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Abstract: A new continuous-time statistical model for modelling the effect of radiotherapy
treatment is proposed. In contrast with classical models, it takes in account heterogeneity of cell
damage and repair. In this paper, a bi-scale continuous-time model is derived to describe tumor
and normal tissue lifespans. We show that the cell lifespan can be described by a continuous-time
Markov model. The tumor control probabilities and normal tissue complication probabilities
are expressed. The model has been implemented into Matlab and numerical simulations have
emphasised the effects of the model parameters on the model output.
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1. INTRODUCTION

One of the common therapies used to treat cancer consists
in using ionizing (X-ray) or non-ionizing (light) radiations
to cause a variety of possible lesions in cells (Curtis, 1986).
Mathematical modeling may help to quantify the effects
of radiation-based treatments on cell populations. It can
be used to predict tumor growth and cancer spread, but
also allows to determine the effectiveness of a specific
treatment.

In a previous paper (Keinj et al., 2011), the authors
studied the cell response to treatment and the tumor
growth by considering Markov chains. The discrete times
correspond to the successive times of application of radia-
tion dose fractions. In this paper, we consider continuous-
time processes to model the tumor response during the
continuous application of radiation dose in treatments such
as permanent brachytherapy in which the duration of the
total dose may vary from a few weeks to a month, or pho-
todynamic therapy, where the duration of the light dose
may vary from seconds to tens of minutes. The proposed
bi-scale model reproduces both damages in cell and tumor
scales. At the cell scale, the damage level is described by
a discrete-state variable. We show that the probability to
be in a given state follows a system of linear differential
equations. We also establish the lifespan model of a cancer
cell and the one of a tumor.

Two probabilities are generally involved in the design of
a treatment plan in radiotherapy : (i) the tumor control
probability (TCP) and (ii) the normal tissue complication
probability (NTCP). The TCP is the probability that all
cancer cells are dead in the irradiated region, see (Zaider
and Minerbo, 2000; Dawson and Hillen, 2006). The NTCP
is another probability that measures the sensitivity of
normal tissue to radiations. These two probabilities are
strongly related to the cell and tumor lifespans. In this
paper, we use this relationship to give new expressions of
TCP and NTCP suited to single session treatments.

This paper is organized as follows. In Section 2, we develop
a continuous-time Markov chain model of a cancer cell
response to radiation treatment. In Section 3, we express
the lifespans of tumors and normal tissues and we give a
detailed calculation of their properties. In section 4, we
formulate the new expressions of TCP and NTCP.

2. MARKOV MODEL OF THE CELL STATE

In this section, the behavior of a single cell during the
treatment is considered.

2.1 Reminders related to the multinomial model

Let us briefly recall the main features of the model which
has been developed in (Keinj et al., 2011, 2012) in the
context of fractioned radiotherapy treatment:
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Fig. 1. Damage state Zk of a cell with m = 3 targets

• each cell has m targets,
• each target can be deactivated by a single hit with a
radiation particle with probability q,

• death occurs when the m targets are inactive,
• between two consecutive doses a target can be reac-
tivated (repair process) with probability r, while the
cell is still alive.

Figure 1 shows the case of a 3-target cell and the corre-
sponding cell states.

Let Zk be the random number of deactivated targets in
the cell at time k, i.e. after the kth dose fraction. It is
supposed that (Zk)k>0 is a Markov chain which takes its
values in {0, 1, . . . ,m}. Denote Π the associated transition
matrix. The effect of the treatment and the repair process
are taken into account by supposing that Π = PR where:

P(i, j) =







(

m− i
j − i

)

qj−i(1 − q)m−j i 6 j

0 j > i

(1)

R(i, j) =







(

i
i− j

)

ri−j(1− r)j j 6 i < m

0 i < j,

(2)

where by convention the first row and column are la-
beled 0.

Note that q and hence α, depends on the applied radiation
dose u. Polynomial models, like the Linear Quadratic
model (Fowler, 1989), can be used to describe this rela-
tionship between α and u.

2.2 Toward the model of continuous-time Markov chain

Suppose that h = ∆t is a small interval of time. For a given
cell, let Zkh be the number of deactivated targets at time
t = kh. It is assumed that (Zkh)k>0 is a Markov chain with
transition Πh depending on the three parameters m, qh
and rh. The parameter qh is the probability that an active
target is deactivated in any small interval [kh, (k + 1)h].
Similarly, rh is the probability that an inactive target in
a living cell is repaired during the interval [kh, (k + 1)h].
Since h is small, it seems natural to assume that both qh
and rh are small: between two consecutive times t and
t + ∆t, the cell stays mainly in the same state: changes
are possible but with a low probability. More precisely, we
suppose:

qh = αh+ o(h) (3)

rh = ρh+ o(h) (4)

with α, ρ > 0 and limh→0
o(h)
h

= 0.

From equations (1) and (3), it is easy to show that:














Ph(i, i) = 1− α(m− i)h+ o(h)

Ph(i, i+ 1) = α(m− i)h+ o(h) i < m

Ph(i, j) = o(h2) j > i+ 1

Ph(i, j) = 0 j < i

(5)

and from (2) and (4), we obtain:














Rh(i, i) = 1− iρh+ o(h)

Rh(i, i− 1) = iρh+ o(h) i > 0

Rh(i, j) = o(h2) j < i− 1

Rh(i, j) = 0 j > i

(6)

So, using classical analysis, we can deduce that the tran-
sition probabilities Πh(i, j) = PhRh of (Zkh)k>0 is given
by the following identities:

Πh(i, j) = Pr(Zkh+h = j|Zkh = i) =


















α(m− i)h+ o(h) j = i+ 1, 0 6 i 6 m− 1
1− [α(m− i) + iρ]h+ o(h) j = i, 0 6 i 6 m− 1
iρh+ o(h) j = i− 1, 1 6 i 6 m− 1
1 j = i = m
0 else.

2.3 Definition of the continuous-time Markov chain (Zt)

Let Zt be the number of deactivated targets in a cell
at time t. We suppose that (Zt)t>0 is a continuous-time
Markov chain. Previous analysis suggests to set:

Pr(Zt+h = j|Zt = i) = πh(i, j) (7)

if t > 0, h > 0, 0 6 i, j 6 m and

πh(i, j) =

{

1 +Q(i, j)h+ o(h) if j = i

Q(i, j)h+ o(h) if j 6= i
(8)

where Q(i, j) is defined by:

Q(i, j) =










α(m− i) j = i + 1, 0 6 i 6 m− 1
− [α(m− i) + iρ] j = i, 0 6 i 6 m− 1
iρ j = i − 1, 1 6 i 6 m− 1
0 else.

(9)

We deduce easily from (9):


















Q(i, j) 6 0 if i = j

Q(i, j) > 0 if i 6= j
m
∑

j=0

Q(i, j) = 0 0 6 i 6 m

(10)

As a consequence, Theorem 2.8.2 in (Norris, 1997) and (10)
imply existence of a Markov chain (Zt)t>0 with generator
matrix Q and {0, 1, . . . ,m}-valued.

2.4 Probability distribution of Zt

Given the generator matrix Q, we can determine the
transition probability matrix Π(t) with entries Πt(i, j).
Each entries is the probability for the cell to being in the
state j at time t > 0 when its initial state is Z0 = i:

πi,j(t) , Pr(Zt = j|Z0 = i) 0 6 i, j 6 m. (11)



Here, we are mainly interested in the case where the cell
is initially in state Z0 = 0. This leads to introduce:

Pj(t) , Pr(Zt = j|Z0 = 0) = π0,j(t) j ∈ 0, . . . ,m. (12)

Recall that the set of matrices Π(t) , (πi,j(t))(06i,j6m)

satisfies the following linear differential equation:

Π′(t) = Π(t)Q. (13)

Consequently, the functions P0(t), . . . , P0(t) solve the
following system of m+ 1 linear differential equations:

P ′
j(t) = (Π(t)Q)(0, j) =

m
∑

k=0

qk,jPk(t) 0 6 j 6 m (14)

with the initial conditions:

(P0(0), P1(0), . . . , Pm(0)) = (1, 0, . . . , 0) (15)

Using the explicit form of Q (if (9)), system (14) can be
simplified as:

P ′
j(t) = α(m− (j − 1))Pj−1(t)

− ((m− j)α+ jρ)Pj(t) + (j + 1)ρ1{j6m−2}Pj+1(t)
(16)

if 1 6 j 6 m− 1 and otherwise:

P ′
j(t) =

{

−mαP0(t) + ρP1(t) j = 0

αPm−1(t) j = m.
(17)

Proposition 1. The transpose matrix QT of Q which is
diagonalizable and has m+1 distinct eigenvalues λi which
satisfy

−mmax(α, ρ) 6 λm < . . . < λ1 < λ0 = 0. (18)

�

The proof is given in (Keinj, 2011).
Although the matrix Q is a simple function of parameters
m, α and ρ, it is not possible to determine explicitly the
eigenvalues of Q. However, for given values of m, α and ρ,
the eigenvalues λ1,. . . ,λm and the associated eigenvectors
can be numerically calculated.

Proposition 2. The system (14) with initial conditions
(P0(0), P1(0), . . . , Pm(0)) = (1, 0, . . . , 0) has a unique so-
lution. Moreover, there exists m + 1 vectors in R

m+1,
M0,. . . ,Mm such that:

P (t) =

m
∑

j=0

Mje
λjt (19)

where P (t) = (P0(t), . . . , Pm(t))T and λ0 = 0, λ1,. . . ,λm

are the eigenvalues of QT (cf. Proposition 1). �

Proof. The system (14) is equivalent to P ′(t) = QTP (t).

Therefore P (t) = etQ
T

P (0). Since QT is diagonalizable,
(19) follows directly. �

It is important to emphasize that once the values of α,
ρ and m are known, our model permits to evaluate the
probability of a cell to be in a state (from 0 to m) at the
time t. In particular, the model allows one to determine
the probability that a cell is dead at time t since Pm(t) =
Pr(Zt = m|Z0 = 0). This property will play an important
role in the following section.

We have implanted the probabilities Pj(t) of being in a
state j for m = 3 into the computing environment Matlab.
From Pm(t), it is possible to determine t0 such that ∀t > t0
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Fig. 2. Probability Pj(t) of being in the state k ∈
{0, . . . ,m} at time t > 0 with parameters m = 3,
α = 2 and ρ = 10.

Pm(t) > 95%. Then, we can say that the cell is dead after
t0 with a risk of not more than 5%.

Fig. 2 shows the probability Pj(t) with parameters m = 3,
α = 2 and ρ = 10. We can see that P3(t) is superior to
0.95 from t0 = 25. The table 1 give t0 for different values
of m, α and ρ.

Table 1. Some values of t0 for different values
of m, α and ρ

t0
m = 3 m = 4

α = 2 α = 3 α = 8 α = 2 α = 3 α = 8

ρ = 5 10 4.5 0.87 26 9 1.22

ρ = 10 25 9.5 1.32 105 29.5 2.34

ρ = 15 44 16 1.85 274 70 4

In the following section, we will focus on the properties of
the lifespan of a cell and of a set of cells (i.e. for a tumor).

3. LIFESPAN ESTIMATION

3.1 Lifespan of a cancer cell

Let T be a random variable denoting the lifespan of a
single cell (with m targets). In other words, T is the first
time t when the cell is in state m (death state):

T = inf{t > 0, Zt = m}. (20)

In this part, we will give the cumulative distribution
function of T .

Proposition 3. Suppose that Z0 = 0, then the cumulative
distribution function of T is given by:

Pr(T 6 t) = Pm(t) = 1 +
m
∑

j=1

Mj,meλjt (21)

where the coefficients Mj,m are constant. �

Proof. As the initial state of the cell is Z0 = 0 and the
state m is an absorbing state, we have:

Pr(T 6 t) = Pr(Zt = m|Z0 = 0) = Pm(t) ∀t > 0. (22)



Relation (19) implies that Pm(t) is a linear combination
of decreasing exponential functions:

Pr(T 6 t) =

m
∑

j=0

Mj,meλjt. (23)

Since Pr(T 6 t) is the cumulative distribution function of
T :

Pr(T 6 t) =

m
∑

j=0

Mj,meλjt −→
t→∞

1. (24)

Recall that λm < . . . < λ1 < λ0 = 0, therefore (24) implies
M0,m = 1 and (21). �
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Fig. 3. Influence of α on the distribution function of T for
m = 3, ρ = 10 and α = 2, 3, 8.
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Fig. 4. Influence of ρ on the distribution function of T for
m = 3, α = 2 and ρ = 5, 10, 15.

Fig. 3 presents the graph of the probability distribution
function (pdf) of T when m = 3, ρ = 10 and α varies in
{2, 3, 8}. Let Fα be the related pdf. Note that Fα(t) =
Pm(t) and Pm(t) has been determined by solving (16)
and (17). We observe that F8(t) 6 F3(t) 6 F2(t). These
inequalities intuitively means that T(2) 6 T(3) 6 T(8)

where T(α0) is the lifespan of the cell when α = α0. This

is coherent with intuition : more the treatment is efficient,
i.e. more α is large, more the lifespan of the cell decreases.

Similarly, we also consider the case m = 3 and α = 2 and
ρ = 5, 10, 15. The relative position of the 3 curves reveals
that roughly speaking T increases when the cell repair, i.e.
ρ is large.

One important feature of our model is to allow explicit
calculation which can be easily evaluated with Matlab.
Although our model is naive, we recover expected answers.

Proposition 4. The cumulative distribution function of
T can be asymptotically approached by an exponential
distribution with parameter λ = −λ1 > 0 where λ1 is the
highest negative eigenvalue of QT :

1− Pr(T 6 t) ∼ βe−λt (t → +∞) (25)

where β > 0. �

The proof of this proposition is given in (Keinj, 2011).

Let F be the pdf of T . Roughly speaking, identity (25)
implies that F (t) is approximatively equal to 1 − e−λt

for large t. However nothing can be for intermediate t.
Therefore,it is interesting to compare F (t) with 1 − e−λt

for any t. We choose m = 3, ρ = 10 and α in {2, 3, 8}.
We observe in Fig. 5 that for t > 0, 4 there are no
main difference between the pdf of T and its exponential
approximation.
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Fig. 5. Pdf of T (solid line) and its approximation (dashed
line) 1− βe−λt for m = 3, ρ = 10 and α = 2, 3, 8.

3.2 Lifespan of a tumor

We assume a tumor contains initially n0 cells. Let us
mention an important limitation to our model: we are not
able to take into account proliferation of cells. For each
cell j, we define its lifespan T (j):

T (j) = inf{t > 0, Z
(j)
t = m} (26)

where Z
(j)
t is the number of deactivated targets of the cell

j at time t. It follows that the lifespan of the tumor can
be defined as the maximum of lifespans of the n0 cells:

Ln0
= max{T (1), T (2), . . . , T (n0)}. (27)

Assume that all the cells have the same behavior dynamics
and are independent of each other. As a consequence,
the variables T (1), . . . , T (n0) are i.i.d. and have the same



distribution than T . Then the cumulative distribution
function of Ln0

is:

Pr(Ln0
6 t) = Pr(T (1) 6 t)× . . .× Pr(T (n0) 6 t) (28)

=
(

Pr(T 6 t)
)n0

=
(

Pm(t)
)n0

. (29)

We consider tumors with a large initial number of cells.
It has been proved in (Keinj et al., 2011) that for large
values of n0,

Pr(λLn0
− ln(βn0) 6 t) ≈ e−e−t

t ∈ R. (30)

Moreover, it has been demonstrated that the mean and the
variance of Ln0

has the following asymptotic behavior:

E(Ln0
) ≈

1

λ
ln(n0) +

γ + ln(β)

λ
(31)

var(Ln0
) ≈

π2

6λ2
(32)

where γ is the Euler constant (γ = −Γ′(1), Γ(t) being the
gamma function).

3.3 Lifespan of a normal tissue

The main undesirable effect due to radiotherapy is the ir-
radiation of normal tissue. Normal organs and tissues have
different responses to radiations due to their distinct archi-
tecture. Niemierko and Goitein (Niemierko and Goitein,
1991) proposed a division of normal tissues into three
different architectures: serial architecture (e.g. nerves or
spinal cord), parallel architecture (e.g. kidney, liver or
lung) and graduated response (e.g. skin or mucous mem-
branes). We restrict ourselves to the parallel architecture.
It is supposed that organs are composed of functional
subunits (FSUs) and that organ function is compromised
when the number of dead cells in the normal tissue is larger
than a given threshold number n̄ (reserve capacity of the
tissue).

We now adapt the approach developed in (Keinj et al.,
2012) to continuous-time. Let us consider a single normal
cell that contains m̄ targets. Let Z̄t be the random variable
denoting the state of a normal cell at time t and T̄ its
lifespan. Similarly to the case of a cancer cell, we assume
that {Z̄t}t>0 is a continuous-time Markov chain defined
by the matrix Q̄, similar as Q in (9) with parameters ᾱ
and ρ̄. Thus, for large t, the distribution function of T̄ can
be approximated:

1− Pr(T̄ 6 t) ∼ β̄e−λ̄t (t → +∞) (33)

where −λ̄ is the highest negative eigenvalue of Q̄T and
β̄ > 0.

Now, consider a normal tissue with initially n̄0 cells and
with a reserve capacity n̄ − 1 (functional tolerance). For
each cell j we define its lifespan:

T̄ (j) = inf{t > 0, Z̄
(j)
t = m̄}, (34)

where Z̄
(j)
t is the number of deactivated targets among

the m̄ targets of the cell j. Let us rearrange these random
variables into a nondecreasing sequence:

T̄ (1:n̄0) 6 T̄ (2:n̄0) 6 . . . 6 T̄ (n̄0:n̄0) (35)

This sequence is the order statistic of T̄ (1), T̄ (2), . . . , T̄ (n̄0).
T̄ (l:n̄0) is called the lth order statistic and is the time
when the lth cell died. According to our assumptions, the
normal tissue is seriously damaged at the random time
Ln̄,n̄0

= T̄ (n̄:n̄0).

Let X̄t be the number of dead normal cells among the n̄0

at time t. It is clear that:

Pr(Ln̄,n̄0
6 t) = Pr(X̄t > n̄). (36)

As a normal cell is died at time t with a probability
Pr(T̄ 6t) = P̄m̄(t) and all the cells are supposed to be
independent:

X̄t ∼ B(n̄0, P̄m̄(t)) (37)

and

Pr(X̄t > n̄) =

n̄0
∑

i=n̄

(

n̄0

i

)

(

P̄m̄(t)
)i(

1− P̄m̄(t)
)n̄0−i

(38)

Next, in (Keinj, 2011), it has been shown that for large
value of n̄0,

Pr(Ln̄,n̄0
6 t) ≈ 1− e−n̄0(ᾱt)

m̄
n̄−1
∑

k=0

n̄k
0(ᾱt)

m̄k

k!
(39)

4. TUMOR CONTROL PROBABILITY AND
NORMAL TISSUE COMPLICATION PROBABILITY

The TCP is the probability that all cancer cells are
dead in the irradiated region and the NTCP measures
the sensitivity of the adjacent normal tissue for a given
radiation treatment schedule. In (Keinj et al., 2011), a
strategy has been developped to both maximize the TCP
and keep the NTCP lower than a given tolerance threshold.

4.1 Tumor Control Probability

The TCP at time t is the probability that the tumor is
dead at this time. As a result,

TCP(t) = Pr(Ln0
6 t). (40)

When n0 is large,

TCP(t) ≈ e−βn0e
−λt

. (41)

It is clear that (41) implies that TCP(t) ≈ 0, since n0 is
large and t is fixed. Obviously, it is a very negative answer,
which says that the treatment fails with probability close
to 1! On way to have TCP(t) ≈ 1 when n0 is large is to
suppose that the parameter α is large and depends on n0.
In the discrete case (i.e. the model developed in (Keinj
et al., 2011, 2012)), it has been proved that when q is an
increasing function of n0, we can have TCP(t) ≈ 1.

4.2 Normal Tissue Complication Probability

The NTCP at time t is the probability that a complication
appears in the adjacent normal tissue. Therefore:

NTCP(t) = Pr(Ln̄,n̄0
6 t). (42)

If n0 is large,

NTCP(t) ≈ 1− e−n̄0(ᾱt)
m̄

n̄−1
∑

k=0

n̄k
0(ᾱt)

m̄k

k!
(43)

Note that (43) is valid with n̄ fixed. As a result, NTCP(t)
is close to 1 as n0 is large. This actually means that, with
a probability near 1, all the n̄ normal cells are damaged!
This problem is similar to the one related to TCP(t).



5. CONCLUSION

In this paper, a simple bi-scale continuous-time model
based on Markov chains is derived to describe tumor and
normal tissue lifespans. The proposed model takes into
account the heterogeneity of cell damages and the repair
mechanisms and allows to obtain exact formulas which
depend only on 3 variablesm (the target number of a cell),
ρ and α (the probabilities of deactivating or activating a
target in a small time interval). These parameters could
be estimated from data of cell lifespans. A collaboration
with a cancer treatment center is envisaged to obtain data
and study the validity of the proposed model.

A possible perspective for this work is to develop a
model which takes into account cell proliferation and
normal dead. Moreover, it may also encompass current
knowledge about biological effects of treatments. Anyhow,
the resulting model will be certainly complex (requiring
a large number of parameters). Thus its estimation will
be difficult due to the small number of available biological
data.

Finally, the expressions of TCP/NTCP and their discus-
sions in the last section have raised some questions. A
solution could be to consider that the parameter α is
a time-decreasing function. However, in order to avoid
model complication, it would be wiser to consider that
α is constant over a small time interval which makes the
derived expressions still valid.

REFERENCES

Curtis, S.B. (1986). Lethal and potentially lethal lesions
induced by radiation — a unified repair model. Radiat.
Res, 106, 252–279.

Dawson, A. and Hillen, T. (2006). Derivation of the
tumour control probability (tcp) from a cell cycle model.
Computational and Mathematical Methods in Medicine,
7(2-3), 121–141.

Feinendegen, L., Hahnfeldt, P., Schadt, E.E., Stumpf, M.,
and Voit, E.O. (2008). Systems biology and its potential
role in radiobiology. Radiat Environ Biophys, 47, 5–23.

Fowler, J. (1989). The linear-quadratic formula and
progress in fractionated radiotherapy. Br. J Radiol, 62,
679–694.

Hillen, T., de Vries, G., Gong, J., and Finlay, C. (2010).
From cell population models to tumor control probabil-
ity: including cell cycle effects. In Acta Oncologica.

Keinj, R. (2011). Modélisation de la croissance d’une
tumeur après traitement par radiothérapie. Ph.D. thesis,
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