuron fully integrates this activity over

time and fires. At contrary, if the rank coding of the signal

vector does not match properly the ordinal sequence of the

synaptic weights, then integration is weak and the neuron

discharges proportionally to it.

The neurons’ output v is computed by multiplying the

rank of the sensory signal vector I , rank(I), by the synaptic

weights w; w ∈ [0, 1]. For a vector signal of dimension M
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and for a population of N neurons (M afferent synapses),

we have:

vn∈N =
∑

m∈M

1

rank(Im)
wm,n (1)

The updating rule of the neurons’ weights is similar to

the winner-takes-all learning algorithm of Kohonen’s self-

organizing maps [24]. For the best neuron win and for all

afferent signals m ∈ M , we have:

{

wm,win = wm,win +∆wm,win

∆wm,win = 1
rank(Im) − wm,win

(2)

Since the synaptic weights follow a power-scale density

distribution, the ROC neurons are similar to basis functions,

a prerequisite for gain-field modulation; see [5], [13] for a

justification proof.

B. Gain-Field Modulation

Gain-field neurons receive the activity-dependent infor-

mation from two neural population by multiplying unit by

unit their value to each other, see Fig. 2 (blue lines). The

multiplication between afferent sensory signals from the two

population codes, N1 and N2, generates the signal activity

ηn to the n gain-field neurons, n ∈ N1N2:

ηn = vn1
× vn2

. (3)

The key information here is the specific amplitude relation

between the two neurons. Note that this is a little more subtle

than Hebb’s law or spiking-or-not activity where neurons

are selected only when they have both a high value above

a certain threshold. Then, downward efferent neurons can

learn the neural activity from the gain-field neurons. By

doing so, they realize the encoding of a bimodal information

based on the two unisensory signals. The computed mutual

information is used next to re-estimate the unisensory signals

through a reentry processing stage; see Fig. 2 (red lines).

The reentry mechanism is as follows. The triggered pre-

synaptic gain-field neurons reinforce their links with the

post-synaptic downward neurons; their activity is updated in

consequence to have ηn = vn1
× vn2

+ vn. This reentry

mechanism is similar to the one proposed by [22], [25]

for mutimodal integration [23], which can serve then for

coordinates transform from one reference frame to another;

e.g., auditory or tactile information in eye- or head-centered

reference frame.

III. HARDWARE AND EXPERIMENTAL SETUP

Our head-robot consists of a box-shaped device mounted

on a servo-motor, the neck turns on the sagittal plane and

a camera, which is fixed on its eye axis, rolls on the

horizontal plane. We plug on the device two bionic ears on

which microphones are attached on the eardrums, see Fig. 3.

Although the whole system has only two degrees of freedom,

the sensory-motor information flow that it can generate (with

Fig. 3. Our head-robot consists of a head-neck-eye device with ears. The
head rotates on its neck and the eye on its axis (left). The 3D-printed bionic
ears replicate the shape of human’s ears for mimicking human-like spatial
localization of audio sources and a similar bandwith filtering of sound’s
envelope (right).

Fig. 4. Neural activity of one eye motor neuron for 250 seconds. Over
time, each neuron learns to be selective to one specific motor angle, whose
sensitivity is translated as a gain-modulated activity.

visual and auditory signals) is already complex enough for

modeling difficult coordinate transform problems.

The bionic ears have been designed with a 3D-printer

based on a 3D model of a human-ear in order to replicate its

bio-mechanical characteristics. The microphones can receive

an audio signal in the range [200Hz; 30kHz]. Moreover, the

box-like shape of the head has also a function, it creates a

sound shadow that eases the discriminating between the left

and the right ear. The auditory channel conveys a bank-filter

of 40 frequencies selected in the interval [300Hz; 20kHz]
following a logarithmic scale to respect the auditory discrim-

ination, toolbox provided by [26].

Considering the visual inputs, we chose an analogic cam-

era to transmit the video signal with a pixels’ resolution

reduced to [40 × 30]. The motors are moving within the

interval [−60◦; +60◦], and their resolution is discretized to

correspond to a 20 bins vector so that each index is associated

to one motor angle with a linear scale. Finally, learning

is done online in an unsupervised manner with no offline

training data.
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Fig. 5. Snapshot of the vision, eye-motor neural fields and the visuo-
motor parietal neurons. A specific parietal neuron (top) is selective to one
particular visuo-motor neural pair. Here, the most salient downward parietal
neuron (top) is tuned to a motor angle and retina position, resp. the most
active motor (middle) and vision neurons (bottom).

IV. EXPERIMENTS

A. Saccadic Eye-Movement

Our first experiment consists of modeling the visuomotor

features of parietal neurons to encode retinal coordinates into

a head-centered reference frame using the eye motor signal.

In this setup, we take into account the eye motion only

with the visual information, which means that we purpose-

fully ommit the neck and the auditory inputs. The neural

population dedicated to the motor-eye signal has respectively

20 neurons (e.g., modality 1 in Fig. 2) and the neural

population dedicated to the retina signal has 50 neurons (e.g.,

modality 2 in Fig. 2) receiving the pixels’ activity from the

camera. The parietal neurons count therefore 20×50 = 1000
units (see eq. 3 and the gain-field map in Fig. 2). We add

an efferent downward network of 150 units that learns the

visuo-motor associations from the afferent parietal neurons

activity. Furthermore, each map is initialized with random

connections so that all the neurons are at the beginning

unspecific to any stimuli.

During the learning stage, at each iteration, the winner

neuron of each map (the most salient neuron) sees its synap-

tic weights updated to shape the receptive field salient to the

current entry code. Over time, the neural nets self-organize

themselves to map the retina and the eye motor signals.

Figure 4 shows the activity of an eye-motor neuron during

motion. The neuron’s activity describes its selectivity to a

specific eye angle, and the firing events occur when the motor

response reach a posture close to the neuron’s receptive field.

At the population level, the neurons responsive to similar

visuo-motor signals produce identified activity patterns in the

three maps while the cross-product of the visual and motor

neural patterns feeds the posterior head-centered neurons, see

the snapshots activity in Figures 5.

The gain-field effect is observed in Figure 6 for one

downward neuron only. The visual receptive fields #69

Vision in head-centered reference frame

Fig. 6. Gain-field effect relative to visual stimuli localization on the retina
for downward neurons #69 (a) and #127 (b). The downward neurons are
tuned to certain retinal coordinates, their amplitude is modulated by the
motor angles.

encodes one retina coordinate in head-centered reference

frame so that its position in space is independent of where the

eye is fixating (the color index is assigned to one particular

motor angle). The neuron is tuned to position pixel 190
and motor angle −20◦. Its amplitude combines therefore

two information at once; a code response similar to ventral

intraparietal (VIP) neurons. The linear combination of the

downward neurons can be used for tracking behaviours (e.g.,

for correcting the distance to the eye center) or for translation

purpose with other modalities.

B. Auditory Mapping in Head and Body Reference Frames

Although sound information is naturally mapped into a

head coordinate system, a consistent proportion of auditory

neurons in the parietal cortex exhibits eye-centered and body-

centered remapping [27]. That is, the magnitude of the

responses for these neurons is modulated respectively by the

eye position and the neck movement. For instance, some ob-

servations showed that an intended eye movement influences

the mapping of the auditory space, and reversely, a perceived

sound can influence where to foveate. It is suggested that

these behaviours exploit transformation mechanisms such as

the one modeled in section IV-A.

The neural population of the auditory map receives the

vector signal of 2× 40 frequencies. Then, the sound shadow

produced by the head permits the rapid self-organizing of

the auditory neurons to two distinct receptive fields that

discriminate accurately the left and right sides relative to

the head horizontal plan, their appropriate reference frame;

see the neural activity in Fig. 7 a). The remapping of

the auditory signals into a body-centered coordinate system

is computed as for the retina/eye-motor transformation in

section IV-A: here, the auditory signals and the neck-motor

signals modulate a gain-field map that computes the spatial

estimation of the sound localization, and this estimation is
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Sound in head-centered reference frame

a)

Sound in body-centered reference frame

b)

Fig. 7. Sound localization in head- and body-centered reference frames.
In a), sounds are naturally mapped into the head-centered reference frame,
neurons easily discriminate left and right sides from sound energy intensity.
In b), gain-field effect for a downward neuron relative to the neck-motor
signals. The auditory stimuli localization from the left and right ears are
modulated by the head amplitude signals.

irrespective to the head motion, see the gain-field effect for

one downward neuron in Fig. 7 b). As we can observe,

the neuron’s gain level correlates almost linearly with the

sound location. The result is that the referential for sounds

is now changed into body-centered coordinates. The neuron

is now tuned to a fixed position −40◦ on the left side of the

head. Moreover, in comparison to the head-centered profiles

in Fig. 7 a), the neural fields in body-centered coordinates

are now enhanced with sharper sound profiles.

C. Audio-Visual Speech Perception

Using the reentry mechanism, mutimodal information can

leverage the perceptual processing of unimodal maps in their

respective frame of reference to infer spatial location of noisy

signals [23]. In our framework, audio-visual information in

head-centered reference frame can be transferred back into

retinal coordinates within the proper eye-centered reference

Audio-visual speech processing

a) b)

Fig. 8. Super-imposed audio-visual receptive fields in eye-centered coordi-
nates from reentrant signals. The most salient receptive fields are aligned on
the top of the camera image; the reddest dots represent the most active retina
neurons. In a), the visual information only provides enough information for
locating the face correctly. In b), speech vocalization drives the reestimating
of the location of the stimulus in space using audio-visual information.

frame for the visual input, in retinal coordinates.

We plot in Figure 8 a) and b) the perceptual processing

for audio-visual temporal coherence in retinal coordinates,

for facial gestures and acoustic cues. The tuning across the

modalities can serve then for locating salient onset and offset

signals such as for speech processing in different sensory

modalities. In comparison to visuomotor only receptive fields

in Fig. 6, and audio only neural fields in Fig. 7, audio-

visual mapping takes a position in-between, mixing both

information: the center and the variance of the tuning curves.

In a), multimodal information is exploited to estimate

the position of the unitary visual stimulus. Here, we super-

impose the audiovisual receptive fields in the same abscisse

coordinates of the image with a color set ’jet’, from the most

salient one in red to lowest in blue. The black line indicates

the visual stimulus. We observe that the reddest neural fields,

whose bubbles are centered on retinal location X = 10 in a),

are well aligned with the person’s face location. In b), during

the person’s vocalization in a different location relative to the

robot’s head, the later receives audiovisual stimuli, which

are combined to produce a spatial decision. In this situation,

the probability distribution of the neural fields are grossly

centered on the person.The perceptual system combines each

modality in a common shared space to estimate the speech

information. By doing so, it shifts the attentional focus to

multimodal stimuli, which are understood to be part of the

same entity.

We perform statistical analysis from ten minutes data;
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10.000 samples. The visual and audio-visual receptive fields

overlap for mostly 80% of the time when a visual stimulus

is seen in front of the eye field. Thus, we can strictly

measure the performance of the system only when the two

neural maps differ their estimations. When there is a conflict

between the two maps to locate audio-visual stimuli, we

observe that audio-visual receptive fields perform two third

time better than the visual population, the ratio is 68.75%
versus 31.25%. Having audio-visual receptive fields, the

performance level of correct location is globally increased

by 10% in comparison to the sole retina system with visual

receptive fields.

V. DISCUSSIONS

Seeing engages all our senses. Perceiving one object in

space requires to compute its distance relative to our gaze,

to our head, or to our hand from multiple sensory types

that are not in the same reference frame. Neurobiological

observations locate the superior colliculus and the parietal

area as the two brain regions where this unified conception

of the world could be built [2], [6].

Accordingly, it is interesting to note that these two regions

exploit both the same neural mechanism of gain-field modu-

lation [7], [10]. In gain fields, various kinds of combinations

of multimodal sensors are represented. In order to organize

a reference frame, it is theoretically necessary to bind all

possible singleton from all modalities by a multiplicative

function. However, only certain combinations of retina and

motor are learned, but they are sufficient enough to map the

most pertinent sensorimotor experiences.

The gain-field effect is hypothesized to serve for trans-

lating the unisensory signals to whichever reference frame,

possibly making each modality aligned to another. Thus, the

gain-field modulatory mechanism may give some hints on

the organizational principle for optimal sensory arrangement;

e.g., for compensating the relative motion from the body

posture to targets [11]. For instance, it may serve for the

construction of the peripersonal space as it is found for

the VIP mirror neurons, which integrate many modalities.

Although its implication to infant social tasks has not been

proposed yet, it may furnish a framework for a coordinate

transform mechanism to retranscribe one’s body posture to

someone else postural configuration, which is a possible link

to imitation [28].

Our robotic experiments are preliminary results and we

propose to search for more robust solutions within our

framework. Also, we will investigate its impact in more

complex robot tasks using this time a robot torso with an

arm.
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