
HAL Id: hal-00762649
https://hal.science/hal-00762649

Preprint submitted on 7 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Initial Semantics for Strengthened Signatures
André Hirschowitz, Marco Maggesi

To cite this version:
André Hirschowitz, Marco Maggesi. Initial Semantics for Strengthened Signatures. 2012. �hal-
00762649�

https://hal.science/hal-00762649
https://hal.archives-ouvertes.fr

Initial Semantics for Strengthened Signatures

André Hirschowitz Marco Maggesi

February 5, 2012

Contents

1 Introduction 2
1.1 The need for good notions of higher-order theory 2
1.2 Modules for modular higher-order syntax 2
1.3 Colimits of arities . 3
1.4 Related and future work . 3
1.5 Organization of the paper . 4

2 Categories of modules over monads 4
2.1 Modules over monads . 4
2.2 Morphisms of modules . 5
2.3 The big category of modules 9

3 The category of arities 9
3.1 Arities . 9
3.2 Morphisms of arities . 10
3.3 Colimits of arities . 11
3.4 Generalizations . 11

4 Categories of representations 12
4.1 Signatures and their representations 12
4.2 The little category of representations 12
4.3 Representability . 13
4.4 Modularity and the big category of representations 13

5 Strengthening signatures 14
5.1 Strengthened arities . 14
5.2 Morphisms of strengthened arities 17
5.3 Representability of strengthened arities 18

1

6 Examples of strengthened syntax 22
6.1 Lambda-calculus modulo α-equivalence 22
6.2 Explicit composition operator 22
6.3 Syntax and semantics with explicit substitution 23

Abstract

We give a new general definition of arity, yielding the companion
notions of signature and associated syntax. This setting is modular
in the sense requested by [10]: merging two extensions of syntax cor-
responds to building an amalgamated sum. These signatures are too
general in the sense that we are not able to prove the existence of an as-
sociated syntax in this general context. So we have to select arities and
signatures for which there exists the desired initial monad. For this,
we follow a track opened by Matthes and Uustalu [16]: we introduce a
notion of strengthened arity and prove that the corresponding signa-
tures have initial semantics (i.e. associated syntax). Our strengthened
arities admit colimits, which allows the treatment of the λ-calculus
with explicit substitution in the spirit of [10].

Contents

1 Introduction

1.1 The need for good notions of higher-order theory

Many programming or logical languages allow constructions which bind vari-
ables and this higher-order feature causes much trouble in the formulation,
the understanding and the formalization of the theory of these languages.
For instance, there is no universally accepted discipline for such formaliza-
tions: that is precisely why the POPLmark Challenge [4] offers benchmarks
for testing old and new approaches. Although this problem may ultimately
concern typed languages and their operational semantics, it already concerns
untyped languages. In this work, we extend to new kinds of constructions
our treatment of higher-order abstract syntax [12], based on modules and
linearity.

1.2 Modules for modular higher-order syntax

First of all, we give a new general definition of arity, yielding the companion
notion of signature. The notion is coined in such a way to induce a com-
panion notion of representation of an arity (or of a signature) in a monad:
such a representation is a morphism among modules over the given monad,
so that an arity simply assigns two modules to each monad. There is a nat-
ural category of such representations of a signature and whenever it exists,
the initial representation deserves the name of syntax associated with the

2

given signature. This approach enjoys modularity in the sense introduced by
[10]: in our category of representations, merging two extensions of a syntax
corresponds to building an amalgamated sum.

Our notion of arity (or signature) is too general in the sense that we are
not able to build, for each signature, a corresponding initial representation.
Following a track opened in Matthes-Uustalu [16], we define a fairly general
notion of strengthened arity, yielding the corresponding notion of strength-
ened signature. Our main result (Theorem 5.15) says that any strengthened
signature yields the desired initial representation. As usual, this initial ob-
ject is built as a minimal fixpoint.

1.3 Colimits of arities

Understanding the syntax of the lambda-calculus with explicit substitution
was already done in [10], where the arity for this construction was identified
as a coend, hence a colimit, of elementary arities (see Section 6.3). Our
main motivation for the present work (and for our next one) was to propose a
general approach to syntax (and ultimately to semantics) accounting for this
example in the spirit of our previous work [13]. This is achieved thanks to
our second main result (Theorem 5.9) which states the existence of colimits
in the category of (strengthened) arities.

1.4 Related and future work
ss:related

The idea that the notion of monad is suited for modeling substitution con-
cerning syntax (and semantics) has been retained by many recent contribu-
tions on the subject (see e.g. [5, 10, 16]) although some other settings have
been considered. Notably in [7] the authors work within a setting roughly
based on operads (although they do not write this word down). The latter
approach has been broadly extended, notably by M. Fiore [8]. Our main
specificity here is the systematic use of the observation that the natural
transformations we deal with are linear with respect to natural structures
of module (a form of linearity had already been observed, in the operadic
setting, see [9], section 4). Yet another approach is based on Lawvere The-
ories. This is clearly illustrated in the paper [14] where it is also outlined
the link with the language of monads and put in an historical perspective.

The signatures we consider here are much more general than the signa-
tures in [7], and cover the signatures appearing in [16, 10]. Note however
that the latter works treat also non-wellfounded syntax, an aspect which we
do not consider at all.

In our next work, we will propose a treatment of equational semantics
for the present syntaxes. This approach should also be accommodated to
deal with typed languages as done for elementary signatures in [17, 18, 2],
or to model operational semantics as done for elementary signatures in [1].

3

1.5 Organization of the paper

Section 2 gives a succinct account about modules over a monad. Our new
definitions of (higher-order) arity and signature are given in Section 3. Our
solution to the problem of modularity appears in Section 4.3, while our
strengthened arities appear in Section 5, together with the corresponding
initiality theorem. Finally we give our examples in Section 6.

2 Categories of modules over monads
s:modules

2.1 Modules over monads

We recall only the definition and some basic facts about modules over a
monad. See [13] for a more extensive introduction on this topic.

Let C be a category. A monad over C is a monoid in the category
C −→ C of endofunctors of C, i.e., a triple R = (R,µ, η) given by a functor
R : C −→ C, and two natural transformations µ : R2 −→ R and η : I −→ R
such that the following equations hold:

µ · µR = µ ·Rµ, µ · ηR = 1R, µ ·Rη = 1R (1) e:monad-axioms

which are represented by the commutative diagrams

R ·R ·R µR //

Rµ
��

R ·R
µ

��
R ·R µ

// R

I ·R ηR //

1R $$

R ·R
µ

��

R · IRηoo

1Rzz
R

Let R be a monad over C.

Definition 2.1 (Modules). A left R-module is given by a functor M : C −→
D equipped with a natural transformation ρ : M · R −→ M , called action,
which is compatible with the monad composition and identity:

ρ · ρR = ρ ·Mµ, ρ ·Mη = 1M . (2) e:module-axioms

We will refer to the category D as the range of M .

There is an obvious corresponding definition of right R-modules that we
do not need to consider in this paper. From now on, we will write R-module
instead of left R-module for brevity.

Let us show some trivial examples of modules.

Example 2.2. Every monad R is a module over itself, which we call the
tautological module.

Example 2.3. For any functor F : D −→ E and any R-module M : C −→ D,
the composition F ·M is an R-module (in the evident way).

4

Example 2.4. As an immediate consequence of the two above examples, the
composition R · R is an R-module. This module will play a central role in
our treatment of explicit substitution (see Section 6.2).

Example 2.5. For every object W ∈ D we denote by W: C −→ D the
constant functor W := X 7→ W . Then W is trivially an R-module since
W = W ·R.

Example 2.6. LetM1, M2 be twoR-modules with the same range category D.
Assume that D is a category with finite products. Then the product functor
M1 ×M2 is an R-module (see Proposition 2.18 for a general statement).

For our purposes, one important example of module is given by the
following general construction. Let C be a category with finite colimits and
a final object ∗.

Definition 2.7 (Derivation). For any R-module M with range D, the
derivative of M is the functor M ′ := X 7→ M(X + ∗). It is an R-module
with the action ρ′ : M ′ ·R −→M ′ defined the diagram

M(R(X) + ∗)
ρ′X //

M(R(iX)+ηX+∗·∗)
��

M(X + ∗)

M(R(X + ∗))
ρX+∗

66
(3) e:action-derived

where iX : X −→ X+∗ and ∗ : ∗ −→ X+∗ are the obvious maps. Derivation
can be iterated, we denote by M (k) the k-th derivative of M .

d:standard-modules Definition 2.8. Given a list of non negative integers (a) = (a1, . . . , an) we
denote by M (a) = M (a1,...,an) the module M (a1)×· · ·×M (an). Observe that,
when (a) = () is the empty list, we have M () = ∗ the final module.

2.2 Morphisms of modules
s:morphisms_of_modules

Definition 2.9 (Linearity). We say that a natural transformation of R-
modules τ : M −→ N is linear if it is compatible with actions:

τ · ρM = ρN · τR.

We take linear natural transformations as morphisms among modules having
the same range D. It can be easily verified that we obtain in this way a
category that we denote ModD(R).

This structure of category is for instance compatible with our product
of modules, in the following sense.

Proposition 2.10. If D is a cartesian category, the product of modules is
a cartesian product.

5

This structure of category is also compatible with our derivation of mod-
ules, in the following sense.

Proposition 2.11. Derivation yields an endofunctor of ModD(R). More-
over, if D is a cartesian category, derivation is a cartesian endofunctor of
ModD(R).

In the case C = D = Set we have a natural substitution morphism
σ : M ′ ×R −→M. defined by the diagram

M(X + ∗)×R(X)
σX //

wX
��

M(X)

M(R(X))

ρX

44

where w is the map

wX : (a, b) 7→M(ηX + b), b : ∗ 7→ b

Lemma 2.12. The transformation σ is linear.

Proof. We have to prove the commutativity of the following diagram:

(M ′ ×R) ·R σR //

ρ′×µ
��

M ·R
ρ

��
M ′ ×R σ

//M

that is, given a set X and an element (a, b) ∈M(R(X) + ∗)×R(R(X)) we
have to verify the identity

ρX(σR(X)(a, b)) = σX(ρ′X(a), µX(b)).

We reduce both sides of the equations. For the left hand side we have

2ρX(σR(X)(a, b)) = ρX
(
ρR(X)(M(ηR(X) + b)(a))

)
(4) e:sigma-lin-sx-1

= ρX
(
M(µX · ηR(X) + µX · b)(a)

)
(5) e:sigma-lin-sx-2

= ρX
(
M(1R(X) + µX · b)(a)

)
(6) e:sigma-lin-sx-3

by using the definition of σ in (4), the associativity of ρ and the functoriality
of M in (5) and the identity law for µ in (6). The right side is slightly more
involved:

σX(ρ′(a), µX(b)) = ρX
(
M(ηX + µX(b))(ρ′X(a))

)
(7) e:sigma-lin-dx-1

= ρX

(
M(ηX + µX · b)

(
ρX+∗(M(R(iX) + ηX+∗ · ∗)(a))

))
(8) e:sigma-lin-dx-2

= ρX

(
ρR(X)

(
M(R(ηX + µX · b) · (R(iX) + ηX+∗(∗)))(a)

))
(9) e:sigma-lin-dx-3

= ρX

(
M
(
µX ·R(ηX + µX · b) · (R(iX) + ηX+∗(∗))

)
(a)
)

(10) e:sigma-lin-dx-4

= ρX
(
M(1R(X) + µX · b)(a)

)
(11) e:sigma-lin-dx-5

6

In (7) and (8) we unfold the definitions of σ and ρ′ respectively. Next we
use the naturality and the associativity of ρ respectively in (9) and (10),
together with the functoriality of M . Finally (11) comes from the following
auxiliar computation:

µX ·R(ηX + µX ·R) ·
(
R(iX) + ηx+∗ · ∗

)
= µX ·

(
R
(
(ηX + µX · b) · iX

)
+R

(
(ηX + µX · b) · ηX+∗ · ∗

))
(12) e:sigma-lin-dx-aux-1

= µX ·R(ηX) + µX · ηR(X) · (ηX + µX · b) · ∗ (13) e:sigma-lin-dx-aux-2

= 1R(X) + µX · b (14) e:sigma-lin-dx-aux-3

where we use the functoriality of R in (12), the naturality of η in (13) and
the unit properties (both) of µ in (14).

The substitution σ allows us to interpret the derivative M ′ as the “mod-
ule M with one formal parameter added”. Higher-order derivatives have
analogous morphisms (that we still denote with σ) σ : M (b) × Rb −→ M.
where σ(t,m1, . . . ,mb) ∈ M(X) is obtained by substituting m1, . . . ,mb ∈
R(X) in the successive stars of t ∈M (b)(X) = M(X + ∗+ · · ·+ ∗).
Example 2.13. The composition µR : R ·R −→ R of a monad R is R-linear.
The compatibility conditions are obtained by simply applying the functor
R to the first and the third equations of (1).

x:RR->R Example 2.14. The vertical composition of R-linear morphisms (when it
makes sense) is R-linear. More explicitly, if f1 : M1 −→ N1 is a mor-
phism of ModC(R) and f2 : M2 −→ N2 is a morphism of ModD(R) then
f2 · f1 : M2 ·M1 −→ N2 ·N1 which is R-linear.

x:M->MR-1 Example 2.15. Let M be any module. The natural transformation M ·ηR =
M(ηR) : M −→M ·R is R-linear. Caveat: one would be tempted to deduce
this linearity by the previous example by taking f1 = ηR and f2 = 1M , but
this would not work because the functor I is not an R-module. Nevertheless
the linearity of M · ηR holds and can be directly verified.

x:M->MR-2 Example 2.16. Let M be a module in ModC(R). The natural transformation
ηR·M : M −→ R·M isR-linear. The same remark as of the previous example
applies.

x:M+*->M’ Example 2.17. Assume C = Set and consider a module M ∈ ModD(R). For
each set X we have a natural map M(X) + ∗ −→M(X + ∗). This induces
an R-linear morphism M + ∗ −→M ′.

Limits and colimits in the category of modules can be constructed point-
wise:

p:lim-colim-lmod Proposition 2.18 (Limits and colimits of modules). If D is complete (resp.
cocomplete), then ModD(R) is complete (resp. cocomplete).

7

In particular, we will often make use of the fact that, if the range category
D is cartesian, then the category ModD(R) is also cartesian.

We conclude this section by giving more considerations on the substitu-
tion morphism σ introduced earlier. In particular, we are concerned by the
problem of stating a suitable associativity property for such substitution.
To this end, we need to consider a slightly generalization and introduce an
operator that we will call operadic substitution of the following kind:

σp,(q1,...,qp) : M (p) ×R(q1) × · · · ×R(qp) −→M (q1+···+qp). (15) e:operadic_substitution

Such operator can be derived in general from the module action for suitable
base category C. Here for simplicity we give the construction in the case
C = Set. For every pair of indexes (i, j) with 1 ≤ i ≤ p and 1 ≤ j ≤ qi let ∗i,j
denote distinct singletons. Given a set X, define Xi := X +

∑qi
j=1 ∗i,j and

X0 = X +
∑p

i=1

∑qi
j=1 ∗i,j and denote by ei : Xi ↪→ X0 and e0 : X ↪→ X0 the

associated natural inclusions. Thus we can identify R(Xi) with R(qi)(X)
and R(X0) with R(q1+···+qp)(X). Analogously we consider a sequence of
singletons ∗k for 1 ≤ k ≤ p and we identify M(X + ∗1 + · · · + ∗p) with
M (p)(X). Given an element mi ∈ R(qi)(X) we have an associated diagram

∗i
m̂i //

m̃i ""

R(Xi)

R(ei)

��
R(X0)

where m̂i is the point map associated tomi. Hence, to each tuple (m1, . . . ,mp) ∈
R(q1)(X) × · × R(qp)(X) we consider a the map e = e0 + m̃1 + · · · m̃p : X +
∗1 + · · · + ∗p −→ R(X0) = R(q1,...,qp)(X). Such map e induces by the usual
module substitution a map M (p)(X) −→M (q1+···+qp)(X) by the diagram

M (p)(X)
M(i) //

s(m1,··· ,mp) **

M
(
R(q1+···+qp)(X)

)
ρX0

��
M (q1+···+qp)(X)

Then we define the operadic substitution σp,(q1,...,qp) by

σp,(q1,...,qp)(t,m1, . . . ,mp) := s(m1,...,mp)(t).

Observe that our construction generalizes over any R-module M and thus
for the monad R itself.

Our operadic substitution enjoys the usual operadic properties. Let us
denote σp,(q1,...,qp)(t,m1, . . . ,mp) by simply t ◦ (m1, . . . ,mp). Then we have

• Associativity: m ◦ (t1 ◦ (r1,1, · · · , r1,k1), tp ◦ (rp,1, . . . , rp,kp)) = (m ◦
(t1, . . . , tp)) ◦ (r1,1, · · · , r1,k1 , · · · , rp,1, · · · , rp,kp).

• Identity: m ◦ (∗, . . . , ∗) = m.

8

2.3 The big category of modules

We already introduced the category ModD(R) of modules with fixed base R
and range D. It it often useful to consider a larger category which collects
modules with different bases. To this end, we need first to introduce the
notion of pull-back. In this section we will assume that all modules have the
same range category D.

Definition 2.19 (Pull-back). Let f : R −→ S be a morphism of mon-

ads and M an S-module. The action M · R Mf−→ M · S ρ−→ M defines
an R-module which is called pull-back of M along f and noted f∗M . It
can be easily verified that an S-linear natural transformation g : M −→ N
is also an R-linear natural transformation f∗g : f∗M −→ f∗N and that
f∗ : ModD(S) −→ ModD(R) is a functor.

It can be easily verified that pull-back is well-behaved with respect to
many important constructions. In particular:

p:pull-back-commute Proposition 2.20. Pull-back commutes with products and with derivation.

Definition 2.21 (The big module category). We define the big module
category BModD as follows:

• its objects are pairs (R,M) of a monad R and an R-module M .

• a morphism from (R,M) to (S,N) is a pair (f,m) where f : R −→ S is a
morphism of monads, and m : M −→ f∗N is a morphism of R-modules.
The category BModD comes equipped with a forgetful functor to the
category of monads, given by the projection (R,M) 7→ R.

3 The category of arities
s:higher-order

In this section, we give our new notion of arity. The destiny of an arity
is to have representations in monads. A representation of an arity a in
a monad R should be a morphism between two modules dom(a,R) and
codom(a,R). For instance, in the case of the arity a of a binary operation,
we have dom(a,R) := R2 and codom(a,R) := R. Hence an arity should
consist of two halves, each of which assigns to each monad R a module
over R in a functorial way. However, in all our natural examples, we have
codom(a,R) = R as above. Although this will no longer be the case in
the typed case (which we do not consider here), we choose to restrict our
attention to arities of this kind, where codom(a,R) is R.

3.1 Arities

From now on we will consider only monads over the category Set and mod-
ules with range Set. For technical reasons, see Section 5, we restrict our

9

attention to the category of ω-cocontinuous endofunctors that we will de-
note Endω(Set). Analogously we will write Monω (resp. BModω) for the
full subcategory of monads (resp. of modules over these monads) which are
ω-cocontinuous.

We recall that finite limits commute with filtered colimits in Set. It
follows that Endω(Set) has finite limits and arbitrary (small) colimits. This
is the key ingredient in the proofs of ω-cocontinuity for most of our functors.

Definition 3.1 (Arities). An arity is a right-inverse functor to the forgetful
functor from the category BModω to the category Monω.

Now we give our basic examples of arities.

Example 3.2. The assignment R 7→ R is an arity which we denote by Θ.

Example 3.3. The assignment R 7→ ∗R, where ∗R denotes the final module
over R is an arity which we denote by ∗.
Example 3.4. Given two arities a and b, the assignment R 7→ a(R) × b(R)
is an arity which we denote by a× b . In particular Θ2 = Θ×Θ is the arity
of any (first-order) binary operation and, in general Θn is the arity of n-ary
operations.

Example 3.5. Given an arity a, for each non-negative integer n, the assign-
ment R 7→ a(R)(n) is an arity which we denote by a(n). As usual, we also
set a′ := a(1) and a′′ := a(2).

Example 3.6. For each sequence of non-negative integers s = (s1, . . . , sn), the
assignment R 7→ R(s1)× · · · ×R(sn) (see Definition 2.8) is an arity which we
denote by Θ(s). Arities of the form Θ(s) are said algebraic. These algebraic
arities are those which appear in [7].

Example 3.7. Given two arities a, b their composition a·b := R 7→ a(R)·b(R)
is an arity.

3.2 Morphisms of arities

d:arity-morph Definition 3.8. A morphism among two arities a1, a2 : Monω −→ BModω

is a natural transformation m : a1 −→ a2 which, post-composed with the
projection BModω −→ Monω, becomes the identity.

We easily check that arities form a subcategory Ar of the category of
functors from Monω to BModω.

Now we give some examples of morphisms of arities.

x:ThetaTheta->Theta Example 3.9. The natural transformation µ : Θ · Θ −→ Θ induced by the
structural composition of monads is a morphism of arities (see Example
2.14).

x:Theta->ThetaTheta Example 3.10. The two natural transformations Θ · η and η · Θ from Θ to
Θ ·Θ induced by the Examples 2.15 and 2.16 are morphisms of arities.

10

3.3 Colimits of arities

For the example of the λ-calculus with explicit substitution (see Section 6.3),
we need some colimits of arities.

t:arity-lim-colim Theorem 3.11. The category of arities has finite limits and arbitrary (small)
colimits.

Proof. Limits and colimits of arities can be easily constructed point-wise
in the larger functor category from ω-cocontinuous monads into arbitrary
modules. Hence we must verify that these limit or colimit functors actually
are arities. In particular, we have to prove that they produce modules that
are ω-cocontinuous. This essentially amounts to show the compatibility of
such limit or colimit with ω-colimits in the category of Set. Since arbitrary
colimits always commute (in a cocomplete category), the case of colimits of
arities poses no problem. More care is required for the case of limits, since
limits and colimits do not commute in general. However, finite limits com-
mute with filtered colimits (hence, in particular, ω-colimits) in the category
of sets (see Theorem IX.2.1 in [15]). This allows us to construct finite limits
in the category of arities.

3.4 Generalizations

Our notion of arity allows two natural extensions.

• As we already alluded above, we consider only arity for morphisms
whose codomain is the monad, while we could consider arbitrary codomains.
In the typed case, which we do not consider here, such arbitrary
codomains will be the rule. In the present untyped context, one ex-
ample that we can propose of a morphism whose codomain is not
the monad is the operadic substitution introduced in (15) at the end
of Section 2.2. Another relevant example is the construction app1 :
LC −→ LC′: this is, in the λ-calculus, the variant of the app construc-
tion which receives only one argument, and takes the fresh variable as
second argument. One nice feature of this variant is the form it offers
for the beta and eta rules:

abs · app1 = 1LC, app1 · abs = 1LC′ .

We plan to discuss in our next paper a formalism that allows to for-
mulate these equations in our paper [11]. Note that morphisms of this
kind, where the codomain is a derivative of the monad, can be “re-
duced” to the “raw” case where the codomain is the monad, and this
is the reason why we do not consider this extension.

• The second possible extension builds upon the fact that new construc-
tions create new modules, hence new arities. So given a base signature

11

Σ, a Σ-arity will be a pair of Σ-modules (see Definition 4.1 in the next
section). Such a Σ-arity may be added to Σ, yielding a bigger sig-
nature. This picture allows for instance to consider partially defined
constructions, like the predecessor. Here again we have no urgent ex-
ample and this is the reason why we do not consider this extension.

4 Categories of representations
s:representations

4.1 Signatures and their representations

d:signatures Definition 4.1 (Signatures). We define a signature Σ = (O,α) to be a
family of arities α : O −→ Ar. A signature is said to be algebraic if it
consists of algebraic arities.

d:representations Definition 4.2 (Representation of an arity, of a signature). Given an ω-cocontinuous
monad R over Set, we define a representation of the arity a in R to be a
module morphism from a(R) to R; a representation of a signature Σ in R
consists of a representation in R for each arity in Σ.

Example 4.3. The usual app : LC2 −→ LC is a representation of the arity Θ2

into the monad LC.

r:sig-eq-arity Remark 4.4. Given a signature Σ = (O,α) we can consider the associ-
ated arity a =

∑
o∈O αo. Then it is easy to show that the category of

Σ-representations is isomorphic to the category of a-representations.
In other words, in this particular setting we could avoid to mention

signatures and reduce every construction and statement to mere arities.
Nevertheless we maintain the distinction between the two notions in order
to follow the usual terminology and, more importantly, in view of further
developments where the analogous identification cannot be made (e.g., in
the case of typed syntax).

4.2 The little category of representations

Definition 4.5. Given a signature Σ = (O,α), we build the category MonΣ

of representations of Σ as follows. Its objects are ω-cocontinuous monads
equipped with a representation of Σ. A morphism m from (M, r) to (N, s)
is a morphism of monads from M to N compatible with the representations
in the sense that, for each o in O, the following diagram of M -modules
commutes:

αo(M)
ro //

ao(m)
��

M

m

��
m∗(αo(N))

m∗so
// m∗N

12

where the horizontal arrows come from the representations and the left ver-
tical arrow comes from the functoriality of arities and m : M −→ m∗N is
the morphism of monad seen as morphism of M -modules.

Proposition 4.6. These morphisms, together with the obvious composition,
turn MonΣ into a category which comes equipped with a forgetful functor to
the category of monads.

Proposition 4.7. The category MonΣ has a final object.

Proof. The final endofunctor *, that is the constant functor that returns
a singleton, has a trivial structure of monad and Σ-representation. It is
immediate to verify that this is the final object of MonΣ.

4.3 Representability
ss:representability

We are primarily interested in the existence of an initial object in this cat-
egory MonΣ.

d:representable Definition 4.8. A signature Σ is said representable if the category MonΣ

has an initial object which we denote Σ̂.

t:sig-representable Theorem 4.9. Algebraic signatures are representable.

For more details we refer to our paper [12] (Theorems 1 and 2). We give
below a more general result (Theorem 5.15).

4.4 Modularity and the big category of representations
ss:modularity

It has been stressed in [10] that the standard approach (via algebras) to
higher-order syntax lacks modularity. In the present section we show in
which sense our approach via modules enjoys modularity. The key for this
modularity is what we call the big category of representations.

Suppose that we have a signature Σ = (O, a) and two subsignatures
Σ1 and Σ2 covering Σ in the obvious sense, and let Σ0 be the intersection
of Σ1 and Σ2. Suppose that these four signatures are representable (for
instance because Σ is algebraic or strengthened in the sense defined below).
Modularity would mean that the corresponding diagram of monads

Σ̂0
//

��

Σ̂1

��
Σ̂2

// Σ̂

is a pushout. The observation of [10] is that the diagram of raw monads is,
in general, not a pushout. Since we do not want to change the monads, in
order to claim for modularity, we will have to consider a category of enriched

13

monads. Here by enriched monad, we mean a monad equipped with some
additional structure, namely a representation of some signature.

Our solution to this problem goes through the following “big” category
of representations, which we denote by RMon, where R may stand for rep-
resentation or for rich:

• An object of RMon is a triple (R,Σ, r) where R is a monad, Σ a signature,
and r is a representation of Σ in R.

• A morphism in RMon from (R1, (O1, a1), r1) to (R2, (O2, a2), r2) consists
of a map i := O1 −→ O2 compatible with a1 and a2 and a morphism
m from (R1, r1) to (R2, i

∗(r2)), where, for i injective, i∗(r2) should be
understood as the restriction of the representation r2 to the subsignature
(O1, a1).

• It is easily checked that the obvious composition turns RMon into a
category.

Now for each signature Σ, we have an obvious functor from MonΣ to RMon,
through which we may see Σ̂ as an object in RMon. Furthermore, an injec-
tion i : Σ1 −→ Σ2 obviously yields a morphism i∗ := Σ̂1 −→ Σ̂2 in RMon.
Hence our ‘pushout’ square of signatures as described above yields a square
in RMon. The proof of the following statement is straightforward.

Proposition 4.10. Modularity holds in RMon, in the sense that given a
‘cocartesian’ square of representable signatures as described above, the asso-
ciated square in RMon is cocartesian again.

As usual, we will denote by RMonω the full subcategory of RMon con-
stituted by ω-cocontinuous functors. It is easy to check that the previous
statement is equally valid in RMonω. Indeed, recall that, by our definition,
the initial representation of representable signatures lies in RMonω.

5 Strengthening signatures
s:stren-arities

Guided by the ideas of Matthes and Uustalu [16] we introduce in our frame-
work the notion of strengthened arity.

5.1 Strengthened arities

For a category C, let us denote by Endω∗ (C) the category of ω-cocontinuous
pointed endofunctor, i.e., the category of pairs (F, η) of an ω-cocontinuous
endofunctor F of C and a natural transformation η : I −→ F from the iden-
tity endofunctor to F . A morphism of pointed endofunctors f : (F1, η1) −→
(F2, η2) is a natural transformation f : F1 −→ F2 satisfying f ◦ η1 = η2.

Definition 5.1. A strengthened arity is a pair (H, θ) where H is an ω-
cocontinuous endofunctor of Endω(Set) (i.e., H ∈ Endω(Endω(Set))) and θ

14

is a natural transformation

θ : H(−)· ∼−→ H(−· ∼)

(where H(−)· ∼ and H(−· ∼) have to be understood as functors from
Endω(Set)× Endω∗ (Set) to Endω(Set)) satisfying

θX,(I,1I) = 1HX (16) e:theta_id

and such that the following diagram is commutative

H(X) · Z1 · Z2

θX,(Z1·Z2,e1·e2) //

θX,(Z1,e1)
Z2 ((

H(X · Z1 · Z2)

H(X · Z1) · Z2

θX·Z1,(Z2,e2)

66
(17) e:theta_comp

for every endofunctor X and pointed endofunctors (Z1, e1), (Z2, e2).
We refer to θ as the strength of the arity.

Our first task is to make clear that our wording is consistent in the sense
that a strengthened arity H somehow yields a genuine arity H̃. For this
task, for each monad R we pose H̃(R) := H(R) and we exhibit on it a
structure of R-module. We do even slightly more by upgrading H into a
module transformer in the following sense:

d:mod-trans Definition 5.2. A module transformer is an endofunctor of the big mod-
ule category BModω which commutes with the structural forgetful functor
BModω −→ Monω.

p:H-is-mod-trans Proposition 5.3. Let (H, θ) be a strengthened arity. For every ω-cocontinuous
monad R and ω-cocontinuous R-module M , we define the natural transfor-
mation ρH(M) : H(M) ·R −→ H(M) as the composition H(ρM) ·θM,R. Then
(H(M), ρH(M)) is an R-module, and this construction upgrades H into a
module transformer denoted by Ĥ.

We call the restricion H̃ of the module transformer Ĥ to the category of
monads the arity associated to the strengthened arity H.

Proof. Assume that R is a monad over Set and M an R-module. First
we show the associativity property. Let us denote by τ the morphism τ =
H(ρM)·H(MµR)·θM,R·R. We will show that the two triangles in the diagram

H(M) ·R ·R
H(M)µR //

ρH(M)R

��
τ

**

H(M) ·R

ρH(M)

��
H(M) ·R

ρH(M)
// H(M)

15

commute.
The commutativity of the upper triangle follows from the commutativity

of the following diagram

H(M) ·R ·R

θM,R·R
��

H(M)µR // H(M) ·R
θ
M,(R,ηR)

��

ρH(M)

((
H(M ·R ·R)

H(MµR)
// H(M ·R)

H(ρM)
// H(M)

which is ensured by the naturality of θ and by the very definition of ρH(M).
Since M is a module, the morphism τ can also be expressed as τ =

H(ρM) ·H(ρMR) ·θM,R·R. Moreover, the morphism ρM (M)R is given by the
composition H(ρM)R ·θM,RR, then the lower triangle of (5.1) unfolds as the
following diagram

H(M) ·R ·R
θM,RR //

θM,R·R))

H(M ·R) ·R
H(ρM)R //

θM·R,R
��

H(M) ·R

θM,R
��

ρH(M)

((
H(M ·R ·R)

H(ρM tR)
// H(M ·R)

H(ρM)
// H(M)

which is commutative by the property (17) of θ, the naturality of θ and the
definition of ρH(M).

Finally, the identity property is given by the commutativity of the dia-
gram

H(M) · I
θM,I=1H(M) //

H(M)ηR

��

H(M)

H(MηR)
��

H(1M)=1H(M)

((
H(M) ·R

θM,R
// H(M ·R)

H(ρM)
// H(M)

which follows by the property (16) of θ, the naturality of θ and the identity
property of the module M .

Our next task is to upgrade our favorite examples of arities into strength-
ened arities.

x:Theta-stren Example 5.4. The arity Θ comes from the strengthened arity (H, θ) where
H and θ are the relevant identities.

x:final-stren Example 5.5. The arity ∗ comes from the strengthened arity (H, θ) where
H is the final endofunctor and θ is the relevant identity. This is the final
strengthened arity.

x:ThetaTheta-stren Example 5.6. The arity Θ·Θ comes from the strengthened arity (H, θ) where
H := X 7→ X ·X and θX,Y : X ·X · Y −→ X · Y ·X · Y := X · ηY ·X · Y ;
here we have written ηY for the morphism from the identity functor to Y
(remember that Y is pointed).

16

x:derivative-stren Example 5.7. We will show in Proposition 5.10 that the derivation carries
strengthened arities to strengthened arities.

r:stren-eq-arity Remark 5.8. It is easy to prove that the category of strengthened arities is ω-
cocomplete. Thus, as for the case of general arities and signatures (Remark
4.4), we can systematically reduce the study of strengthened signature to
that of strengthened arities by replacing the given signature with the sum
of its arities.

5.2 Morphisms of strengthened arities

Then we show how our basic constructions of arities upgrade into construc-
tions in the category of strengthened arities, which we now describe. Its
objects are strengthened arities and we take for morphisms from (H1, θ1) to
(H2, θ2) those natural transformations m : H1 −→ H2 which are compatible
with θ1 and θ2, that is, the diagram

H1(X) · Z θ1 //

mXZ
��

H1(X · Z)

mX·Z
��

H2(X) · Z
θ2
// H2(X · Z)

is commutative for every endofunctor X and every pointed endofunctor Z.
We start with limits and colimits.

t:stren-lim-colim Theorem 5.9. The category of strengthened arities has finite limits and
arbitrary colimits.

Proof. This is due to the four natural isomorphisms:

(lim
i
Hi)(F) ·G ' lim

i
(Hi(F) ·G) , (colimiHi)(F) ·G ' colimi(Hi(F) ·G) ,

(lim
i
Hi)(F ·G) ' lim

i
(Hi(F ·G)) , (colimiHi)(F ·G) ' colimi(Hi(F ·G)) .

The restriction on limits is due to the ω-cocontinuity condition.

Next, we take care of the derivation. We denote by D the endofunctor
of Set given by A 7→ A + ∗. For any other pointed endofunctor X over Set
we have a natural transformation wX : D ·X −→ X ·D given by

wXA : X(A) + ∗ −→ X(A+ ∗)
wXA := X(iA) + ηA+∗ · ∗

where iA : A −→ A+ ∗ and ∗ : ∗ −→ A+ ∗ are the inclusion maps.

p:stren-derived Proposition 5.10. If (H, θ) is a strengthened arity, then the pair (H ′, θ′),
where H ′ := X 7→ H(X)′ and θ′X,Z := θX,ZD ·H(X)wZ , is a strengthened
arity. We call it the derivative of (H, θ).

17

Proof. The necessary verifications are straightforward.

Now we point out the possibility of composing strengthened arities (while
there is no natural composition of arities).

d:stren-comp Definition 5.11. If H := (H, ρ) and K := (K,σ) are two strengthened
arities, their composition H ·K is the pair (H ·K, θ) where θ is defined the
following commutative diagram

H(K(X)) · Z

ρK(X),(Z,e) ((

θX,(Z,e) // H(H(X · Z))

H(K(X) · Z)

H(σX,(Z,e))

66

p:stren-comp Proposition 5.12. This composition turns strengthened arities into a strict
monoidal category.

Proof. The proof is a routine verification.

5.3 Representability of strengthened arities

Next, we turn to the main interest of strengthened arities (or signatures)
which is that the fixed point we are interested in inherits a structure of
monad.

p:stren-fixpoint Proposition 5.13. Let (H, θ) be a strengthened arity. Then the fixed point
T of the functor F := I + H is ω-cocontinuous and comes equipped with a
structure of H-representation.

Proof. (Compare with Theorem 10 in [16].)
For each natural number a we denote by Ta the functors F a(I), that

is, T0 = I and Ta+1 = Ta + H(Ta), and we consider the associated natural
inclusions ia : Ta −→ Ta+1, ra : H(Ta) −→ Ta+1, ia,b : Ta −→ Ta+b, ηa : I −→
Ta. The colimit T of the diagram

T0
i0−→ T1 −→ · · · −→ Ta

ia−→ Ta+1 −→ · · ·

is a fixed-point for F . From the general fact that two colimits over inde-
pendent indices commute, we easily deduce that T is ω-cocontinuous. Also
observe that H(T) is the colimit of H(Ta), since H is ω-cocontinuous by def-
inition. We endow the functor T of a structure of monad with the following
constructions.

We define two families of natural transformations µa,b : Ta · Tb −→ Ta+b

and ρa,b : H(Ta) · Tb −→ H(Ta+b). For a = 0 we simply take µ0,b = 1Tb .
Next we work by recursion on a and we define

ρa,b : H(Ta) · Tb
θTa,Tb−→ H(Ta · Tb)

H(µa,b)−→ H(Ta+b)

18

and

µa+1,b : Ta · Tb +H(Ta) · Tb
µa,b+ρa,b−→ Ta+b +H(Ta+b).

By taking the colimit over a and b, the families of natural transfor-
mations ηa, µa,b, ρa,b and ra give us respectively a unit ηT : I −→ T , a
composition µT : T · T −→ T , a T -action ρT : H(T) · T −→ H(T) and a
natural transformation rT : H(T) −→ T . It can be shown that µT , ηT , ρT

and rT verify the axioms of monad and H-representation. We omit most of
the verifications which are routine. As a paradigmatic example, we show the
associativity of the composition µT . The proof of the other properties are
either substantially easier or recoverable with a similar argument mutatis
mutandis.

Since T and µT are defined through a colimit construction from Ta and
µa,b, to prove the associativity of µ it suffices to show the commutativity of
the diagram

Ta · Tb · Tc
µa,bTc //

Taµb,c
��

Ta+b · Tc
µa+b,c

��
Ta · Tb+c µa,b+c

// Ta+b+c

(18) e:Tcomp_assoc

for all positive indices a, b and c.
We proceed by induction on a. The case a = 0 is immediate since

µ0,b : I · Tb → Tb is the identity. Next, assume that (18) be commutative
for a given a. We have to prove the corresponding property for the case
a+ 1. Hence, by using the recursive equations for Ta+1 and µa+1,b, we have
to prove the commutativity of the following diagram

(Ta +H(Ta)) · Tb · Tc
µa,bTc+ρa,bTc //

Taµb,c+Taρb,c
��

(Ta+b +H(Ta+b)) · Tc
µa+b,c+ρa+b,c
��

(Ta +H(Ta)) · Tb+c µa,b+c+ρa,b+c
// Ta+b+c +H(Ta+b+c)

(19) e:Tcomp_ass_step

By distributing the compositions over the unions, our diagram can be split
as the sum of two square diagrams, one of which is just the diagram (18),
which commutes by induction hypothesis, and the other is the following

H(Ta) · Tb · Tc
ρa,bTc //

Taρb,c
��

H(Ta+b) · Tc
ρa+b,c

��
H(Ta) · Tb+c ρa,b+c

// H(Ta+b+c)

(20) e:Tcomp_ass_step’

After replacing all the occurrences of ρa,b with its definition we obtain the

19

diagram

H(Ta · Tb) · Tc
H(µa,b)Tc //

θTa·Tb,(Tc,ηc)
��

H(Ta+b) · Tc
θTa+b,(Tc,ηc)
��

H(Ta) · Tb · Tc

θTa,(Tb,ηb)Tc
44

θTa,(Tb·Tc,ηbηc)

//

H(Ta)µb,c
��

H(Ta · Tb · Tc)
H(µa,bTc)

//

H(Taµb,c)

��

H(Ta+b · Tc)

H(µa+b,c)

��
H(Ta) · Tb+c

θTa,(Tb+c,ηb+c)

// H(Ta · Tb+c)
H(µa,b+c)

// H(Ta+b+c)

(21) e:Tcomp_ass_step’’

which is commutative thanks to the induction hypothesis and the properties
of H and θ.

The previous proposition is the main step in the proof of the following

Lemma 5.14. The fixed-point T of F = I + H is the initial object in the
category of the H-representations.

Proof. Given anyH-representation rW : H(W) −→W , we have to show that
there exists an unique morphism of representations k : T −→ W . We will
use the same notation and definition established in the previous proposition.

We start by defining a family of natural transformations ka : Ta −→ W
by recursion on a as follows. For a = 0 just take k0 : T0 = I −→ W to be
the unit of the monad W . Next, assuming that ka has been defined, we pose
ka+1 : Ta+1 = Ta + H(Ta) −→ W as ka+1 := ka + rW ·H(ka). It follows at
once that we have ka+1 · ia = ka, hence this yields a natural transformation
k : T −→W as we wanted.

We have to check that k is a morphism of monad. It is immediate to
verify that k respects the units of the two monads. Let us verify that k
respects the composition. It suffices to prove that the following diagram
commutes

Ta · Tb
kakb //

µa,b

��

W ·W

µW

��
Ta+b

ka+b
//W

(22) e:init-monad-morph

since the desired commutativity follows by taking the colimit.
For a = 0 we have k0 = ηW and the commutativity of the previous

diagram follows easily from the monad axioms of W . Then we proceed by
induction on a. We first observe that, for all a and b the commutativity of

20

(22) entails the commutativity of the diagram

H(Ta) · Tb
H(ka)kb//

ρa,b

��

H(W) ·W

ρW

��

rWW //W ·W

µW

��
H(Ta+b)

H(ka+b)
// H(W)

rW
//W

(23) e:init-mod-morph

since the right square comes from the representation axiom of W and the
commutativity of the left square is given by

ρW ·H(ka)kb = H(µW) · θW,(W,ηW) ·H(ka)kb

= H(µW) ·H(kakb) · θTa,(Tb,ηb)
= H(ka+b) ·H(µa,b) · θTa,(Tb,ηb)
= H(ka+b) · ρa,b.

By taking the sum of (22) and (23) we get the commutative diagram

Ta · Tb +H(Ta) · Tb
kakb+ρ

W ·H(ka)kb //

µa,b+ρa,b
��

W ·W

µW

��
Ta+b +H(Ta+b)

ka+b+r
W ·H(ka+b)

//W

which is precisely the diagram (22) for the indices (a+ 1, b). This concludes
the proof that k is a morphism of monads.

Next we have to verify that k is a morphism of representations. SinceH is
a module transformer (Proposition 5.3) we already know thatH(k) : H(T) −→
H(W) is linear. Moreover, from the definition of ka follows at once that we
have ka+1 · ra = rW · H(ka). By taking the colimit over a we get that k
commutes with the representation morphisms.

Finally we have to prove that k is unique. Then suppose that h : T −→
W be an arbitrary morphism of representations. It suffice to show the
commutativity of the following diagram

T
h //W

Ta

ua

OO

ka

>> (24) e:init-unique

where the natural transformations ua : Ta −→ T are the structural mor-
phisms of the colimit T . Once more, we proceed by induction on a. The
case a = 0 reduces to the compatibility of the monad morphism h with the
unit of the two monads T and W . Assuming that (24) commutes for a given
a, we can immediately deduce the commutativity of the left diagram in (25)

21

and thus the commutativity of the right diagram in (25) which is diagram
(24) for the case a+ 1.

T
h //W

H(T)

rT

OO

H(h) // H(W)

rW

OO

H(Ta)

H(ua)

OO

H(ka)

88

T
h //W

Ta +H(Ta)

ua+rT ·H(ua)

OO

ka+rW ·H(ka)

77 (25) e:init-unique_aux

The previous lemma leads immediately (Remark 5.8) to the following
result.

t:initsynt Theorem 5.15. Strengthened signatures are representable.

6 Examples of strengthened syntax
s:examples

6.1 Lambda-calculus modulo α-equivalence
ss:lambda-calc-alpha

One paradigmatic example of syntax with binding is the λ-calculus. We
denote by Λ(X) the set of lambda-terms up to α-equivalence with free vari-
ables ‘indexed’ by the set X. It is well-known [6, 3, 12] that Λ has a natural
structure of cocontinuous monad where the monad composition is given by
variable substitution.

It can be easily verified that application and abstraction are Λ-linear
natural transformations app : Λ2 −→ Λ and abs : Λ′ −→ Λ. That is, Λ is a
monad endowed with a representation ρ of the signature Σ = {app : Θ2, abs : Θ′}.

The monad Λ is initial in the category MonΣ of ω-cocontinuous monads
equipped with a representation of the signature Σ.

This is an example of algebraic signature and thus already treated by
other previous works [12, 13, 7]. Here we simply remark that our new theory
covers such a classical case.

6.2 Explicit composition operator
ss:ex-expl-comp

We now consider our first example of non-algebraic signature. On any monad
R, we have the composition operator (also called join operator)

µR : R ·R −→ R

which has arity Θ ·Θ. We will refer to the µR operator as the implicit com-
position operator. An interesting problem is to see if this kind of operators

22

admits a corresponding explicit version, i.e., if they can be implemented as
a syntactic construction.

As we have seen in Example 5.6 Θ · Θ is a strengthened arity hence we
can build syntaxes with explicit composition operator of kind

join : Θ ·Θ −→ Θ.

Of course, this is only a syntactic composition operator, in the sense that
it does not enjoy several desirable conversion rules like associativity, two-
side identity and the obvious compatibility rules with the other syntactic
constructions present in the signature. In our next work we will show how
to construct such kind of semantic composition operator.

Let us mention that given a monad R, the unit ηR : I −→ R is not an
R-linear morphism (in fact, I is not even an R-module in general). For this
reason we cannot treat examples of syntax with explicit unit.

6.3 Syntax and semantics with explicit substitution
ss:ex-expl-subst

On any monad R, we have a series of substitution operators

σn : R(n) ·Rn −→ R

which simultaneously replace n formal arguments in a term with n given
terms.

As for the case of the composition of the previous section, we can eas-
ily construct examples of syntaxes with explicit substitution constructions
substn : Θ(n) × Θn −→ Θ and add a set of equations that can be easily de-
vised and that will eventually impose substn = σn. This is easily done on
the track given in the previous section and we avoid to give the details.

Instead we want to focus to a slightly different point. As observed by
Ghani and Uustalu [10], these substitution morphisms satisfy a series of
compatibility relations which mean that they come from a single morphism
subst : C −→ Θ where C is identified as the coend

C =

∫ A:Fin

Θ(A) ×ΘA.

Here Fin stands for the category of finite sets, ΘA denotes the cartesian
power and Θ(A) is defined by Θ(A)(R,X) := R(X + A). Since coends are
special colimits [15], and strengthened arities admit colimits, we just have
to check that the bifunctorial arity (A,B) 7→ Θ(A) × ΘB factors through
the category of strengthened arities. As far as objects are concerned, this
follows from our results in Section 5. The verification of the compatibil-
ity of the corresponding “renaming” and “projection” morphisms with the
strengthened structures is straightforward.

23

References

[1] Benedikt Ahrens (2011): Modules over relative monads for syntax and
semantics. ArXiv e-prints arXiv:1107.5252.

[2] Benedikt Ahrens & Julianna Zsidó (2011): Initial Semantics for higher-
order typed syntax in Coq. Journal of Formalized Reasoning 4(1), pp.
25–69.

[3] Thorsten Altenkirch & Bernhard Reus (1999): Monadic Presentations
of Lambda Terms Using Generalized Inductive Types. In: CSL, pp.
453–468.

[4] B. Aydemir, A. Bohannon, M. Fairbairn, J. Foster, B. Pierce, P. Sewell,
D. Vytiniotis, G. Washburn, S. Weirich & S. Zdancewic (2005): Mech-
anized metatheory for the masses: The POPLmark Challenge. In: Pro-
ceedings of the Eighteenth International Conference on Theorem Prov-
ing in Higher Order Logics (TPHOLs 2005).

[5] Richard Bird & Ross Paterson (1999): Generalised Folds for Nested
Datatypes. Formal Aspects of Computing 11(2), pp. 200–222.

[6] Richard S. Bird & Ross Paterson (1999): De Bruijn Notation as a
Nested Datatype. Journal of Functional Programming 9(1), pp. 77–91.

[7] Marcelo Fiore, Gordon Plotkin & Daniele Turi (1999): Abstract Syntax
and Variable Binding. In: LICS ’99: Proceedings of the 14th Annual
IEEE Symposium on Logic in Computer Science, IEEE Computer So-
ciety, Washington, DC, USA, p. 193.

[8] Marcelo P. Fiore (2008): Second-Order and Dependently-Sorted Ab-
stract Syntax. In: LICS, IEEE Computer Society, pp. 57–68. Available
at http://doi.ieeecomputersociety.org/10.1109/LICS.2008.38.

[9] Marcelo P. Fiore & Daniele Turi (2001): Semantics of Name and Value
Passing. In: Logic in Computer Science, pp. 93–104.

[10] Neil Ghani, Tarmo Uustalu & Makoto Hamana (2006): Explicit substi-
tutions and higher-order syntax. Higher-order and Symbolic Computa-
tion 19(2–3), pp. 263–282.

[11] André Hirschowitz & Marco Maggesi: Initial Algebraic Semantics with
Equations. Coming soon.

[12] André Hirschowitz & Marco Maggesi (2007): Modules over Monads
and Linearity. In Daniel Leivant & Ruy J. G. B. de Queiroz, editors:
WoLLIC, Lecture Notes in Computer Science 4576, Springer, pp. 218–
237. Available at http://dx.doi.org/10.1007/978-3-540-73445-1_
16.

24

http://arxiv.org/abs/1107.5252
http://doi.ieeecomputersociety.org/10.1109/LICS.2008.38
http://dx.doi.org/10.1007/978-3-540-73445-1_16
http://dx.doi.org/10.1007/978-3-540-73445-1_16

[13] André Hirschowitz & Marco Maggesi (2010): Modules over monads and
initial semantics. Information and Computation 208(5), pp. 545–564.
Special Issue: 14th Workshop on Logic, Language, Information and
Computation (WoLLIC 2007).

[14] Martin Hyland & John Power (2007): The category theoretic under-
standing of universal algebra: Lawvere theories and monads. Electronic
Notes in Theoretical Computer Science 172, pp. 437–458.

[15] Saunders Mac Lane (1998): Categories for the working mathematician,
second edition. Graduate Texts in Mathematics 5, Springer-Verlag,
New York.

[16] Ralph Matthes & Tarmo Uustalu (2004): Substitution in non-
wellfounded syntax with variable binding. Theor. Comput. Sci. 327(1-2),
pp. 155–174, doi:http://dx.doi.org/10.1016/j.tcs.2004.07.025.

[17] Julianna Zsidó (2005/06): Le lambda calcul vu comme monade ini-
tiale. Master’s thesis, Université de Nice – Laboratoire J. A. Dieudonné.
Mémoire de Recherche – master 2.

[18] Julianna Zsidó (2010): Typed Abstract Syntax. Ph.D. thesis,
University of Nice, France. http://tel.archives-ouvertes.fr/

tel-00535944/.

25

http://dx.doi.org/http://dx.doi.org/10.1016/j.tcs.2004.07.025
http://tel.archives-ouvertes.fr/tel-00535944/
http://tel.archives-ouvertes.fr/tel-00535944/

	Introduction
	The need for good notions of higher-order theory
	Modules for modular higher-order syntax
	Colimits of arities
	Related and future work
	Organization of the paper

	Categories of modules over monads
	Modules over monads
	Morphisms of modules
	The big category of modules

	The category of arities
	Arities
	Morphisms of arities
	Colimits of arities
	Generalizations

	Categories of representations
	Signatures and their representations
	The little category of representations
	Representability
	Modularity and the big category of representations

	Strengthening signatures
	Strengthened arities
	Morphisms of strengthened arities
	Representability of strengthened arities

	Examples of strengthened syntax
	Lambda-calculus modulo -equivalence
	Explicit composition operator
	Syntax and semantics with explicit substitution

