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Abstract Given a graph G, a sequence τ = (n1, ..., np) of positive integers
summing up to |V (G)| is said to be realizable in G if there exists a realization
of τ in G, that is a partition (V1, ..., Vp) of V (G) such that each Vi induces a
connected subgraph of G on ni vertices. We study the computational complex-
ity of some decision problems related to the previous definition. In particular,
we show that deciding whether a graph can be partitioned into several con-
nected subgraphs is an NP-complete problem even when a constant number c
of parts with c ≥ 2 is requested, or a constant number of vertex-membership
constraints must be satisfied. We additionally introduce a Πp

2 -complete graph
partition problem asking whether some partial realizations of τ in G can be
extended to obtain whole realizations of τ in G.

Keywords arbitrarily partitionable graphs · partition into connected
subgraphs · complexity · polynomial hierarchy

1 Introduction

Let G be a connected graph. A sequence τ = (n1, ..., np) of positive integers is
admissible for G if

∑p
i=1 ni = |V (G)|. Such a sequence τ is additionally said

to be realizable in G if there exists a realization of τ in G, that is a partition
(V1, ..., Vp) of V (G) such that Vi induces a connected subgraph of G on ni
vertices for every i ∈ {1, ..., p}.

The problem of finding a realization of a given sequence in a graph gained
a lot of attention since the result, proved independently by Gyri and Lovsz,
which states that every sequence with size at most k ≥ 1, that is with at most
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k elements, admissible for a k-connected graph G is also realizable in G [7,8].
Since then, several graph properties based on the definition above have been
investigated.

For instance, we say that G is arbitrarily partitionable (AP for short) if
every sequence admissible for G is also realizable in G. For the sake of the
upcoming next definitions, let us now consider a k-prescription of G, that is
a sequence of k pairwise distinct vertices (v1, ..., vk) of G with k ∈ {1, ..., p},
where p is the size of τ , a sequence that is admissible for G. We say that τ is
realizable in G under (v1, ..., vk) if there exists a realization (V1, ..., Vp) of τ in
G such that vi ∈ Vi for every i ∈ {1, ..., k}. In other words, a k-prescription is a
set of vertices that were chosen to belong to the first k parts of a realization of
τ in G. Notice that, in our terminology, the k part sizes associated with these
k prescribed vertices are the first k ones of the sequence. Finally, the graph G
is said to be arbitrarily partitionable under k prescriptions (AP+k for short)
if every admissible sequence for G with at least k elements is realizable in G
under every k-prescription of G. All these definitions were introduced to deal
with a practical problem of resource sharing among an arbitrary number of
users [1,3].

In this paper, we consider the computational complexity of some decision
problems derived from the definitions above. Our main result, in Section 2,
states that the problem of deciding whether a sequence is realizable in a graph
is NP-complete even when restricted to sequences with a constant number c
of elements such that c ≥ 2. This result extends a result of [6] stating that

checking whether the sequence ( |V (G)|
2 , |V (G)|

2 ) is realizable in a graph G with
even order is NP-complete in general. We then prove in Section 3 that the same
decision problem augmented with a prescription has the same complexity no
matter what are the size of the prescription or the part sizes associated with
the prescribed vertices. The complexity of the problems of deciding whether
a graph is AP or AP+k is then discussed in Section 4. We locate these two
problems in the Πp

2 complexity class of the polynomial hierarchy and explain
why we cannot modify our previous reductions to prove that these problems
are Πp

2 -complete. We then introduce a Πp
2 -complete graph partition problem

in the same section.

2 Complexity of partitioning a graph into a few connected
subgraphs

In this section, we focus on the following decision problem.
Realizable Sequence - RealSeq
Instance: A graph G and a sequence τ admissible for G.
Question: Is τ realizable in G?

It is already known that RealSeq is computationally hard, even under
strong restrictions on G or τ . In particular, this problem remains NP-complete
even when G is a tree with maximum degree 3, or τ = (k, ..., k) has only one
integer value k ≥ 3 that divides |V (G)| (see [2] and [4]).
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Assuming that the size of τ is constant, we introduce the following refine-
ment of RealSeq.
Realizable Sequence With Size k - k-RealSeq
Instance: A graph G and a sequence τ admissible for G with size k.
Question: Is τ realizable in G?

The properties of the NP-completeness of RealSeq mentioned above re-
sult from some characteristics of the different reductions used. However, these
reductions do not involve the existence of a constant threshold c ≥ 1 such
that:

– k-RealSeq is in P for every k ≤ c− 1;
– k-RealSeq is NP-complete otherwise.

Since partitioning a graph into one single connected subgraph is possible
if and only if it is connected, we have c ≥ 2. In what follows, we prove that
c = 2, that is that k-RealSeq is NP-complete for every k ≥ 2. Our reduction
is from the following variant of 3SAT.
1-in-3 SAT
Instance: A 3CNF formula F over variables {x1, ..., xn} and clauses {C1, ..., Cm}.
Question: Is there a 1-in-3 truth assignment of the variables of F , that is a
truth assignment such that each clause of F has exactly one true literal?

Notice that we can suppose that every possible literal appears in F . Indeed,
if xi does not appear in any clause of F , then the 3CNF formula F ′ = F ∧
(xi∨xi∨xn+1)∧ (xn+1∨xn+1∨xn+1), where xn+1 is a new variable, admits a
1-in-3 truth assignment of its variables if and only if F admits one too. Since
there are 2n literals related to the variables of F , a formula equivalent to F
that contains every possible literal over its variables can be obtained from F
in polynomial time.

Our proof of the NP-completeness of k-RealSeq for every k ≥ 2 reads
as follows. We first show in Theorem 1 that 2-RealSeq is NP-complete by
reduction from 1-in-3 SAT. We then explain, in Theorem 2, how to modify
our reduction from 1-in-3 SAT to 2-RealSeq so that we get a reduction from
1-in-3 SAT to k-RealSeq for any k ≥ 3.

Theorem 1 2-RealSeq is NP-complete.

Proof First of all, RealSeq is clearly in NP. One can indeed design an algo-
rithm that takes the graph G, the sequence τ and a realization R of τ in G as
input and checks whether R is correct. More precisely, such an algorithm has
to check that R is a partition of V (G), that the parts of R have the correct
sizes regarding τ , and that the subgraphs of G induced by R are connected.
This verification can be done in polynomial time no matter what is the size of
τ .

We now prove that 2-RealSeq is NP-complete by reduction from 1-in-3
SAT. For a given formula F over variables {x1, ..., xn} and clauses {C1, ..., Cm},
we construct a graph GF and a sequence τ such that F is satisfiable in a 1-in-3
way if and only if τ is realizable in GF . Our reduction is performed in such a
way that τ has only two elements.
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The graph GF is composed of two main vertex-disjoint subgraphs. The
first one is the clause subgraph. Each literal `i of F is associated with a literal
vertex v`i in the clause subgraph. For each pair of literals `i and `i of F , we
then link the literal vertices v`i and v`i to the root vertex of a star Si with

n vertices of degree 1. Two literal vertices v`i and v`j such that `j 6= `i are
similarly linked to the root vertex of a star Si,j with n vertices of degree 1 if
they both appear in a same clause of F . We finally add a control star Sc with
n vertices of degree 1 to the clause subgraph of GF and link its root to every
literal vertex so that the clause subgraph is connected. The construction so
far is detailed in Figure 1.

vx2vx1 vx3

vx1 vx2 vx3

S1 S2 S3

Sc

S1,3

S1,2 S2,3

Fig. 1 Resulting subgraph in the clause subgraph of GF for a clause C1 = (x1 ∨ x2 ∨ x3)
of F

Let n2 be the number of vertices of the clause subgraph. Then we have

n2 ≤ 2n+ n(n+ 1) + 3m(n+ 1) + n+ 1
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since there are exactly 2n literals and n pairs of literals of the form (`i, `i) in
F , all the clauses of F can have distinct literals, and the control star Sc has
exactly n vertices of degree 1.

The second subgraph of GF is the base subgraph. With each clause Ci in F
we associate a clause vertex vCi

in the base subgraph that is linked to n2 − n
vertices of degree 1. For each i ∈ {1, ...,m − 1}, we finally add vCi

vCi+1
to

E(GF ) so that the clause vertices induce a path in GF . If we denote by n1 the
number of vertices of the base subgraph of GF , then we have

n1 = m(n2 − n+ 1).

We end up the construction of GF by adding some connection between the
base and clause subgraphs of GF as follows: for each clause Ci = (`i1 ∨ `i2 ∨
`i3) in F , we add vCi

v`i1 , vCi
v`i2 and vCi

v`i3 to E(GF ). See Figure 2 for an
illustration of this connection.

vx2vx1 vx3

S1,2 S2,3

vC2
vC1

S1,3

Fig. 2 Connection between the base and clause subgraphs of GF for a clause C1 = (x1 ∨
x2 ∨ x3) of F

The number of vertices of GF is n1 + n2. Thus, the construction of GF

is performed in polynomial time regarding the size of F . Consider now the
sequence τ = (n1+n, n2−n) admissible for GF . Since τ has only two elements
that are strictly greater than 1, any part U from a realization R of τ in GF

that covers the root vertex of any star subgraph in GF must also contain all
the vertices of degree 1 attached to it. Indeed, if this is not the case, then the
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graph GF −U contains at least two connected components and, thus, the part
of R different from U cannot induce a connected subgraph of GF .

For this reason, observe that, because of all the induced stars Sn2−n+1 in
the base subgraph of GF , this latter subgraph must be covered by the part
V1 with size n1 + n of a realization (V1, V2) of τ in GF . Starting from this, we
then have to add n additional vertices from the clause subgraph of GF to V1.
Thanks to an argument similar to the one above, we can only pick up some
literal vertices of GF since picking up any other of its vertices would disconnect
GF into too many small components. According to our construction, we cannot
also add to V1 two literal vertices v`i and v`j such that `i and `j are a variable
of F and its negation, or appear in a same clause of F , since otherwise this
would once again make the subgraph GF − V1 disconnected.

We then claim that we can deduce a 1-in-3 truth assignment of the variables
of F from a realization R = (V1, V2) of τ in GF and vice-versa. If R is a correct
realization of τ in GF , then there are exactly n literal vertices v`i1 , ..., v`in
from the clause subgraph of GF that belong to V1. Since GF [V2] is connected,
setting the literals `i1 , ..., `in true makes F evaluated true in a 1-in-3 way.
In particular, no pair of these literals is a variable of F and its negation, or
appears in a same clause of F . Conversely, if F is satisfiable in a 1-in-3 way,
then let φ : {`1, ..., `2n} → {0, 1} be a satisfying truth assignment of its literals.
Then observe that (V1, V2), where

– V1 contains all the vertices from the base subgraph of GF and every literal
vertex v`i from the clause subgraph of GF such that φ(`i) = 1,

– V2 = V (GF )− V1,

is a correct realization of τ in GF according to the arguments above. ut

We finally explain how to generalize the reduction of Theorem 1 so that
we get a reduction from 1-in-3 SAT to k-RealSeq for any k ≥ 3.

Theorem 2 k-RealSeq is NP-complete for every k ≥ 2.

Proof k-RealSeq is in NP for every k ≥ 2 as mentioned in the proof of The-
orem 1. Besides, recall that 2-RealSeq is NP-complete by Theorem 1. The
proof that k-RealSeq is NP-complete for every k ≥ 3 is based on our reduc-
tion from 1-in-3 SAT to 2-RealSeq. More precisely, we want to augment
the reduced instance, that is the graph GF and the sequence τ , in such a way
that the arguments given in the proof of Theorem 1 are still correct and not
altered by the modifications.

For the sake of this proof, let us introduce the following definition. Given
a graph H, a vertex v ∈ V (H) and an arbitrary integer a ≥ 3, the (a, v)-star-
augmentation of H is the graph obtained as follows:

1. consider the disjoint union of H and a star Sa with a−1 vertices of degree
1 whose root is denoted by r,

2. add an edge between v and r.
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v v

Fig. 3 A graph H and an arbitrary (a, v)-star-augmentation of H

An example of an (a, v)-star-augmentation of a graph is depicted in Fig-
ure 3.

Let us now show that 3-RealSeq is NP-complete by reduction from 1-in-
3 SAT. From a 3CNF formula F , we construct a graph GF and a sequence
τ = (n1, n2, n3) admissible for GF such that F is satisfiable in a 1-in-3 way if
and only if τ is realizable in GF .

By applying the reduction from 1-in-3 SAT to 2-RealSeq, we get a graph
G′F and a sequence τ ′ = (n′1, n

′
2) admissible for G′F that is realizable in G′F

if and only if F admits a 1-in-3 assignment of its variables. Now consider, as
G, an (a, v)-star-augmentation of G′F where a = n1 + n2 + 1 and v ∈ V (G′F )
is arbitrary, and τ = (a, n′1, n

′
2). In a realization (U, V1, V2) of τ in GF , notice

that, because n′1, n
′
2 ≥ 2, the star subgraph Sa of GF must be covered entirely

by the part U with size a since otherwise the remaining subgraph GF − U
would contain too many small components and it would be impossible for V1
and V2 to induce two connected subgraphs of GF . Therefore, τ is realizable in
GF if and only if τ ′ is realizable in G′F , and by transitivity we get that F is
satisfiable in a 1-in-3 way if and only if τ is realizable in GF .

Of course, this reduction modification can be applied as many times as
necessary to get a reduction from 1-in-3 SAT to k-RealSeq for any k ≥ 4.

ut

3 Complexity of partitioning a graph into connected subgraphs
following a prescription

In this section, we investigate the computational complexity of the following
decision problem.
Prescriptible Sequence - PrescSeq
Instance: A graph G, a sequence τ = (n1, ..., np) admissible for G, and a k-
prescription P of G with k ∈ {1, ..., p}.
Question: Is τ realizable in G under P?

This problem has the same complexity as RealSeq, this statement being
not affected by the size of P or by the elements of τ associated with P . This
claim is proved by reduction from RealSeq which was shown to be NP-
complete in Section 2.
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Theorem 3 PrescSeq is NP-complete.

Proof It should be clear that one can modify the checking algorithm for Re-
alSeq we gave in the proof of Theorem 1 so that it also takes the prescription
P as an input and makes sure that the vertices of P belong to the correspond-
ing parts of R. This modification does not alter the time complexity of the
algorithm. Therefore, PrescSeq is in NP.

We now show that PrescSeq is NP-complete by reduction from RealSeq.
Given a graph G and a sequence τ = (n1, ..., np) admissible for G, we construct
a new graph G′, a new sequence τ ′ admissible for G′ and a prescription P of
G′ such that τ is realizable in G if and only if τ ′ is realizable in G′ under P .

Let a ≥ 1 be an arbitrary positive integer and v be an arbitrary vertex of
some graph H. The (a, v)-path-augmentation of H is the graph obtained from
H as follows:

1. consider the disjoint union of H and Pa, a path of order a whose vertices
are consecutively denoted by u1, ..., ua;

2. add an edge between u1 and v.

This construction is depicted in Figure 4.

v v

Fig. 4 A graph H and an arbitrary (a, v)-path-augmentation of H

Let us denote by G′ an (a, v)-path-augmentation of G for some arbitrary
integer a ≥ 1 and v ∈ V (G), and let τ ′ = (a, n1, ..., np) and P = (ua). Since the
first part of a realization of τ ′ in G′ must induce a connected subgraph of G′

on a vertices including ua, it should be clear that we must set U = {u1, ..., ua}.
Once this part has been picked up, we still have to find a realization (V1, ..., Vp)
of the remaining sequence (n1, ..., np) = τ in the remaining graph G′−U = G.
If the latter realization of τ in G exists, then (U, V1, ..., Vp) is a realization of
τ ′ in G′ under P .

Conversely, if there exists a realization (V1, ..., Vp) of τ in G, then it should
be clear that (U, V1, ..., Vp), where U = {u1, ..., ua}, is a correct realization
of τ ′ in G′ under P . Thus, this reduction is correct since it can clearly be
performed in polynomial time. ut

Notice that our reduction is correct for every (a, v)-path-augmentation of
G and that we can perform several arbitrary path-augmentations of G as long
as we add the corresponding part sizes to τ and vertices to P . Additionally,
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one can perform the reduction above from one of the k-RealSeq problems
instead of RealSeq so that the size of τ in a reduced instance of PrescSeq
is constant. Recall also that in our reduction from 1-in-3 SAT to 2-RealSeq
(proof of Theorem 1), the base subgraph of GF has to be covered by the first
part of a realization of τ in GF while the vertices of the control star of the
clause subgraph must belong to the second part of such a realization. One can
thus request a 1- or 2-prescription while realizing τ in GF .

Because of all the previous remarks, we get that PrescSeq is NP-complete
for every constant size c ≥ 2 of τ and every constant size c′ ∈ {1, ..., c} of P .

4 Some Πp
2 problems

The Πp
2 complexity class belongs to the second level of the polynomial hier-

archy [5]. In this section, we investigate the relationship between some graph
partition problems derived from our definitions and Πp

2 .
We start with the following problem.

AP Graph
Instance: A graph G.
Question: Is G an AP graph?

This problem is not known to belong to either NP or co-NP. However, it
is clearly in Πp

2 since one can design a polynomial-time algorithm that takes
G and a sequence τ admissible for G not realizable in G as input and checks
that τ is indeed not realizable in G using an oracle for RealSeq.

The problem defined below
AP+k Graph
Instance: A graph G.
Question: Is G an AP+k graph?
is also in Πp

2 for every k ≥ 1. Indeed, recall that PrescSeq restricted to k-
prescriptions is an NP problem. One can thus design a similar algorithm as
the one we just mentioned for AP Graph, except that this algorithm would
use an oracle for PrescSeq.

We do not know whether AP Graph and AP+k Graph are Πp
2 -complete

problems. Indeed, to design a polynomial-time reduction from a Πp
2 -complete

problem A to one of these two problems, it would be necessary to ”translate”
the restrictions associated with an instance of A to some graph substructures
just like we did in the proof of Theorem 1 by introducing a lot of star subgraphs
in the reduced graphs. But introducing these graph substructures would make
the whole graph being not AP. That is why, for example, our reduction from 1-
in-3 SAT to RealSeq does not seem to be generalizable into some reduction
from a Πp

2 -complete version of 1-in-3 SAT to AP Graph.
There are however Πp

2 -complete problems related to our graph partition
problems. For the sake of the illustration problem below, let us introduce
more definitions. Let G be a graph and τ = (n1, ..., np) be a sequence that is
admissible for G. Given a ` ∈ {1, ..., p}, a n`-partition-level for τ and G is a
set L` of subsets of V (G) that induce connected subgraphs of G with order n`.
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A (n1, ..., n`)-partition-hierarchy L for τ and G is a collection L = (L1, ..., L`)
of ni-partition-levels for τ and G for i up to ` such that no subsets in Li

and Lj intersect for i 6= j. We finally say that τ is realizable in G under L if
for every collection of subsets (V1, ..., V`) from the partition levels of L such
that V1 ∈ L1, ..., V` ∈ L` there exists a realization (V1, ..., V`, ..., Vp) of τ in
G. In other words, we are given partial realizations of τ in G, that is some
ways for picking up the parts associated with the ` first elements of τ , whose
parts are dispatched into ` partition levels, and we ask whether each of these
partial realizations is extendable to a whole realization of τ in G. A partition
hierarchy for τ and G can be seen as a compact way to describe a large number
of partial realizations of τ in G.

As an illustration of these definitions, consider the two graphs K1,4 and
K5 of Figure 5. Let τ = (1, 1, 3) be an admissible sequence for K1,4 and
K5, let L1 = ({a}, {c}) and L2 = ({b}, {e}) be two 1-partition-levels for τ
and both K1,4 and K5, and L = (L1, L2) be a (1, 1)-partition-hierarchy for
τ and both K1,4 and K5. Clearly, τ is not realizable in K1,4 under L since
({c}, {b}, V (K1,4)−{c, b}) is not a correct realization of τ in K1,4. However, τ
is realizable in K5 under L since ({a}, {b}, V (K5)−{a, b}), ({a}, {e}, V (K5)−
{a, e}), ({c}, {b}, V (K5) − {c, b}) and ({c}, {e}, V (K5) − {c, e}) are correct
realizations of τ in K5.

a b

d e

c

a

e b

d c
Fig. 5 The graphs K1,4 and K5

We now investigate the computational complexity of the problem associ-
ated with the definition above.

Dynamic Realizable Sequence - DynRealSeq
Instance: A graph G, a sequence τ = (n1, ..., np′ , ..., np) admissible for G with
p ≥ p′ elements, and a (n1, ..., np′)-partition-hierarchy L for τ and G.
Question: Is τ realizable in G under L?

As mentioned above, DynRealSeq is a Πp
2 -complete problem. Our proof

of this claim is based on our reduction from 1-in-3 SAT to RealSeq. In order
to reuse it, we need a Πp

2 -complete version of 1-in-3 SAT. We thus show that
the following problem
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∀∃1-in-3 SAT
Instance: A 3CNF formula F over variables X ∪ Y , where X = {x1, ..., xn′},
Y = {xn′+1, ..., xn} and n′ ≤ n, and clauses {C1, ..., Cm}.
Question: For every truth assignment of the variables of X, does there exist a
truth assignment of the variables of Y such that F is satisfied in a 1-in-3 way?
is Πp

2 -complete. This is done by reduction from the following classical Πp
2 -

complete problem.
∀∃3SAT
Instance: A 3CNF formula F over variables X ∪ Y , where X = {x1, ..., xn′},
Y = {xn′+1, ..., xn} and n′ ≤ n, and clauses {C1, ..., Cm}.
Question: For every truth assignment of the variables of X, does there exist a
truth assignment of the variables of Y such that F is satisfied?

Lemma 4 ∀∃1-in-3 SAT is Πp
2 -complete.

Proof ∀∃1-in-3 SAT is clearly in Πp
2 . One can indeed design an algorithm

that takes F and a truth assignment φ1 to the variables of X for which there
is no truth assignment φ2 to the variables in Y making F evaluated in a 1-in-3
way as input. It just has to check that φ2 does not exist thanks to an oracle
dealing with 1-in-3 SAT. Such a checking algorithm runs in polynomial time
regarding the size of F .

We now show that ∀∃1-in-3 SAT isΠp
2 -complete by reduction from ∀∃3SAT.

From a 3CNF formula F over variables X ∪ Y , we construct a new 3CNF for-
mula F ′ over variables X ′ ∪Y ′ such that for every truth assignment φ1 to the
variables in X there exists a truth assignment φ2 to the variables in Y making
F evaluated true if and only if for every truth assignment φ′1 to the variables
in X ′ there exists a truth assignment φ′2 to the variables in Y ′ such that F ′ is
evaluated true in a 1-in-3 way.

The reduction is straightforward. First, replace each clause Ci = (`i1 ∨
`i2 ∨ `i3) in F by four clauses (`i1 ∨ ai ∨ bi), (`i2 ∨ ci ∨ di), (`i3 ∨ ei ∨ fi) and
(ai ∨ ci ∨ ei) in F ′ where ai, bi, ci, di, ei and fi are six new variables. Finally,
let X ′ = X and Y ′ = Y ∪

⋃m
i=1{ai, bi, ci, di, ei, fi}.

First suppose that for every truth assignment φ′1 to the variables ofX ′ there
exists a truth assignment φ′2 to the variables in Y ′ such that F ′ is satisfied in
a 1-in-3 way. Because every clause of F ′ has exactly one true literal under φ′1
and φ′2, it means that only one element in {ai, ci, ei} is evaluated true by φ′2
for every i ∈ {1, ...,m}. Let us suppose that for such an i we have φ′2(ai) = 1
and φ′2(ci) = φ′2(ei) = 0 without loss of generality. Thus, we have `i1 evaluated
true by either φ′1 or φ′2. It follows that the following truth assignment φ1 and
φ2 of the variables in X and Y , respectively,

– φ1 = φ′1,
– φ2(x) = φ′2(x) for every x ∈ Y ,

is such that F is satisfied. Conversely, suppose that for every truth assignment
φ1 to the variables in X there is a truth assignment φ2 to the variables in Y
such that F has all its clauses satisfied under φ1 and φ2. We explain how to



12 Julien Bensmail

get a truth assignment φ′2 to the variables in Y ′ so that F ′ is evaluated true
in a 1-in-3 way under φ′2 and the truth assignment φ′1 = φ1 to the variables
in X ′. First, let φ′2(x) = φ2(x) for every x ∈ Y . We then have to provide a
truth assignment of ai, bi, ci, di, ei and fi via φ′2 for every i ∈ {1, ...,m}. This
assignment depends on the number of true literals in Ci = (`i1 ∨ `i2 ∨ `i3) via
φ1 and φ2. Let φ3 : X ∪ Y → {0, 1} be the truth assignment of the variables
in X ∪ Y deduced from φ1 and φ2 as follows:

– if i ∈ {1, ..., n′}, then φ3(xi) = φ1(xi);
– if i ∈ {n′ + 1, ..., n}, then φ3(xi) = φ2(xi).

Consider now that the images of the ai’s, bi’s, ci’s, di’s, ei’s and fi’s by φ′2
are the ones depicted in Table 1. It should then be clear that F ′ is evaluated
true in a 1-in-3 way under φ′1 and φ′2.

(φ3(`i1 ), φ3(`i2 ), φ3(`i3 )) φ′2(ai) φ′2(bi) φ′2(ci) φ′2(di) φ′2(ei) φ′2(fi)
(1, 0, 0) 1 0 0 0 0 0
(0, 1, 0) 0 0 1 0 0 0
(0, 0, 1) 0 0 0 0 1 0
(1, 1, 0) 1 0 0 1 0 0
(1, 0, 1) 1 0 0 0 0 1
(0, 1, 1) 0 0 1 0 0 1
(1, 1, 1) 1 0 0 1 0 1

Table 1 Truth assignment of φ′2 for the variables in Y − Y ′

ut

We finally prove that DynRealSeq is Πp
2 -complete.

Theorem 5 DynRealSeq is Πp
2 -complete.

Proof DynRealSeq is clearly a Πp
2 problem. One can provide a combination

of parts (V1, ..., Vp′) from the (n1, ..., np′)-partition-hierarchy for τ and G of
the problem instance to a polynomial-time algorithm checking that these parts
cannot be extended to a realization of τ in G. It just has to make sure that

the sequence (np′+1, ..., np) is not realizable in G−
⋃p′

i=1 Vi using an oracle for
RealSeq.

We now show that DynRealSeq is complete in Πp
2 by reduction from

∀∃1-in-3 SAT that was shown to be Πp
2 -complete in Lemma 4. Our reduction

is inspired by the reduction from 1-in-3 SAT to RealSeq we gave in the proof
of Theorem 1. Remember that in the latter reduction, setting a variable of F
to true is simulated in an instance of RealSeq by adding a literal vertex of
GF to the part with size n1 + n of a realization of τ in GF . We here somehow
want to keep that relationship between setting a variable of F to true and
putting a literal vertex of the GF into a part of the realization. Given a truth
assignment φ1 to the variables in X, it means that we have to check whether
every partial realization of τ in GF whose part with size n1 + n contains
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the literal vertices associated with the true literals via φ1 is extendable to a
realization of τ in GF . All these possible partial realizations are considered
using a partition-hierarchy for τ and GF .

First of all, let GF be the graph obtained from F using the reduction we
gave in the proof of Theorem 1. Then, let τ = (1, ..., 1, n1 + n − n′, n2 − n)
be a sequence admissible for GF with size n′ + 2, let Li = {{vxi

}, {vxi
}} be

a 1-partition-level for τ and GF for every xi ∈ X, and L =
⋃n′

i=1 Li be a
(1, ..., 1)-partition-hierarchy for τ and GF . With a truth assignment φ1 of the
variables in X setting n′ literals of F to true is then associated a combination
of vertex-disjoint subsets (V1, ..., Vn′) from the 1-partition-levels in L, where
Vi = {xi} if φ1(xi) = 1 or Vi = {xi} otherwise.

Let us now suppose that for every truth assignment φ1 to the variables
in X there exists a truth assignment φ2 to the variables of Y such that F is
evaluated true in a 1-in-3 way. Then the realization (V1, ..., Vn′+2) of τ in GF ,
where

– for every i ∈ {1, ..., n′}, we have Vi = {vxi} if φ1(xi) = 1 or Vi = {vxi
}

otherwise,
– Vn′+1 contains all the vertices from the base subgraph of GF and every

literal vertex v`i of the clause subgraph of GF such that φ2(`i) = 1,

– Vn′+2 = V (GF )−
⋃n′+1

i=1 Vi,

is correct according to the arguments we gave in the proof of Theorem 1.
Conversely, suppose that every combination (V1, ..., Vn′) of subsets from the
1-partition-levels of L is extendable to a realization (V1, ..., Vn′+2) of τ in GF .
As explained before, the partition (V1, ..., Vn′) is associated with a truth as-
signment φ1 to the variables in X and from the literal vertices contained in
Vn′+1 we can deduce a truth assignment φ2 to the variables in Y (see the
proof of Theorem 1). Clearly, F is evaluated true in a 1-in-3 way under φ1 and
φ2. ut
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