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Abstract. This paper presents the lessons learned from an empirical
analysis of attackers behaviours based on the deployment on the Inter-
net of a high-interaction honeypot for more than one year. We focus in
particular on the attacks performed via the SSH service and the activities
performed by the attackers once they gain access to the system and try
to progress in their intrusion. The first part of the paper describes: i) the
global architecture of the honeypot and the mechanisms used to capture
the implementation details so that we can observe attackers behaviours
and ii) the details of the experiment itself (duration, data captured,
overview of the attackers activity). The second part presents the results
of the observation of the attackers. It includes: i) the description of the
global attack process, constituted of two main steps, dictionary attacks
and intrusions and ii) the detailed analysis of these two main steps.

Keywords : Security threats, experimental analysis, honeypot, dictio-
nary attack, intrusion.

1 Introduction

In the last decade, malicious activities have proliferated on the Internet and ex-
hibited a dramatic increase in volume and diversity. Such threats include viruses,
worms, denial of service attacks, phishing attempts, botnets, etc. [MJ08]. Moni-
toring malicious threats on the Internet and analyzing how the attackers proceed
for exploiting systems’ vulnerabilities would provide valuable information to se-
curity systems designers to build efficient protection mechanisms taking into
account the real threats observed in an operational context. This motivates the
need for methods for collecting and monitoring real world data related to mal-
ware and attacks and for experimental results based on the analysis of such
data.

The security community has set-up several initiatives and data collection
mechanisms aimed at fulfilling such objective using different techniques such as:

– the aggregation of logs collected from different sources (intrusion detection
systems, firewalls, etc.) [DSH],



– the monitoring of traffic targeting unassigned IP addresses using the so called
darknets [Cym], network telescopes [Moo02], blackhole monitors [DS02,BCJ+05]
or background radiation monitors [PYB+04],

– the deployment of honeypots, i.e., network resources dedicated to be probed,
attacked and compromised, that can be monitored to observe how attackers
behave [Spi02].

These techniques are complementary and can be used in combination. In this
paper we focus on honeypots and their use for observing attackers behavior.

Honeypots are not supposed to be used for production-related services. Thus,
all the traffic observed on the corresponding machines is suspicious and will very
likely point to malicious activities. Two types of honeypots can be distinguished
depending on the level of interactivity that they offer to the attackers: low and
high interaction honeypots [Spi02]. Low-interaction honeypots do not implement
real functional services. They emulate simple services, network stacks or some
parts of an operating system and do not offer attackers the possibility to realize
operations. Examples of implementations include Tiny honeypot [Bak], honeyd
[Pro04] and Nepenthes [BKH+06]. Thanks to their lightweight implementation
and easy administration, data collection infrastructures using low interaction
honeypots have been also deployed at a large scale to analyze and provide a
global picture of malicious activities observed at different locations of the globe.
We can mention for example the leurre.com project [Pou06] that has deployed
since 2004 more than fifty honeypot platforms based on honeyd covering the five
continents.

While low interaction honeypots are useful to provide quantitative statis-
tics about malicious threats and high-level information about attack patterns
on the Internet, they are not suitable for monitoring the activity of the attack-
ers who get the control of a target victim machine and try to progress in the
intrusion process to get additional privileges. Such objective can be achieved
with high-interaction honeypots that offer real services to the attackers to in-
teract with, which makes them more risky than low interaction honeypots. A
high-interaction honeypot can correspond to a physical conventional computer
system, or consist of virtual machines set up with VMware [VMw], User-mode
Linux UML [Dik06], or Qemu [Bel05]. Virtual implementations offer more flex-
ibility in terms of configuration, deployment and administration. Examples of
high-interaction honeypots are presented in [PH07]. We can mention e.g., Sebek
[Pro05], Argos [GP06], Honeybow [ZHH+07] and Potemkin [VMC+05].

So far, high-interaction honeypots have been mainly used to capture and
analyze autonomous propagating malware such as worms, viruses and botnets.
On the other hand, little evidence and experimental data have been published
about the observation and analysis of non automatic attacks managed by human
beings, using high-interaction honeypots. This is mainly due to the difficulty of
setting up such experiments. The objective of the research reported in this paper
is to contribute to filling this gap.

Contributions: In this paper, we describe the lessons learned from the de-
velopment and deployment of a high-interaction honeypot aimed at observing the



progress of real attack processes and the activities carried out by the attackers in
a controlled environment. We are mainly interested in observing and analyzing
the activities related to non automatic attacks. In our set-up, we have focused
on the monitoring of intrusions requiring the successful connection through the
SSH service. Indeed, recent studies of vulnerability trends (see e.g. the Top20 se-
curity risks report published by the SANS Internet Storm Center in 2007 [SAN])
have shown a significant increase of SSH attacks against Internet services using
in particular brute-force attacks. Our honeypot uses Gnu/Linux as a target op-
erating system. Three types of data are recorded by the honeypot: 1) the user
passwords and logins tried by the attackers to gain access to the system, 2) the
data exchanged within the SSH connections, and 3) the system calls generated
by the activity of the attackers.

The proposed honeypot has been deployed on the Internet for more than
one year (419 days) during which 552333 SSH connections have been observed.
In this paper, we present the methodology that we have developed to process
this data and we summarize the main lessons learned. Two main steps of the
attack process are investigated: 1) the first one, generally performed by means of
automatic tools, concerns brute-force dictionary attacks aimed at gaining access
to the system, and 2) the second step concerns the activity carried out by the
attackers once they succeed in breaking into the system (i.e., intrusions). As
concluded from the analysis, the second step has been performed by human
beings.

Preliminary results based on the analysis of a subset of the data were dis-
cussed in [Soua]. However, the analysis made in [Soua] concerned a shorter period
of time (six months). The results had to be confirmed over a longer period, what
is done in this paper. Moreover, the study reported in [Soua] only focuses on
the second step of the attack process and does not include the dictionary at-
tacks. Similar analyses regarding malicious SSH login attacks, are presented in
[RBC07] and [Sei06]. They partially confirm some results of this paper. However,
the observation period for these studies is much shorter, and the analyses are
less complete than the study presented in this paper.

The remainder of this paper is organized as follows. Section 2 discusses the
design rationale and the implementation for the deployed high-interaction hon-
eypot. Section 3 gives a high level view of collected data and the observed attack
processes. Section 4 is dedicated to the analysis of dictionary attacks and corre-
sponding user logins and passwords tried by the attackers. The intrusions and
the corresponding activities performed by the attackers are analyzed in Section
5. Finally, Section 6 summarizes the main conclusions and future work.

2 Architecture of the honeypot

Our work aims at analyzing the behavior of human being attackers on the In-
ternet. For that purpose, we need to develop an experimental platform allowing
the observation and monitoring of the activities carried out by such attackers.



In this section, we present the whole architecture and the design choices for our
honeypot as well as implementation details.

2.1 Principles

Our goal is to observe and analyze the behavior of human being attackers once
they have broken into a computer. For that purpose, we have to answer three
questions. How can we attract human being attackers ? How can we collect
information about their activities ? How can we control these activities ?

Even if high-interaction honeypots are well suited to observe attackers inside
a target system, such tools may capture activities originating from different
kinds of attackers: human beings, but also automatic tools. Several papers have
analyzed, thanks to honeypots, automatic software such as worms that spread
on the Internet. In [DJG07], the authors use honeypots to identify automatic
attack patterns of the Internet worms. Honeypots were also used to analyze the
behavior of attackers that try to build botnets, as presented in [RZJMT06] and
[ZC06].

In order to observe and monitor human managed manual attacks, we need:
1) to provide to the attackers a vulnerable target operating system, and 2) to
ensure that the potential risks that might result from the exploitation of such
vulnerabilities are properly controlled and mastered. Also, the observation of
the activities related to the attacks requires some modifications of the operating
system. For these reasons, we decided to use the Gnu/Linux operating system for
our honeypot: we are familiar with this operating system and the availability of
the source code is a great advantage. In our experiments, we are more interested
in observing and monitoring the activities carried out by the attackers once they
succeed in breaking into a system, than in the process that allowed them to
break into that system. Accordingly, we have used as a target for attacks an
SSH server running on the Gnu/Linux operating system that includes a very
common vulnerability to compromise Internet systems: i.e., user accounts with
weak passwords. As a consequence, we also limit the intrusions performed by
automatic tools1. As a matter of fact, it is more difficult for an automatic tool
to perform an attack in a coherent way via the SSH service, whereas this is more
relevant for manual attacks because such vulnerability offers them the possibility
to perform interactive connections on the system.

Authorizing remote accesses to the SSH service only does not particularly
betray our honeypot. As a matter of fact, such a configuration is representative
of the common configuration of traditional systems connected to the Internet.
Thus, it is not specific and should not let the hackers think, at first glance at
least, that they are targeting a honeypot.

In order to offer an interesting target to attackers and to allow us to collect
detailed information about their behavior, we have set up several honeypots. This
is useful in particular to observe potential attempts to perform stepping stone

1 Let us note that some recent worms include password brute force attacks, see e.g.,
[FS06].



attacks from one honeypot to other honeypots. However, administrating several
physical machines is a hard task. The virtualisation technique enables to have
only one physical machine to administrate, upon which several virtual operating
systems can be hosted. We decided to use this technique and more precisely
the VMware software [VMw]. With virtual operating systems, the cloning, the
reconfiguration and the modification of the operating system is very simple.
Furthermore, if the attacker succeeds in destroying some part of the operating
system he has broken into, the recovery procedure is simplified compared to the
case of a real operating system.

Our honeypot must be adapted to the observation of manual attacks, while
staying as much elusive and transparent as possible, to avoid their detection
by the attackers. The modification of the virtual operating system is necessary
to collect appropriate information to analyze the behavior of the attackers. We
identified three sources of information to capture: 1) the pairs (username and
password) tested by the attacker to gain access to the system; 2) the data ex-
changed inside the SSH connection; and 3) all the system calls generated by the
activity of the attacker2. In order to capture this information, we made some
modifications to the virtual hosts, in the kernel of the operation system. Section
2.2 presents implementation details.

Once the data is captured, it is necessary to archive it for future analyses.
Different backup strategies can be considered: a) through the network or on the
honeypot itself, and periodically or not. We chose to backup the data periodically
and without the use of the network. We explain the reasons of this choice and
the implementation details in Section 2.3.

2.2 Modification of the kernel source code

To modify the kernel of a Linux operating system, two main approaches can
be distinguished. The first one consists in directly patching the kernel of the
operating system and the second one consists in dynamically loading a module
in the operating system. The second approach is in general easier to detect by
the intruders. Thus, we decided to adopt the first approach, to be as transparent
as possible. For the same reason, we chose to develop our own implementation
without disclosing the main technical details, instead of using Sebek for example,
that is widely known and for which several techniques exist for its detection.

The kernel of each virtual machine was patched at two places. We instru-
mented: 1) the functions that allow us to record all the keystrokes and characters
typed by the intruder while he/she has successfully penetrated the system and
used an interactive shell, and 2) the function that allows us to intercept each
system call executed by the intruder3.

2 This system call capture is not efficient if the attacker uses a userland execve [Gru04].
3 This function was modified in case the analysis of the tty activity would not be

sufficient to determine the nature of the attacker behavior (for instance, in the case
where an attacker downloads and executes a malicious program that does not print
any output information on the tty).



Additionally, in order to capture the usernames and the passwords tested by
the attackers, we created a new system call in the kernel and modified the SSH
server accordingly to use this new system call. All this information is logged on
a particular region of the kernel memory space of the virtual host. This choice
is motivated by the fact that most of the patched code runs in privileged mode
(ring 0) and has direct access to kernel memory space.

The first modification of the kernel source code concerns the tty driver.
This driver controls all the terminals and pseudo-terminals on Linux hosts (and
particularly all the characters typed by the user on these terminals). It defines
the read and write functions for terminals. The modification of these routines
allows us to intercept the characters typed by the attackers as well as all what
the attacker sees on the terminal. This modification is realized, for the read
operation, by inserting a call to our function log tty read that stores all the
data that are read.

The second modification is done in the exec system call, that allows any
program to be executed on the system. More precisely, we modified the kernel
do execve routine. This routine receives a binary file name, loads it in memory
before creating a process associated to this file. By modifying this system call,
we can memorize the list of files executed by the attacker.

The last modification of the kernel source code consists in creating a new sys-
tem call. For that purpose, we added the corresponding routine in the source code
and modified the files syscall table.S (table of system calls) and unistd.h

(list of all system call numbers). Indeed, the SSH server does not run in ring0
and thus cannot directly write in the kernel memory space on the virtual host.
It has to use a system call for that4. The SSH server uses this new system call
to memorize each username/password tested by an attacker5.

Let us note that there are many low level system call capture tools, such
as ptrace, SAL [SAL] or LinuxBSM. None of these tools was suitable for our
requirements. In particular, all these tools log the captured information in the
file system, whereas in our case, the captured information is directly stored in the
kernel memory (see next section for justification). Furthermore, some of these
tools, e.g., ptrace are known to be easily detectable by the attackers.

The entry point of our honeypot is the SSH daemon. It is the only service
that runs on the honeypot, and, to our knowledge, our SSH version does not
contain known vulnerabilities. The attackers may exploit the vulnerabilities of
this daemon to gain access to the core of the system. We have analyzed the
vulnerabilities published corresponding to the release of the SSH daemon used
in our honeypot considering the openssh web site and the CVE database. Some
of them allow the attacker to bypass the authentication phase. However, even
in this case, a pseudo terminal is attached to the attacker and we are able to
observe his activity on the honeypot.

4 We could also use an existing system call and modify its behavior.
5 This information is backed-up later on a storage system, see section 2.3.



2.3 Backup of the collected data

As explained in the previous section, the collected information is stored in the
kernel memory address space. This memory region has a fixed size to avoid using
dynamic memory allocation, which could produce an overload in the CPU ac-
tivity. In order to optimize the memory space, the collected data are compressed
and encrypted using the LZRW1 algorithm LZRW1[Wil91]6.

The code that captures these data is part of the kernel running code. As a
consequence, storing the captured data in the kernel memory address space is
easy to implement and furthermore, is difficult to detect. The detection of the
process by the attacker requires that: 1) the attacker gains the root privileges;
2) he identifies the memory region where the data is stored; and 3) he identifies
that the LZRW1 algorithm has been used to compress the data.

To backup the data in a database server, the data are not sent through
the network, as it is often realized in many high interaction honeypots (see for
example [AGLJ05]). The data are copied into the real host: all the content of the
virtual host memory is directly accessible from the real host. The main advantage
of this backup strategy is that it is difficult to identify by the attacker. It is a
simple copy of data from a memory region to the hard disk of the real host
and it is carried out only once a day at a fixed date (this operation lasts less
than one second). Nevertheless, this strategy could be detected by an attacker
who monitors the CPU load. A better, but more complex solution, would be to
backup the data when no attacker is logged on the honeypot. However, this would
require to interrupt the backup process whenever an attacker logs in during this
process.

Figure 1 gives an overview of the honeypot implementation with the data
backup mechanisms.

2.4 Deployment and preliminary analyses

The whole platform used for our experiment is composed of three virtual hosts
(with Gnu/Linux operating systems) run on top of the VMware software. These
virtual hosts are standard machines with usual development tools (text editor, C
compiler, ...), patched with our kernel modifications. Only incoming connections
to the SSH service (port 22) are authorized by a firewall. All outgoing connections
are forbidden to prevent the use of our honeypot by the attackers to attack other
Internet hosts.

A connection to the SSH service is the observation unit supplied by the
honeypot. Each connection is characterized by five attributes: the date of the
connection, the IP address of the origin of the connection, the username and
password tested, a boolean indicating if the password is correct and a boolean
indicating if this connection contains interactive commands.

Our experiment was carried out in two steps. We started by deploying the
honeypot with the SSH service up but without any user accounts. During this

6 We did not add any additional mechanism to prevent kernel memory exhaustion,
which is still possible, but it never occurs during the whole experimentation.
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Fig. 1. Implementation of the high interaction honeypot

first month of the experiment, we obviously observed only failed SSH connec-
tions. However, we used these connections to have an idea of the most tested
pairs (username/password). Then, we created 17 user accounts. All these user
accounts were created with valid passwords, and more precisely, the login was
identical to the password. Furthermore, no fake activities were created for these
accounts.

This platform has been deployed on the Internet and has been running for
419 days (from 5 January 2006 to 20 March 2007) during which 650 IP addresses
have tried to contact the SSH port of the honeypots, for a total number of 552 333
connections. For each of these connections, a pair (username/password) has been
supplied by the attacker. Some pairs were used several times. We counted 98340
different pairs. A detailed analysis of these pairs and the way they are used by
attackers is presented in Section 4.

Most of the SSH connections submitted to the honeypot were unsuccessful.
Considering the successful connections observed for each user account created
in the experiment, as illustrated in Figure 2, we can distinguish two main stages
corresponding to two different types of activities. The first stage identified by τ1

corresponds to the period between the time when the account was created and
the time when the first successful connection for this account was observed. The
second stage, identified by τ2, corresponds to the period between the first suc-
cessful connection for this account and the first successful connection including
commands typed by the attacker recorded on the honeypot.

In our experiment, we did not observe attack activities including commands
that were not preceded by an authentication phase (see discussion at end of
section 2.2).



Account creation

First successful

connection for 

this account

First successful connection 

with commands for

this account

date

1 2
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Table 1 presents the durations corresponding to τ1 and τ2, that have been
observed for each user account. It is interesting to note that τ2 is never null
(except for one account). This clearly indicates that there are two steps in the
intrusion process (we will deeply analyze this process in Section 3). The first step
consists in guessing the correct password for a particular account, password that
is not used immediately. The second step, later, consists in using this password
to perform an interactive connection to the honeypot with commands.

User Account Duration between creation Duration between first
and first successful successful connection

connection with commands
UA1 1 day 4 days
UA2 half a day 4 minutes
UA3 15 days 1 day
UA4 5 days 10 days
UA5 5 days null
UA6 1 day 4 days
UA7 5 days 8 days
UA8 1 day 9 days
UA9 1 day 12 days
UA10 3 days 2 minutes
UA11 7 days 4 days
UA12 1 day 8 days
UA13 5 days 17 days
UA14 5 days 13 days
UA15 9 days 7 days
UA16 1 day 14 days
UA17 1 day 12 days

Table 1. Durations τ1 and τ2 observed for each user account



3 The attack process

This section is dedicated to the precise analysis of the intrusion processes ob-
served on our honeypot. We first introduce the concept of attack session and
we describe how we classified them in order to analyze the corresponding attack
process. Then, we characterize in more detail, in Sections 4 and 5, the two main
steps of the attack process.

3.1 Identification of attack sessions

Among the SSH connections, some include commands. Let us call these connec-
tions action connections. Others, that constitute the majority, do not include
commands. Let us call them authentication connections.

These authentication connections may of course be due to mistakes, such
as a user who does not correctly enter the IP address of the host he wants to
connect to. He tries to connect to the bad host, two or three times, realizes his
mistake and gives up. However, most probably these connections correspond to
brute-force dictionary attacks. A dictionary attack is a succession of authenti-
cation connections in a short time, aimed at guessing valid user accounts on the
target host. Most of these connections fail, the successful ones correspond to the
guessing of valid accounts. Clearly, it is very likely that the discovered accounts
will serve for future attacks using action connections including interactive com-
mands. In order to distinguish the different dictionary attacks, it is necessary
to specify the minimum number of authentication connections that constitute a
dictionary attack. This choice is empirical: we used a sufficiently high value (9)
to distinguish real dictionary attacks from mistakes.

In order to have better insights into the attack processes observed on our
honeypot platform, and analyze the activities performed by the intruders, we
need to organize the large number of connections that we have recorded into
attack sessions. A session is a sequence of connections in a short time, realized
from the same IP address targeting the same IP address (i.e., one virtual ma-
chine). A session represents the behavior of an attacker on the honeypot. For
example, if an attacker realizes a sequence of connections in a short time the
day D, then does not make any connection for 2 days and then performs again
a sequence of connections in a short time the day D + 3, then, we identify two
sessions of the same attacker. In some contexts, the IP address of the attacking
machine might change due to DHCP lease renewal. If such a change occurs dur-
ing an attack, then we should observe on the honeypot two contiguous sessions,
from two different addresses. Such a situation is not very likely. It did not occur
during the whole period of our experiment.

As detailed in [Soub], the identification of the attack sessions can be done
based on a sliding window clustering algorithm, considering a timing threshold
that defines the maximum duration separating the reception at the honeypot
of two consecutive packets belonging to the same attack session. The definition
of suitable values for this threshold is generally based on heuristics. Figure 3
plots the number of sessions obtained from the grouping of SSH connection for



different values of the timing threshold (in seconds). It can be seen that the
number of sessions does not change significantly when the threshold exceeds
16 seconds, when compared to lower threshold values. In this case, 1940 attack
sessions are obtained from the grouping of the 552333 SSH connections recorded
at the honeypot. The choice of the value of 16 seconds for the threshold is
empirical. However, we noticed that the choice of a higher threshold does not
have a significant impact on the classification of sessions and the analysis of
attackers activities depicted in the following sections.
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Fig. 3. Evolution of number of sessions according to threshold

3.2 Categorization of sessions

To classify the sessions, we defined three categories: the first one gathers attack
sessions that include some action connections corresponding to the execution of
commands on the honeypot. These sessions are called intrusions. The second
category gathers sessions that are composed of dictionary attacks. The third
category gathers the remaining sessions. This classification is depicted in Figure
4.

As illustrated in Figure 4, 210 intrusions were identified from the initial set
of 1940 sessions. The analysis of the remaining 1730 sessions that did not include
the execution of commands, led to the identification of 1391 dictionary attacks.



The remaining sessions (339) correspond to sessions that we were not able to
classify.
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1730 sessions

without command

Fig. 4. Classification of sessions

3.3 The main steps of the attack process

Considering the set of dictionary attacks and intrusions, we made further anal-
yses in order to identify relationships between these different types of attacks so
that we can better understand the global attack process. We have investigated
in particular the IP addresses of the attacking machine as well as the starting
date of the attacks.

First of all, we observed that a dictionary attack that enables to discover a
user account always precedes an intrusion realized on the host with this pair. We
also compared the set of IP addresses of the machines that perform dictionary
attacks and the set of IP addresses of the machines that perform intrusions: the

intersection is empty.
Furthermore, the IP addresses used to perform dictionary attacks correspond

to machines that could not be located precisely (the RIPE database for example
identifies the corresponding country as “EU # Country is really world wide”).
They generally belong to class C addresses, whereas the IP addresses used to
perform intrusions are mostly located in the same European country, and belong
to the same class A network.

This means that the machines that perform dictionary attacks are very likely
specialized for this kind of attacks, and they are not used to perform intrusions.
This fact is all the more interesting that it was verified during a long period (419
days).

We also compared the IP addresses that performed the dictionary attacks
and the intrusions to the IP addresses observed on the low interaction honey-
pots deployed in the context of the Leurre.com project [PDP05]. None of these



addresses were observed on the low interaction honeypots. This result confirms
the specialization of the machines that only perform one type of attack. Fur-
thermore, as shown in [PDP04], attacks are not necessarily performed blindly
on any IP address on the Internet. A preliminary scan step of the Internet, in
order to identify the available services running on the accessible machines may
be carried out before the dictionary attack. However, the port scanning step is
not systematic in any attack process. This has been observed for example in
the experimental study presented in [PTJC05] in which more than 50% of the
observed attacks were not preceded by a port scan.

In the following, we focus on the analysis of the two main steps of the global
attack process observed on our honeypot:

1. the dictionary attacks aimed at guessing valid user accounts, and
2. the intrusion process itself, that consists in executing commands on the com-

promised host.

4 The dictionary attack step

Our main goal in this section is to make a more in-depth analysis of this step and
particularly to analyze the different dictionaries that are used in the dictionary
attacks, in order to identify some properties of these dictionaries. We try to
answer questions such as: are there as many dictionaries as dictionary attacks
or are there very few dictionaries that are shared by the attackers community ?

4.1 Overview of the observed dictionary attacks

When observing a dictionary attack, we have no means to know if the attacker
has completely executed his attack or not. Thus, it is likely that the set of
recorded pairs (username/password) is only a part of the dictionary of the at-
tacker. Several dictionary attack tools generate a set of pairs using concatenation
of words retrieved from a single list. So, we call vocabulary associated to a dictio-
nary attack the set of username and password used during this attack. Formally,
a vocabulary V(e) associated to a dictionary attack e is defined as follows:

V(e) = {username(t), password(t)/t ∈ e} (1)

where t is a SSH connection belonging to the dictionary attack e and username(t)
and password(t) form the pair used during this connection.

Two vocabularies whose intersection is empty were probably generated from
different dictionaries. Two vocabularies whose intersection is important were
probably generated from the same dictionaries.

Tables 2 and 3 respectively present statistics on the vocabulary sizes of the
dictionary attacks observed on the honeypot as well as the durations of the
corresponding attacks (in seconds). The size of the vocabularies varies between
2 and 11182 words. The average and the third quantile are similar. This means
that the dictionary attacks observed generally use less than 289 words. Let us



note that the first quantile is relatively small (20). The duration of the dictionary
attacks are directly correlated to the size of the corresponding dictionaries. As
shown in Table 3, the majority of the attacks have a duration between 1 and 13
minutes. Nevertheless, some attacks were very long, maximum being 9 hours.

Feature Value (s)

minimum 1
quantile 25% 77
median 313
quantile 75% 781
maximum 34969
average 701

Table 2. Statistics on dictionary at-
tacks durations

Feature Value

minimum 2
quantile 25% 20
median 123
quantile 75% 308
maximum 11182
average 289

Table 3. Statistics on vocabu-
lary sizes

Some vocabularies share words with other vocabularies and some do not. As
a result, the intersection between all the vocabularies is empty. To identify the
similarities or dissimilarities between two vocabularies, we propose, in the fol-
lowing section, the definition of a distance between vocabularies and a clustering
algorithm based on this distance.

4.2 Distance between two vocabularies

The analysis of the similarities between vocabularies is very close to the analysis
of the similarities between two texts. An example of such analysis can be found
in [LL01], in which the author introduces an intertextual distance that takes into
account texts with different sizes. Let us define two texts, A and B such that
the size of text B is much more higher than the size of text A. If this difference
is not taken into account, the distance may be too important. In order to solve
this problem, the frequencies of the words in text B are weighted by the quotient
of size of text A and size of text B.

We propose a distance similar to the intertextual distance. However, we must
adapt it so that we can take into account repetitions. In a novel, these repetitions
are frequent and common. Regarding dictionary attacks, very few vocabularies
include repetitions. As a consequence, the frequency of the words of the vocab-
ulary is very often equal to 1. Thus, we have adapted the intertextual distance
so that the repetitions of the words does not have a dominant weight in the
definition of the distance.

D(A,B) = (1 − s) · (1 − s′) (2)



(1 − s) =

∑

m∈M

(F (m,A) − F (m,B))

∑

m∈A

F (m,A)
(1 − s′) =

∑

m∈N

(F (m,B) − F (m,A))

∑

m∈B

F (m,B)

M = {m ∈ A/F (m,A) ≥ F (m,B)} N = {m ∈ B/F (m,B) > F (m,A)}

In this definition, F (i,A) is the frequency of word i in text A. So, s (respec-
tively s′) represents the proportion of the words of A (respectively B) shared
with B (respectively A). This distance is defined in the interval [0; 1]. If one
of the vocabularies is included in the other, it is equal to 0. If the intersection
between the two vocabularies is empty, it is 1.

Let us note smax = max(s, s′) and smin = min(s, s′). The distance becomes:
D(A,B) = (1 − smax) · (1 − smin).
smin is the proportion of the words of the biggest vocabulary shared with

the smallest. When smin tends towards 1, then the big vocabulary tends to be
identical to the small vocabulary. smin measures the similarity between the two
vocabularies. In the same way, smax is the proportion of words of the smallest
vocabulary shared with the biggest. When smax tends towards 1, the small vo-
cabulary tends to be covered by the big vocabulary. smax measures the coverage

of the smallest vocabulary by the biggest one.
Two dictionary attacks using the same dictionary may be stopped by the

attackers at different stages of the attack. In this case, the vocabularies observed
on the honeypot have different sizes. In this context, it is more appropriate to
evaluate if two vocabularies are part of the same dictionary based on the coverage
metric. As a consequence, the criterion which we consider to evaluate if two
vocabularies are part of the same dictionary is the coverage. Thus, we define a
clustering criterion according to the coverage of the smallest vocabulary by the
biggest.

4.3 Clusters of vocabularies

The objective is to identify the very similar vocabularies and group them into
clusters. Our approach consists in gathering two vocabularies if a big proportion
of the words of the smallest vocabulary is shared with the biggest one.

In this study, we gather together the vocabularies such that 75% of words
of the smallest one are shared with the biggest. This condition is satisfied if
D(A,B) ≤ 0.0625. By using this criterion, we identified, from the set of 1391
vocabularies, 413 clusters. Only 2.2% of these clusters (i.e., 9 clusters) represent
33% of the observed dictionary attacks. This result lets us conclude that few
dictionaries are shared by the attackers on the Internet.

Figure 5 is a matrix presentation of the vocabulary clusters. Each column
and each line represents a vocabulary. The intersection of a column, representing
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Fig. 5. Distance between vocabularies

vocabulary A, and a line, representing vocabulary B is either a white or dark
point, according to the distance between these two vocabularies. The dark color
is used if the distance is lower than our threshold. Columns and lines have been
ranked in such a way that similar vocabularies are placed close to each others.

Figure 5 shows two big clusters. These two clusters include more than 20%
of the vocabularies. The biggest cluster (called A in the figure) includes 185
vocabularies: 183 vocabularies are exactly identical and made up of 8 words and
the 2 others have different sizes : 140 and 611. All the distances in this cluster
are 0: the vocabularies of 8 words are included in those of 140 and 611 words.

The other cluster (called B in the figure) is composed of 131 vocabularies:
111 are made up of 147 words and are identical; the other vocabularies have
different sizes, between 13 and 623 words.

The third big cluster (called C in the figure) gathering 51 vocabularies is
also noteworthy. The sizes of all these vocabularies are different, from 45 to 925
words, the average being 169 words per vocabulary.



We have also analyzed, for these three clusters, the time when the corre-
sponding dictionaries have been used during the experiment. The results are
presented in Figure 6. Let us first note that these dictionaries have been used
during a very long period of time. For example, the cluster A is associated to
64 different IP addresses. These addresses have been observed several times on
the honeypot, at a regular basis, during the 419 days period of the experiment.
A dictionary attack of this cluster has occurred in average every 2 days. It is
noteworthy that none of the IP addresses of the cluster A is associated to the
two other clusters. On the other hand, 17 among 38 addresses of the cluster C
are also associated to the cluster B. Thus, these analyses lead us to conclude
that these three clusters identify different communities that have used the same
dictionary during the observation period7.

In a recent study reported in [OM] about passwords and methods used in
brute-force SSH attacks, dictionaries of the same size as in our study (including
in particular 8 and 147 words) have been also observed. This also seems to
confirm the fact that the same attack tools are shared in the community for
performing brute-force SSH attacks.

Fig. 6. Evolution of the use of the dictionaries

In the next section, we analyze more precisely the dictionaries associated to
each cluster.

4.4 Identification of dictionary kernels

Vocabularies inside each cluster are similar. They have probably been generated
from the same dictionary or from close dictionaries. Of course, it is not possible
to obtain the whole dictionary because some pairs may not have been used by

7 Let us note that communities may refer to really different groups of machines but
also different configurations of the same botnet.



the attacker. The idea is to reconstitute a part of this dictionary that we call
dictionary kernel.

The dictionary kernel associated to a cluster c, denoted as Dd(c), is defined
as the set of words shared by at least two vocabularies of this cluster. We did not
consider the union of all the dictionaries because it would include also the pairs
that have been tested only once, which is not significant. On the other hand, we
did not consider the intersection of all the dictionaries to avoid the elimination
of the pairs that have been tested by several dictionary attacks but not all of
them, which would be restrictive.

The example of Figure 7 presents four vocabularies v1, v2, v3 and v4. The
associated dictionary kernel is identified by the grey surface.

v1

v2

v3
v4

vocabulary

dictionary kernel

Fig. 7. Example of dictionary kernel for a cluster

We have analyzed the dictionary kernels associated to the 413 clusters, based
on the examination of the pairs (username/password) composing these kernels.
The username and the password may be words of a spoken language such as
French or English but may also be words without any significance or words
particularly chosen by the attackers.

Let us first note, that most of the dictionary kernels include many words
without any significance, that do not belong to the English or French language:
3/4 of the dictionary kernels hold more than 75% of such words. Also, we have
observed that the attackers did not adapt their dictionary to the geographical
location of their victim. Indeed, although our honeypot was deployed in France,
most the words included in the dictionaries are English. This is illustrated in
Figure 8 in which each dictionary is represented as a point. The X coordinate
is the percentage of these words that are English words and the Y coordinate is
the percentage of these words that are French words (the sum of the percentages
may be higher than 100% because a word may be both English and French).

Table 4 gives the list of the usernames that were tested the most, for all the
dictionary attacks. It appears that the root account is the most tested account
(85426 tries whatever the passwords, in 419 days). It can be observed that this



table includes a lot of accounts created by default (test, admin, guest, user,

mysql, oracle,web, test, ftp). We can conclude that the dictionaries are
built by taking into account the specificities of these particular user accounts.
Let us note that similar trends are reported in [Sei06] and [RBC07]. However,
these papers do not present a detailed dictionary analysis as presented in this
paper.

Classification username Total number number and % of kernels
of connections including this username

1 root 85426 193 (46.7%)
2 admin 15556 159 (38.5%)
3 test 5615 201 (48.7%)
4 guest 2425 118 (28.6%)
5 user 2165 109 (26.4%)
6 mysql 1671 118 (28.6%)
7 oracle 1479 106 (25.7%)
8 ftp 1283 98 (23.7%)
9 web 1133 82 (19.9%)

Table 4. Particular accounts per cluster

As illustrated in Table 4, we can notice that, even if these accounts are the
most tested, they are not tested by a large number of dictionary kernels. For

Fig. 8. Proportion of English and French words of dictionary kernels



example, the root account is only included in 193 among 413 dictionary kernels,
for 85426 connection attempts.

Classification Number of connections username password

1 909 test test

2 879 admin admin

3 864 root root

4 824 guest guest

5 819 root 123456

6 790 user user

7 757 root password

8 706 mysql mysql

9 676 richard richard

10 663 oracle oracle

11 660 sales sales

12 659 test 123456

13 650 web web

14 597 ftp ftp

15 584 michael michael

16 574 paul paul

Table 5. List and frequency of most tested pairs

Finally, if we take a closer look at Table 5, we can notice that a large number
of username/password pairs tested have identical username and password. Ap-
proximately, one third of the dictionary kernels include 75% of such pairs. This
result lets us think that the attackers assume that an important proportion of
the users on Internet behave in a such way.

4.5 Comparison with John the Ripper

John The Ripper is the most popular password cracking system that is widely
available through the Internet. One of the questions that can be raised is: how
similar are the dictionary kernels identified in our experiment with the dictionary
used by John the Ripper. Figure 9 plots for each dictionary kernel the percentage
of words from John the Ripper dictionary8 that are contained in each kernel.

The Y axis on the left reports the size of each kernel.The dictionary kernels
are sorted by increasing order according to the percentage of coverage achieved
with respect to John the Ripper. As can be seen, the intersection with John the
Ripper is generally low (about 80% of the kernels contain less than 50% of the

8 We used the dictionary available at: http://www.openwall.com/john. This dictio-
nary contains 3107 words.



words used in John the Ripper dictionary). As a conclusion, the dictionaries used
by the attackers observed in our experiment look generally different from John
the Ripper dictionary. Only a few kernel dictionaries included a high percentage
close to 100% of the words used by John the Ripper dictionary.

4.6 Dictionary attacks: conclusion

The main results of this experiment can be summarized as follows:

– Only a few number of dictionaries are shared among the attacker community
to execute brute-force attacks.

– These dictionaries are different from the dictionary used in the popular John
The Ripper tool, which seems to indicate that the attackers community also
possesses its own dictionaries to brute-force passwords.

– The dictionary kernels identified in our study were used all along the exper-
iment period and are thus stable in time.

– The attackers did not take into account the geographical location of their
victim (they did not adapt the language used for their logins and passwords
according to this location).

– The dictionaries include, for most of the couples (login/password), arbitrary
words without significance but the most tested couples correspond to well-
known accounts, often created by default.

5 The intrusion step

A dictionary attack is only a preliminary step that enables an attacker to per-
form an intrusion (a session which includes action connections, see 3.2). Among

Fig. 9. Percentage of words shared with John the Ripper



the 1940 sessions previously identified, 210 are considered as intrusions. These
intrusions are studied in this section.

The number of different IP source addresses corresponding to these 210 in-
trusions is 57. They targeted 21 different user accounts. Table 6 presents, for
each user account, the number of intrusions, addresses and passwords associ-
ated. First, it can be noticed that several passwords may be associated to the
same account. This is not surprising because one of the first operations performed
by the attackers once connected to our honeypot was to change the password.
It is interesting to note that none of these IP addresses was used to perform

dictionary attacks. One possible conclusion is that the attackers on the Inter-
net specialize their machines to some specific attacks. We can even suppose that
the attackers are organized in communities in order to perform their actions in
concert by using different sets of machines to perform their attacks.

Account Number of intrusions Number of passwords Number of addresses

C1 11 2 6
C2 3 2 2
C3 39 2 10
C4 2 2 1
C5 3 2 2
C6 22 2 7
C7 21 2 2
C8 32 2 3
C9 14 2 6
C10 2 1 2
C11 3 2 2
C12 17 3 3
C13 4 2 1
C14 3 2 2
C15 1 1 1
C16 3 2 1
C17 19 1 7
C18 2 2 1
C19 1 1 1
C20 5 1 3
C21 2 1 1

Table 6. Number of intrusions per account

In the following paragraphs, we analyze the behavior of the intruders. First,
we characterize the nature of the intruders: humans or automatic tools. Then
we give an overview of the different kinds of activities the intruders have carried
out on the honeypot. Finally, we discuss their skills.



5.1 Nature of intruders: humans or automatic tools

The intruders may be human beings or automatic tools that only perform simple
tasks. We have considered two main criteria to identify activities performed by
humans: 1) typos and 2) the mode of data transmission between the user and
the honeypot.

Typos constitute a first element that seems to characterize human beings. To
correct the typos, the user regularly hits the backspace key (127 ASCII code).
Thus, the first possibility to determine the nature of the intruders is to analyze
the sequence of keystrokes hit by the attackers and check if the backspace key
is included. We assume that it is unlikely that the automatic tools will try to
imitate the human behavior by including deliberately such typos.

In some cases, the intruder uses very few commands and is very unlikely
to make typos. Moreover, a very careful human being may perfectly enter his
commands without making typos. In these situations, the analysis of the protocol
used to send the data through the network can help us to distinguish between
a human being and an automatic tool. Indeed, through SSH connections, the
transmission of data between the client and the server is asynchronous. Most of
the time, the implementations of the SSH clients use the select() function to
get the key hit by the user. When the user hits a key this function ends and
the client sends the character entered to the server. In the case of a copy/paste
in the terminal of the user, a buffer including all the data from the copy/paste
action is sent through the SSH connection. In our implementation, the data sent
through the SSH connection are received by the tty read() function. Thus, we
consider that, if this function returns more than one character, the data have
been transferred by a copy/paste operation. In summary, we consider that an
intrusion without any typos and for which all the data are transferred per blocks
is performed by an automatic tool. If an intrusion transfers data character per
character and also by blocks, we consider that it is performed by a human being,
the transfers per blocks being due to keyboards shortcuts.

210 intrusions

(?)

106 intrusions with typos

(human being)

104 intrusions 

without typos

(?)

47 intrusions without typos 

 and character per character

(human being)

57 intrusions without typos

 and block per block

Fig. 10. Nature of intruders



By applying these two criteria (typos and data transfer mode), we obtained
the classification of intrusions presented in Figure 10. 106 among 210 intrusions
include typos. These 106 intrusions were very likely performed by human beings.
Regarding the 104 intrusions that do not include typos, 47 of them have used
the character per character data transmission mode. Thus, according to our
second criterion, they have been carried out by human beings. Regarding the
other intrusions, the activities carried out do not enable us to conclude on the
nature of the intruder. Indeed, they include too few commands (only one in
general, such as w for example). To conclude, more than 75% of the intrusions
were realized by human beings.

5.2 Intruder activities

In this section, we analyze the different commands used by the intruders to
identify the different types of activities they have carried out, considering the
210 intrusions.

Let us first notice that all the intruders start their activity by changing the
password of the account they have just broken. Changing the password enables
them to be the only one who can connect and use this account on the machine.
This is surprising at some extent because this modification of password betrays
their activity on the honeypot. If a legitimate user regularly uses this account,
he will easily detect that he has been attacked.

The second activity performed by the intruders is the downloading of ma-
licious programs from the Internet. The command mostly used to download
programs is wget. 96 among 210 intrusions used it. Let us recall that the out-
going connections are blocked, so a connection to a remote web server cannot
succeed using such a command. However, the intruders can upload their mali-
cious programs from Internet to the honeypot by using another SSH connection
thanks to the sftp command. Surprisingly, only 30% of the intruders thought
about uploading their malicious software through the SSH connection.

Two explanations seem relevant. We can first imagine that the intruders
use cookbooks, available on the Internet. These cookbooks propose some attack
methods. Most of the time, they use the wget command in order to download
files and the intruders that use the cookbooks do not necessarily know other
methods to download files. Regarding the second explanation, we can imagine
that the intruder suspected that our machine is not a “regular” machine when
he realized that the wget command fails and decided to give up. In fact, the
first explanation seems to be the good one. As a matter of fact, we noticed that,
the sessions corresponding to the activity of the intruders that give up after the
wget command fails include a lot of copy/paste operations. This lets us strongly
suppose that such intruders use cookbooks. Furthermore, we noticed that these
intruders generally come back again to the honeypot several days after their first
intrusion and that they try again the same sequence of commands. Some of them
came back several times.

When the intruders have succeeded in downloading their malware on the
honeypot, they uncompress their files. Approximately 75% of the intruders do



not use directories of the broken account for that but rather, standard writable
directories of the Unix system, such as /tmp, /var/tmp or /dev/shm. These di-
rectories are used and shared by all the users of a Unix system, so it is difficult
to identify the malicious activity of the intruders in these directories. In these
standard directories, the intruders create their own hidden directories (directo-
ries whose name starts with the ’.’ character) or create the “ ” directory. This is
surprising as, on one hand, by doing so the intruders try to hide their activities;
however, on the other hand, by changing the password of the account they broke,
they can be easily detected.

We identified three classes of activity of the intruders. The first one is the
scanning activity. The intruders did not scan all the ports but specifically the
SSH port, in order to find other machines that propose this service. Let us note
that the scanning was never realized on the local network. It seems that the
intruders were not interested in attacking the local network of our honeypot,
probably in order to hide as much as possible their activity. More probably,
their objective was to use our honeypot as a stepping stone to attack remote
targets. Furthermore, this scanning activity is dedicated to the SSH service, just
as if the intruders were specialized in this particular task. The second activity
consists in using irc clients. These clients are generally used in the deployment
of botnets. Thanks to irc communications, generally, the bots communicate
with some master servers that send propagation or attack orders to the bots.
This activity is thus clearly dedicated to the building of botnets in the Internet.
Let us note that similar conclusions about attackers behavior have been reported
in [Sei06], during a shorter observation period (2 months).

The third activity consists in getting the root privileges. Surprisingly, very
few intruders (only 3) have tried to get these privileges. Two different malware
have been used for that purpose. The first one exploits one vulnerability of the
system call mremap[Us-Certb] and one other that affects the manager in charge
of the heap of the processes [Us-Certa]. These exploits could not be success-
ful on our honeypot because of a kernel version incompatibility. The intruder
should have realized this incompatibility because he checked the version of the
system (uname -a command). Nevertheless, the intruder launched the exploit,
that failed. The second malware exploits a vulnerability in the ld program. This
exploit has been tested by 3 intruders, but was not successful.

5.3 Intruders skill and intention

Intruders can be classified into two categories: script kiddies (inexperienced peo-
ple who probably use malware downloaded on the Internet without necessarily
understanding them) and black hats (security experts who are really dangerous
and who perfectly understand what they do).

Our experiment lets us think that most of the attackers we observed on the
honeypot are script kiddies. Most of them even seem not to be familiar with the
Unix access rights (e.g., they try to delete files that they obviously cannot delete,
or they try to kill processes for which they don’t own the right privileges).



Most of them did not delete the history files (such as .bash history, located
in the home-directory) that log the different commands used by the intruder.

Most of the intruders tried to identify the system version, i.e., tried to obtain
information regarding the hardware (by means of the /proc/cpuinfo file for
example). But none of them checked, thanks to well-known techniques, if VMware
was installed on the system [HR05] (which could enable the intruder to detect a
honeypot).

6 Conclusion and future work

In this paper, we have presented the main lessons learned from the development
and deployment of a high-interaction honeypot aimed at the observation and
analysis of the activities carried out by the attackers on the Internet, including
humans and automatic tools. The results are based on an experiment carried
out over a long period of time (419 days), during which we have observed: 1)
the various steps that lead an attacker to successfully break into a vulnerable
machine, and 2) his behavior once he has managed to take control over the
machine. We have considered the case of attacks carried out through the SSH
service running on a Linux system. Two classes of attacks have been investigated
: 1) brute force dictionary attacks aimed at gaining access at the target system,
and 2) intrusions corresponding to interactive attacks performed with successful
logins.

The detailed analysis of the observed attacks reveals several interesting facts.
Considering the analysis of dictionary attacks, we have identified three main
dictionaries shared by the attackers that have been used during a very long
period of time, including a large number of username/password pairs that are
commonly used in Unix and Windows systems, as well pairs with identical user
names and passwords. Furthermore, these dictionaries appear to be different
from John the Ripper dictionary tool that is widely available on the Internet.
The attackers do not seem to adapt their dictionaries to the geographic location
of their victim. A noteworthy observation from our experiment was that the IP
addresses that performed the dictionary attacks were completely distinct from
those used for the intrusions. This seems to confirm the existence of machines
or communities that are dedicated to specific types of attacks.

Considering the analysis of the activities logged during the intrusions, we
have showed that these activities have been carried out by human beings. Most
of the observed intrusions were only partially automated and carried out by script
kiddies. This is very different from what can be observed against other ports, such
as 445, 139 and others, where worms have been designed to completely carry out
the tasks required for the infection and propagation. The main activities carried
out by the attackers consist in 1) executing irc clients and 2) scanning the SSH
port of other machines on the Internet. These two activities are clearly dedicated
to the building of botnets in the Internet.

Of course, our experiment at this stage is not sufficient to derive general
conclusions. We would need to deploy the honeypot at other different locations.



Also, it would be worth running the same experiment by opening other vulner-
abilities into the system and verifying if the identified steps remain the same, if
the types of attackers are similar. This is something that we are in the process
of assessing.
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