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Abstract

The stabilization of a network controlled system including a global time-varying delay is investigated in this note. This delay
is considered to be unknown but it is assumed that a bounded error estimate is available. The exponential uncertainty induced
by the time-varying delay is decomposed into a sum of a polytopic term and an uncertain bounded term. Sufficient conditions
to design a dynamic output feedback controller depending on estimate of the time-varying delay are proposed as LMIs. An
illustration shows how our methodology enlarges the design techniques of the literature.
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1 Introduction

The Network Controlled Systems (NCS) are frequently
encountered in practice for widespread fields of applica-
tions due to their suitable and flexible structure [1, 3].
Nevertheless some aspects of NCS such as time-varying
delays, quantization, drop-out, imply that the stability
analysis and control design become fundamentally more
difficult to investigate [7]. They lead to a rich litera-
ture in automatic control particularly in what concerns
the stability aspects of systems with time-varying de-
lays [5, 9, 11,23,24].

In order to achieve stability requirements, controller
synthesis methodologies have been proposed. Among of
them the use of Lyapunov functions is the most popular
for the stability analysis [5,23] and control synthesis [6].
Robust controllers independent on the time-varying
delays may be designed to stabilize the NCS but such
strategies are generally source of conservatism. In or-
der to reduce such a conservatism for NCS for which
the current time-varying delay is available, controllers
depending on the time-varying delays may be proposed.

⋆ This paper was not presented at any IFAC meeting. Cor-
responding author M. Jungers. Tel. +33 (0)3 83 59 57 04.
Fax + 33 (0) 3 83 59 56 44.

Recently output dynamic feedback design for NCS has
been proposed using Linear Matrix Inequalities (LMI),
based on the design procedure introduced by C. Scherer
in [21] or on the elimination lemma. The output dynamic
feedback may be independent with respect to the time-
varying delay [8,10,18], or time-varying delay dependent:
[22] considers two delays (back and forth), [17] a global
time-varying delay less than the sampling period and [16]
a global and bounded time-varying delay multiple of the
sampling period.

Knowing the value of the current time-varying delay is
in practice difficult, not to say impossible. Nevertheless
tools allowing to have a time-varying delay estimate are
provided in the literature (see for more details [4, 20]).
The goal of this paper is not to enrich this mature liter-
ature, but to make the best use of the information con-
veyed by the time-varying delay estimate in the stabi-
lizing controller design. Such an idea was investigated
in [13] for designing a state-feedback controller depen-
dent on this estimate by considering an additional un-
certain term in the exponential uncertainty.

This note aims at extending the results in [13] by relaxing
the assumption of the state availability and by propos-
ing a dynamic output feedback controller dependent on
an estimate of the time-varying delay. The main result
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is allowed by considering the exponential uncertainty re-
lated to the estimate of the time-varying delay decom-
posed into a polytopic term and an uncertain term. Via
the Petersen’s Lemma and changes of variables similar
to the one proposed by C. Scherer, we obtain sufficient
conditions formulated as LMIs leading to the controller
design ensuring the closed-loop stability of the NCS.

The note is organized as follows. In Section 2, the prob-
lem of dynamic output feedback controller design de-
pendent on an estimate of the time-varying delay is for-
mulated. Some preliminaries are proposed in Section 3
to allow the proof of the main result presented in Sec-
tion 4. A numerical illustration is given in Section 5 to
highlight the efficiency of our result compared with the
literature, before some concluding remarks in Section 6.

Notation. (.)′ and ⋆ denote respectively the trans-
pose and the symmetric block in a symmetric matrix.
diag(A, B) denotes the diagonal matrix composed by
matrices A and B. The hermitian operator is given by
He(M) = M + M ′, for any square matrix M . σmax(M)
denotes the maximum singular value of the matrix M .
Matrices In×m and 0n×m are respectively Identity ma-
trix of size n×m and the null matrix of size n×m. The
shortcuts In = In×n and 0n = 0n×n will be used. The
symbol • denotes an irrelevant block in a matrix.

2 Problem Description

Consider the following continuous-time system,

ẋ(t) = Ax(t) + Bu(t), ∀t ≥ 0, (1)

y(t) = Cx(t), (2)

where x(t) ∈ R
n, u(t) ∈ R

m and y(t) ∈ R
p are respec-

tively the continuous-time state, input and output of the
system. The state x(t) is sampled with a sampling period
T to obtain the sampling states xk = x(kT ) at time kT ,
(k ∈ N). Due to the NCS structure, the continuous-time
input u(t) applied to the system is delayed by a global
time-varying delay τk which is assumed to be unknown
and to verify 0 ≤ τk ≤ T , that is,

u(t) =

{

uk−1, ∀t ∈ [kT, kT + τk),

uk, ∀t ∈ [kT + τk, (k + 1)T ).
(3)

Remark 1 The assumption 0 ≤ τk ≤ T may be relaxed
into 0 ≤ τk ≤ ℓT , with ℓ an integer greater than one by
an event-based approach [12] or into (ℓ− 1)T ≤ τk ≤ ℓT
by using an extended state [24]. For the sake of clarity,
we maintain in the sequel the assumption that the delays
are lower than the sampling interval. Furthermore, this
assumption is in accordance with NCS with real-time re-
quirements, where reliable network environment with de-
terministic protocols are used.

In such a framework, the discrete-time system writes

xk+1 = Adxk + Ω(τk)Buk + (Bd − Ω(τk)B)uk−1, (4)

yk = Cxk, (5)

where Ad = eAT , Bd =
∫ T

0
eAsdsB and Ω(τ) =

∫ T−τ

0
eAsds, with τ ∈ [0, T ]. By introducing the ex-

tended state ηk =

[

xk

uk−1

]

∈ R
n+m, one gets by follow-

ing [13] the reformulation of the system (4):

ηk+1 = A(τk)ηk + B(τk)uk, (6)

yk = Cηk, (7)

where A(τk) =

[

Ad (Bd − Ω(τk)B)

0m×n 0m

]

; B(τk) =

[

Ω(τk)B

Im

]

; C =
[

C 0p×m

]

.

As it has been mentioned, the current delay τk is not ex-
actly known and we consider the following assumption.

Assumption 2 An estimate τ̂k ∈ [0, T ] of τk is available
and is characterized by δτmin ≤ δτk = τk − τ̂k ≤ δτmax,
where by definition −T ≤ δτmin ≤ δτmax ≤ T .

We thus introduce the reformulation

ηk+1 =

(

A(τ̂k) +

[

0n −WkB

0m×n 0m

])

ηk

+

(

B(τ̂k) +

[

WkB

0m

])

uk, (8)

where Wk = Ω(τk)−Ω(τ̂k) = Ω(T − δτk)[In + AΩ(τ̂k)].
Moreover, we relax the state availability assumption
in [13] and assume here what follows.

Assumption 3 Only the output yk of the system is
available, instead of its state xk.

The paper aims at solving the following problem.

Problem 4 Consider the system (8). Under Assump-
tions 2 and 3, determine a full order dynamic output
feedback, in the form

ζk+1 = Ac(τ̂k)ζk + Bc(τ̂k)yk, (9)

uk = Ccζk + Dcyk, (10)

where ζk ∈ R
n+m, which asymptotically stabilizes the

system (8).
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Remark 5 The model (10) involves only constant ma-
trices Cc and Dc. It allows to consider in the sequel a
structure of the output dynamic feedback which is linear
with respect to the polytopic weighting gains.

3 Preliminaries

By defining 0 ≤ ρk = 1 −
τk

T
≤ 1, we can decompose

Ω(τk) into an uncertain polynomial parameter depen-
dent matrix and an uncertain bounded remainder ∆Ωk:

Ω(τk) = T
∫ ρk

0
eATs′

ds′ =
∑h

i=1

Ai−1T i

i!
ρi

k + ∆Ωk. Let

introduce the following lemma, proven in [14].

Lemma 6 The uncertain polynomial parameter depen-
dent matrix L(ρ) = L0 + ρL1 + ρ2L2 + · · · + ρhLh,
with 0 ≤ ρ ≤ 1, can be rewritten as a convex poly-
tope with h + 1 vertices, with H = {1; · · · ; (h + 1)}:

L(ρ) =
∑

i∈H
µi(ρ)Vi, with Vi =

∑i−1
j=0 Lj; ∀i ∈ H and

µh+1 = ρh; µi = ρi−1(1 − ρ), ∀i ∈ {1, · · · , h}, which
verify

∑

i∈H
µi(ρ) = 1, and µi(ρ) ≥ 0, ∀i ∈ H. 2

By identifying L0 = 0n; and Li =
Ai−1T i

i!
, ∀i =

1, · · · , h, we have, with the definition of Vi given in
Lemma 6: Ω(τk) =

∑

i∈H
µi(ρ̂k)Vi + (Wk + ∆Ωk), and

the following decompositions

A(τk) =
∑

i∈H

µi(ρ̂k)Ai+

[

In

0m×n

]

(Wk+∆Ωk)
[

0n −B
]

;

B(τk) =
h+1
∑

i=1

µi(ρ̂k)Bi +

[

In

0m×n

]

(Wk + ∆Ωk)B;

Ai =

[

Ad (Bd − ViB)

0m×n 0m

]

; Bi =

[

ViB

Im

]

.

In order to cope with the time-varying term (Wk +∆Ωk)
in the decomposition of Ω(τk), we remind the following
lemma provided in [19].

Lemma 7 Given any positive scalar λ > 0 and any ma-
trix Γ such that Γ′Γ ≤ γ2I, for any matrices H and Q
of appropriated dimensions, we have HΓQ + Q′Γ′H ′ +

λHH ′ + γ2 Q′Q

λ
≥ 0. 2

The main idea is to consider for the dynamic output feed-
back controller a polytopic structure depending on the

parameters µi(ρ̂k), with ρ̂k = 1−
τ̂k

T
. That is we impose

Ac(τ̂k) =
∑

i∈H
µi(ρ̂k)Ac,i; Bc(τ̂k) =

∑

i∈H
µi(ρ̂k)Bc,i.

The controlled system, with state zk =

[

ηk

ζk

]

becomes

zk+1 =

h+1
∑

i=1

µi(ρ̂k) (Ai + EΓkF ) zk = Acl,kzk, (11)

where F =
[

0n −B 0n×(n+m)

]

+
[

BDcC BCc

]

;

Ai =

[

Ai + BiDcC BiCc

Bc,iC Ac,i

]

; E =

[

In

0(n+2m)×n

]

;

Γk = Wk + ∆Ωk = Ω(τk) − Ω(τ̂k) + ∆Ωk.

The equation (11) exhibits a polytopic part and an un-
certain part, where Wk and ∆Ωk are gathered in Γk. We
should point out that there exists an upper bound of the
maximal singular value of matrix Γk = Ω(T − δτk)[In +
AΩ(τ̂k)]+∆Ωk. It has been already shown in [13] that the
uncertainty Ω(T − δτk) is norm-bounded on a compact
δτk ∈ [δτmin; δτmax]. The matrix ∆Ωk is also bounded
on the range 0 ≤ ρ̂k ≤ 1. Thus there exists a scalar γ
such that, with T (τk) = [τk − δτmax; τk − δτmin]∩ [0;T ]

sup
τk∈[0;T ]; τ̂k∈T (τk)

σmax(Γk) ≤ γ. (12)

Remark 8 We can obtain numerically an upper bound
of the maximal singular value of Γk by computing off-
line the singular value of Γk on a sufficiently tight grid
verifying τk ∈ [0;T ] and τ̂k ∈ T (τk).

The fundamental preliminary result is presented in the
following proposition.

Proposition 9 If there exist a matrix U ∈ R
2(n+m)×2(n+m),

symmetric matrices Si ∈ R
2(n+m)×2(n+m), matrices

Ac,i, Bc,i, (i ∈ H), Cc and Dc such that the inequality

[

U + U ′ − Si ⋆

(Ai + EΓkF )U Sj

]

> 04(n+m), ∀(i, j) ∈ H×H (13)

is verified, then the controller (9)-(10) stabilizes the
NCS (8).

Proof 10 Assuming that the inequality (13) is verified,
this implies that U+U ′−Si > 02(n+m) and Si > 02(n+m),
which induces that U is of full rank and invertible. More-
over (U −Si)

′S−1
i (U −Si) ≥ 02(n+m) allows the inequal-

ity, ∀(i, j) ∈ H ×H

[

U ′S−1
i U ⋆

(Ai + EΓkF )U Sj

]

> 04(n+m). (14)
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By pre-multiplying the inequality (14) by diag((U ′)−1;S−1
i ),

and by post-multiplying it by diag(U−1;S−1
i ), we

have, with the change of variables Pi = S−1
i , Lij =

[

Pi ⋆

Pj(Ai + EΓkF ) Pj

]

> 04(n+m), ∀(i, j) ∈ H ×H.

By denoting P (τ̂k) =
∑

i∈H
µi(ρ̂k)Pi and by summing

the last inequality and finally applying a Schur comple-
ment, one gets

A
′
cl,kP (τ̂k+1)Acl,k − P (τ̂k) < 02(n+m). (15)

The positive definiteveness of the matrices Pi and the in-
equality (15) allow to prove that the function V (zk, τ̂k) =
z′kP (τ̂k)zk is a Lyapunov function for the closed-loop sys-
tem (11), which is thus asymptotically stable.

The next section will provide sufficient conditions de-
signing the dynamic output feedback (9).

4 Designing the dynamic output feedback con-
troller

The inequality (13) is not linear with respect to the gain
matrices of the controller, but via a change of variables,
originally proposed in an LTI case in [21], this is refor-
mulated into LMIs.

Proposition 11 Let us consider the predefined sys-
tem (8) and a scalar γ verifying the inequality (12). As-
sume that there exists matrices X, Y, K ∈ R

(n+m)×(n+m),
matrices Âi ∈ R

(n+m)×(n+m), B̂i ∈ R
(n+m)×p, matrices

Ĉ ∈ R
m×(n+m) and D̂ ∈ R

m×p and symmetric positive
definite matrices Ŝi ∈ R

2(n+m)×2(n+m), (i ∈ H) such
that the following LMIs are verified, ∀(i, j) ∈ H ×H















X1 − Ŝi ⋆ ⋆ ⋆

X2,i Ŝj ⋆ ⋆

0n×2(n+m) X3 In ⋆

γX4 0n×2(n+m) 0n In















> 0(6n+4m), (16)

where

X1 =

[

Y + Y ′ I(n+m) + K

I(n+m) + K ′ X + X ′

]

; (17)

X2,i =

[

Y ′Ai + B̂iC Âi

Ai + BiD̂C AiX + BiĈ

]

; (18)

X3 =
[ [

In 0n×m

]

Y
[

In 0n×m

] ]

; (19)

X4 =
[

0n −B
] [

I(n+m) X
]

+
[

BD̂C BĈ
]

. (20)

By choosing any invertible matrix M ∈ R
(n+m)×(n+m),

let us set the matrix N = (M ′)−1(K − Y ′X). N is in-
vertible and the controller with gain matrices

Dc = D̂, (21)

Cc = (Ĉ − D̂CX)N−1, (22)

Bc,i = (M ′)−1(B̂i − Y ′BiD̂), (23)

Ac,i = (M ′)−1(Âi − Y ′(Ai + BiD̂C)X

−Y ′BiCcN − M ′Bc,iCX)N−1, (24)

stabilizes the closed-loop system (11).

Proof 12 The proof is based on a suitable congruence
transformation and a change of variables allowing to ob-
tain the inequality (13) in Proposition 9. Such a trans-
formation has been initially proposed in [21] and ex-
tended in [2, 15]. The time-dependency of the Lyapunov
function implies that the decomposition provided in [21]
should be applied on the multiplier matrix U instead of
the matrices Si (i ∈ H) and that U should be time-
independent. Let us decompose the matrices U and U−1

as U =

[

X •

N •

]

; U−1 =

[

Y •

M •

]

. The matrix M ∈

R
(n+m)×(n+m) appearing U−1 is assumed to be invert-

ible. This invertibility property will be induced thereafter
by the constraints about matrix U . Let us introduce the

matrix Π =

[

Y I(n+m)

M 0(n+m)

]

. We have the following re-

lations UΠ =

[

I(n+m) X

0(n+m) N

]

; Π′UΠ =

[

Y ′ K

I(n+m) X

]

;

by noting K = (Y ′X + M ′N), as introduced in the
proposition. Using the structure of U allows to reformu-
late Π′(U + U ′)Π = X1; Π′

AiUΠ = X2,i; E′Π = X3;
FUΠ = X4 where the changes of variables are used

D̂ = Dc; (25)

Ĉ = D̂CX + CcN ; (26)

B̂i = M ′Bc,i + Y ′BiD̂; (27)

Âi = M ′Ac,iN + Y ′(Ai + BiD̂C)X

+Y ′BiCcN + M ′Bc,iCX. (28)

In addition, we will use in the sequel the change of vari-
ables Ŝi = Π′SiΠ. By applying the Schur complement to
the LMI (16) and due Lemma 7, we have (λ = 1),

[

Π′(U + U ′ − Si)Π ⋆

Π′(Ai + EΓkFi)UΠ Π′SjΠ

]

> 04(n+m). (29)

By considering M invertible, the matrix Π is invertible.
Pre-multiplying the inequality (29) by diag((Π′)−1, (Π′)−1)
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and post-multiplying it by diag(Π−1,Π−1) leads to in-
equality (13). We have only to prove that N defined by
N = (M ′)−1(K −Y ′X) is invertible to allow the change
of variables in Equations (22) and (24) and to end the
proof. Due to Inequality (16), X1 is invertible and also
Π′UΠ. The product

[

I(n+m) −Y ′

0(n+m) I(n+m)

][

Y ′ K

I(n+m) X

]

=

[

0(n+m) K − Y ′X

I(n+m) X

]

is then invertible, as (K − Y ′X) and N .

The proof of Proposition 11 considers the particular case
λ = 1 in Lemma 7. In fact setting λ = 1 is with no loss
of generality but allows the linearization of the condi-
tion (16). The main result provided by Proposition 11
is based on the feasibility of LMIs (16) for a fixed value
of γ. The question then arises to know what range of
uncertainty [δτmax; δτmin] for the dynamic output feed-
back controller ensures the closed-loop stability.

Proposition 13 Considering that LMIs (16) are feasi-
ble for a value γ = γ∗ > 0, then they are feasible for any
value 0 < γ ≤ γ∗.

Proof 14 The property is obvious by applying on
LMIs (16), with γ = γ∗ > 0, the change of basis
diag(I5n+4m; (γ∗)−1In).

Based on Proposition 13, a numerical line-search allows
to compute a threshold γ∗ of LMIs (16)-feasibility. By
defining δ = δτmax = −δτmin, an abacus based on the
increasing function δ → γ(δ) can be computed. This
abacus is thereafter used to obtain δ = δ∗ related to γ∗.

5 Illustration

In this section, we consider an example coming from [6]
and revisited in [13], for which n = 2, m = 1, A =
[

103.5 0

0 −43.5

]

, B =

[

33.6

−5.1

]

. It has been pointed out

that the design of a delay-independent state-feedback
controller by applying the design method proposed by [6]
failed with T = 0.005, nevertheless a design of a state-
feedback controller dependent on an estimate of the de-
lay with δ = 0.0015 = 3T/10 succeeded via the method
provided in [13]. Nevertheless such a method is not suit-
able when the state is not fully accessible. Let us con-
sider C = [10 1] to define the output of the system. γ is
given in Table 1, as function of h. h should be chosen to
reach a compromise between the improvement of γ and
the size of the LMIs in Proposition 11. Here we choose
h = 1 to apply Proposition 11, which leads to a solution.

By considering δ = δτmax = −δτmin, one can plot the
function δ → γ(δ) for distinct values of h on Figure 1.

h 1 2 3 4 5

γ 0.0039 0.0026 0.0024 0.0023 0.0023

Table 1
Upper bound γ associated with Γk in function of h .

For a fixed value of δ, when h increases, the upper bound
of the uncertainty decreases by definition. For our simu-
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Fig. 1. Values of the bound γ in function of
δ = δτmax = −δτmin ∈ [0; T ] for h = 1 (blue solid line),
h = 2 (black dashdot line) and h = 3 (red dashed line).

lation, the time-varying delay τk is randomly generated
in [0, T ] and τ̂k in T (τk). When choosing M = I(n+m),
our approach leads to the state- and input-trajectories
plotted in Figure 2, converging to the origin. Via the
zero order holder, the continuous time system is simu-
lated via TrueTime on Matlab-Simulink. The resulting
continuous-time trajectories are superposed on the Fig-
ure 2. A numerical line-search allows to determine the
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Fig. 2. State xk (× for x1,k and ◦ for x2,k) and the input uk,
in function of time tk.

thresholds γ∗ in function of h (given in Table 2). By us-
ing Figure 1, we can assert that our designed dynamic
output feedback stabilizes the system for an estimate er-
ror less than ±1.98 × 10−3s.
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h 1 2 3

γ∗ 4.56 × 10−3 4.32 × 10−3 4.28 × 10−3

Table 2
Threshold γ∗ of LMIs (16)-feasibility in function of h.

6 Conclusion

The design of a dynamic output feedback controller for
a network controlled system based on the knowledge
of time-varying delay estimate has been studied in this
note. As a preliminary result, the exponential uncer-
tainty is rewritten into a sum of a polytopic term and
an uncertain bounded term. With the help of the Pe-
tersen’s lemma and a change of variables inspired by the
Scherer’s one, a sufficient condition formulated as LMIs
has been provided to design a dynamic output feedback
controller stabilizing the network controlled system. A
illustrative example has been proposed.
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