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Abstract

We construct, on a single probability space, a class of special sub-
ordinators S(α), indexed by all measurable functions α : [0, 1] → [0, 1].
Constant functions correspond to stable subordinators. If α ≤ β, then
the range of S(α) is contained in the range of S(β). Other examples of
special subordinators are given in the lattice case.

1 Introduction

Recall that a (possibly killed) subordinator (St)t≥0 is a Lévy process on R+

with Laplace exponent given, for λ ≥ 0, by

φ(λ) = − log E[exp(−λS1)] = a+ bλ+

∫ ∞

0

Π(dx)(1 − e−λx) (1)

The coefficient b ≥ 0 is the drift, Π is the Lévy measure and a ≥ 0 is a killing
parameter. If a > 0, S is submarkovian. A function of the form (1) is called a
Bernstein function.

The subordinator S is special if it admits a dual subordinator (Ŝt)t≥0 with

Laplace exponent φ̂, such that for every λ > 0,

φ(λ)φ̂(λ) = λ (2)

The canonical example is the case when S (resp. Ŝ) is the subordinator of
the ascending (resp. descending) ladder times of a real-valued Lévy process X .
In particular, if X drifts to −∞, then S is a killed subordinator (that is, the

parameter a in (1) is positive). If X is stable, then S and Ŝ are stable, with

respective indices α = P(X1 > 0) and 1 − α. If X is symmetric, then S and Ŝ
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are stable with index 1/2. See, among others, Bertoin [1], Doney, [3], Schilling
et al. [8] for numerous references on subordinators, Bernstein functions and the
connections with fluctuation theory for Lévy processes.

The main goal of this paper is to introduce a family of special subordinators
indexed by all measurable functions α : [0, 1] → [0, 1]. A property of this
family is that we can construct the ranges of all these subordinators on a single
probability space, with the property that if α ≤ β, then the range of S(α) is
contained in the range of S(β). Here are the statements:

Theorem 1 For every measurable function α : [0, 1] → [0, 1], there exists a

special subordinator (S
(α)
t )t≥0 with Laplace exponent

φ(α)(λ) = − log E[exp(−λS
(α)
1 )] = exp

∫ 1

0

(λ− 1)α(x)

1 + (λ − 1)x
dx

for λ ≥ 0. Its dual is the subordinator (S
(1−α)
t )t≥0.

When α is constant, S(α) is stable with index α. Note that φ(α)(λ) can be
viewed as a power series in (λ−1) and that the coefficients can be computed from
the moments of the measure α(x)dx on [0, 1]. Therefore, if α 6= β, φ(α) 6= φ(β).

Theorem 2 Let R(α) ⊂ R+ be the range of S(α): R(α) = {S
(α)
t , t ≥ 0}. One

can construct, on a single probability space, the regenerative sets R(α) for all
measurable functions α : [0, 1] → [0, 1], with the property that if α, β are two
measurable functions such that for every x ∈ [0, 1], α(x) ≤ β(x), then

R(α) ⊂ R(β)

The properties of a subordinator can be read from its Laplace exponent. In
turn, the properties of this exponent can be deduced from the function α, see
Proposition 1 in Section 3.

Our construction generalizes a former construction for stable processes. This
was used to construct Ruelle cascades, using nested stable regenerative sets
obtained by subordination [6]. Other constructions of regenerative sets can be
found in [4, 5, 7, 9].

We first explain, in Section 2, a similar construction in the lattice case, that
is, in the framework of integer-valued regenerative sets. We use it to prove
Theorems 1 and 2 in Section 3. In the lattice case, an extension is given in
Section 4. In particular, this extension includes a lattice version of the special
subordinators described in [10]. It should be possible to give a continuous
version of the construction described in Section 4, however, we shall not handle
this question here.

2 The lattice case

The lattice equivalent of a subordinator is a random walk on N ∪ {∞} (we
include here the possibility of killing the random walk by sending it to ∞).
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Such a random walk S has a generating function ψ(t) = E(tS1), defined for

t < 1. The dual of S, if it exists, is the random walk Ŝ with generating function
ψ̂ such that

(1 − ψ(t))(1 − ψ̂(t)) = 1 − t (3)

which is a discrete version of (2). A lattice regenerative set is the range of a
random walk on N started at 0.

For instance, the set of ladder times of a discrete time real-valued random
walk X is a lattice regenerative set. This regenerative set has a dual, namely
the set of ladder times of −X .

It is a classical fact that a random subsetR of N∪{∞} is a lattice regenerative
set if and only if it contains 0 and satisfies the regenerativity property: for every
n ∈ N, conditionally on the event that n ∈ R, the set R ∩ [n,∞] is independent
of R ∩ [0, n] and has the same law as R+ n.

We construct a family of random walks on N, indexed by measurable func-
tions α as in Theorem 1.

Construction 1.

Fix a measurable function α : [0, 1] → [0, 1]. Let (Xn, n ≥ 1) be iid ran-
dom variables, uniformly distributed on [0, 1]2. We denote Xn = (hn, Un). One
should view h as a height and U as a parameter. Say that Xn is α-green if
Un ≤ α(hn), and α-red otherwise. Say that an integer k ∈ [1, n] is n-visible
if hk ≥ hm for all integers m ∈ [k, n]. Finally, say that n percolates for α if,
for every k ≤ n such that k is n-visible, Xk is α-green. Let R(α) be the set of
integers that percolate for α (by convention, 0 percolates for α).

See Figure 1. Green points are represented by black circles, red points by
white circles and the black squares stand for the integers that percolate. The
horizontal lines express the fact that the red point at 4 prevents 5, 6 and 7 from
percolating.

Remark that if α is a constant, then the Xn are green or red with probability
α (resp. 1 − α), independently of the height. This is a discrete version of the
construction given in [6].

Theorem 3 The set R(α) defined by Construction 1 is a lattice regenerative

set. It can be viewed as the image of a random walk (S
(α)
n , n ≥ 0), where

S
(α)
n = Y

(α)
1 + . . .+ Y

(α)
n , the Y

(α)
i being iid random variables taking values in

N ∪ {∞}, with generating function

ψ(α)(t) = E(tY
(α)
1 ) = 1 − exp

(
−

∫ 1

0

tα(x)

1 − tx
dx

)

Moreover, R(α) has a dual, namely R(1−α).

From the very definition, the nested property of the sets R(α) is obvious: if
α ≤ β and if Xn is α-green, then it is also β-green. Therefore R(α) ⊂ R(β). So
we have immediately:
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Figure 1: Construction 1

Theorem 4 By construction, the sets R(α) are defined on a single probability
space, for all measurable functions α : [0, 1] → [0, 1]. Moreover, if α, β are two
measurable functions with α ≤ β, then

R(α) ⊂ R(β)

Proof of Theorem 3.

Let n ∈ N and let En be the event that n is α-green. Conditionally on
En, all the n-visible points are green. Moreover, for every N ≥ n and every
k ≤ n, if k is N -visible, then k is also n-visible. Therefore, for every N ≥ n,
conditionally on En, N is α-green if and only if all N -visible points in [n+1, N ]
are α-green. This is independent of (Xi, i ∈ [1, n]) and has the same probability
as the probability that N −n is α-green. Hence R(α) satisfies the regenerativity
property.

Let us compute the probability that n ∈ R(α). If n is α-green, then there
is a left-most n-visible point, say n1, with height x1 = hn1 . Then n1 has to be
green, which occurs with probability h(x1), and for all i ∈ [1, n1 − 1], hi ≤ x1,
which occurs with probability xn1−1

1 . If n1 6= n, then there is second left-most
n-visible point, say n1 + n2, and so on. So we have

P(n ∈ R(α)) =
∑

k

∑

n1+...+nk=n
∫ 1

0

dx1

∫ x1

0

dx2 . . .

∫ xk−1

0

dxkα(x1)x
n1−1
1 . . . α(xk)xnk−1

k

By symmetrization,

P(n ∈ R(α)) =
∑

k

1

k!

∑

n1+...+nk=n

∫ 1

0

dx1 . . .

∫ 1

0

dxkα(x1)x
n1−1
1 . . . α(xk)xnk−1

k
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Summing over n,

∑

n

P(n ∈ R(α))tn = exp

(∫ 1

0

tα(x)

1 − tx
dx

)

On the other hand,

∑

n

P(n ∈ R(α))tn =
∑

i

P(S
(α)
i = n)tn =

∑

i

E(tS
(α)
i ) =

1

1 − E(tY
(α)
1 )

Finally, the duality property follows from a straighforward computation:

(1 − ψ(α)(t))(1 − ψ(1−α)(t)) = exp

(
−

∫ 1

0

t

1 − tx
dx

)
= 1 − t

3 From the lattice case to the continuous case

3.1 Proof of Theorem 1

From Construction 1 we derive a continuous process. Consider the random walk

(S
(α)
n , n ≥ 0), let (Nt, t ≥ 0) be an independent Poisson process with parameter

θ > 0 and let e1, e2, . . . be iid exponential random variables with parameter

q > 0, independent of (Nt, t ≥ 0) and (S
(α)
n , n ≥ 0). Let Xt = e1 + . . . + e

S
(α)
Nt

for each t ≥ 0. Then (Xt, t ≥ 0) is a subordinator and

E(exp(−λX1)) =
∑

n≥0

θn

n!
e−θ(ψ(α)(q/(q − λ))n = exp[−θ(1 − ψ(α)(q/(q − λ)))]

Thus the Laplace exponent of X is

φ(λ) = − log E(exp(−λX1)) = θ[1 − ψ(α)(q/(q − λ))]

That is,

φ(λ) = θ exp

(
−

∫ 1

0

qα(x)

λ+ q − qx
dx

)

Remark that if F : [0, 1] → [0, 1] is a bijective, increasing function, then by a
change of variable,

φ(λ) = θ exp

(
−

∫ 1

0

qα(F (x))

λ+ q − qx
F ′(x)dx

)

Now take an integer m > 0 and choose

F ′(x) =
1{x∈[1/m,1]}

(m− 1)x2

q = m− 1
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and

θ =

∫ 1

1/m

α(F (x))

x

Then

φ(α)
m (λ) = exp

(
−

∫ 1

1/m

α(F (x))

x[1 + (λ− 1)x]
dx+

∫ 1

1/m

α(F (x))

x
dx

)

That is,

φ(α)
m (λ) = exp

(∫ 1

1/m

(λ− 1)α(F (x))

1 + (λ− 1)x
dx

)

and any function φ
(α)
m of this form is a Bernstein function. It is known [8] that

every limit of Bernstein functions is a Bernstein function. Therefore, denoting
β(x) = α(F (x)), the function

φ(β)(λ) = exp

(∫ 1

0

(λ− 1)β(x)

1 + (λ − 1)x
dx

)

is the Laplace exponent of a subordinator. Likewise, the function φ(1−β) is a
Bernstein function and the duality relation follows from an elementary compu-
tation. This establishes Theorem 1.

3.2 Some properties

The basic properties of a subordinator can be read easily from the asymptotic
behaviour of its Laplace exponent. It turns out that the small-time properties
of S(α) depend on the behaviour of α near 0, while the large-time properties
depend on the behaviour of α near 1. More precisely,

Proposition 1 Let the subordinator S(α) be as in Theorem 1.
(i)The drift of S(α) is given by

exp

∫ 1

0

−α(x)

x
dx

(ii) The killing factor of S(α) is positive if and only if

∫ 1 α(x)

1 − x
dx <∞

(iii) If α(x) → β as x → 0, then the Hausdorff dimension of R(α) is β
almost surely.

Proof

Recall the following elementary results, which can be found for instance in
[1], Chapter 1. The drift of a subordinator is given by limλ→∞ φ(λ)/λ. The
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killing rate is φ(0). Together with the expression of φ(α), this easily gives (i)
and (ii).

Next, recall that index of the exponent φ(α) is given by

I = lim
λ→∞

logφ(α)(λ)

logλ

if this limit exists. If so, the Hausdorff dimension of the range is equal to the
index. See [2], or [1], Chapter 5. It is easy to check that that if α(x) → β as
x→ 0, then the index of the exponent is β.

3.3 Proof of Theorem 2

Consider a Poisson Point process N on R+ × [0, 1] × [0, 1] with intensity dx ⊗
y−2dy ⊗ dz.

For m > 0 an integer, consider the restriction N (m) of N to the subset

R+ × [1/m, 1] × [0, 1]. Let (X
(m)
n , n ≥ 1) be the set of points of N (m), ranked

by increasing x-coordinate. Denote X
(m)
n = (t

(m)
n , h

(m)
n , U

(m)
n ).

Given a measurable function α and using the coordinates h, U , we can define

the set R
(α)
m of integers that percolate as in Construction 1. We then say that

a positive real t percolates if t = t
(m)
n for some integer n ∈ R

(α)
m

Let R
(α)
m be the set of times that percolate. Then it is easy to check that

R
(α)
m is a regenerative set with characteristic exponent

φ(α)
m (λ) = exp

(∫ 1

1/m

(λ − 1)α(x)

1 + (λ− 1)x
dx

)

Moreover, if m < m′,

R(α)
m ⊂ R

(α)
m′ (4)

and if α ≤ β, R
(α)
m ⊂ R

(β)
m . Define now the set

R(α) = ∪m>oR
(α)
m

Then the nesting property of the sets R(α) as stated in Theorem 2 is straigh-
forward.

It remains to show that for every measurable function α, R(α) is a regenera-
tive set with the Laplace exponent given in Theorem 1. To this end, consider a
Poisson Point process N ′ on R+ × R+ with intensity dx ⊗ y−2dy, independent

of N . For every integer m > 0, let N
(m)
s be the number of points of N ′ in the

strip [0, s] × [cm,∞), where

cm =
1

∫ 1

1/m dxα(x)
x

Then (N
(m)
s , s ≥ 0) is a Poisson process with intensity 1/cm. Define now the

process (X
(m)
s , s ≥ 0) as follows:
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(i) The jump times of (X
(m)
s , s ≥ 0) are the same as the jump times of

(N
(m)
s , s ≥ 0).

(ii) For every integer k ≥ 1, the length of the k-th jump of (X
(m)
s , s ≥ 0) is

the length of the k-th interval of the complement of R
(α)
m .

Then it is clear that (X
(m)
s , s ≥ 0) is a subordinator with Laplace expo-

nent φ
(α)
m . The convergence of the Laplace exponents entails that the processes

(X
(m)
s , s ≥ 0) converge in law to the subordinator X(α) with Laplace exponent

φ(α). Besides, the ranges of these processes (X
(m)
s , s ≥ 0) converge almost surely

to R(α) in every compact set for the Hausdorff distance, because of the inclusion
property (4). Therefore, R(α) has the law of the range of X(α).

4 A generalization in the lattice case

Construction 2.

Let (Sn, n ≥ 0) be a real-valued random walk started at 0, with increments
(Xn, n ≥ 1). Let (Hn, n ≥ 1) be iid real-valued random variables with law ν

and (Ĥn, n ≥ 0) be iid real-valued random variables with law ν̂. Assume that

the Xn, Hn and Ĥn are independent.
For n ≥ 1, say that an integer k ∈ [0, n − 1] is an n-obstacle if, for every

m ∈ [k + 1, n],

Sm +Hm < Sk + Ĥk (5)

Say that n ≥ 1 percolates if, for every k ∈ [0, n− 1], k is not an n-obstacle. By
convention, say that 0 percolates. Let R be the set of integers that percolate.

Theorem 5 The random set R defined by Construction 2 is a lattice regener-
ative set. Its dual is obtained by replacing the random walk (Sn, n ≥ 0) with

(−Sn, n ≥ 0) and exchanging the role of the random variables (Hn) and (Ĥn).

Proof

The regenerativity property is established by the same argument as for The-
orem 3.

To show the duality, consider a regenerative set R′ defined as in Construc-
tion 2, using independent random variables (X ′

n, n ≥ 1), (H ′
n, n ≥ 1) and

(Ĥ ′
n, n ≥ 0), where S′

1 has the same law as −S1, H
′
1 has the same law as

Ĥ1, and Ĥ ′
1 has the same law as H1. The only difference is that we define an

obstacle using a large inequality, in contrast to the strict inequality in (5). To
avoid any ambiguity, we shall use the terms dual obstacle, dual-percolate for the
construction of R′.

One can construct the sets R∩ [0, N ] and R′∩ [0, N ] on the same probability

space, using the random variables Xn, n ∈ [0, N ], Hm, m ∈ [1, N ], H̃l, l ∈
[0, N − 1], by putting

S′
n = SN−n − Sn, n ∈ [0, N ]
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Figure 2: Construction 2

H ′
n = H̃N−n, n ∈ [1, N ]

H̃ ′
n = HN−n, n ∈ [0, N − 1]

See Figure 2. The black squares stand for the variables Sn +Hn, the white
squares for the variables Sn+Ĥn. Black squares “look to the left”, white squares
“look to the right”. The horizontal dashed lines express the fact that they see
an obstacle when looking to the left, or a dual obstacle when looking to the
right. In turn, the plain lines express the fact that they see no obstacle or dual
obstacle and, therefore, percolate or dual-percolate.

Let GN = max(R ∩ [0, N ]), G′
N = max(R′ ∩ [0, N ]). We claim that

(i) N −GN dual-percolates.
(ii) For every n ∈ [N −GN + 1, N ], n does not dual-percolate.
To show (i), suppose that N − GN does not dual-percolate. Let k be the

largest integer that is a dual obstacle for N − GN . Then from the definition
of a dual obstacle, there exists no (N − k)-obstacle in [GN , k − 1] . Moreover,
from the definition of GN , there is no (N − k)-obstacle either in [0, GN − 1].
Therefore, k percolates, but this contradicts the definition of GN . This proves
(i). One proves (ii) by similar arguments. As a consequence, G′

N = N − GN .
This being true for every N ≥ 1, we find that

(iii) For every N > 0, N −GN and G′
N have the same law.

It is then standard to check that (iii) is equivalent to the analytical property
(3).

Some examples

1. If both ν and ν̂ are the Dirac mass at 0, then R is the set of strict
ascending ladder times of the random walk S, that is, the set of integers n such
that Sn > maxk≤n−1 Sk. On the other hand, R′ is the set of weak descending
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ladder times of S, ie the set of integers n such that Sn ≤ mink≤n−1 Sk.

2. Suppose that ν̂ is the Dirac mass at 0 and that

ν(dx) = (1 − r)δ0 + rδ−∞

for some fixed r ∈ [0, 1]. Then the event that T1 > n is the event that for every
every ladder time k ≤ n, Hk = −∞. Therefore,

φ(t) =

∞∑

n=1

tnE(rLn−1 − rLn)

where Ln is the number of ladder times between time 1 and time n. Put

ψ(t) = E(tτ )

where τ is the first ladder time. Then by standard computations, we find

φ(t) =
(1 − r)ψ(t)

1 − rψ(t)

3. Suppose that ν̂ is the Dirac mass at 0 and that

ν(dx) = c exp(−c|x|)1{x<0}dx

Then the event that T1 > n is the event that for every every ladder time k ≤ n,

|Hk| ≥ Sk − sup
i<k

Si

Conditionnally on Sk and supi<k Si, the latter event has probability exp[−c(Sk−
supi<k Si)]. Therefore,

P(T1 > n) = E exp[−c sup
i≤n

Si]

By time reversal, we have:

P(T̂1 > n) =

∫ ∞

0

ce−cx
P(∀k ∈ [1, n], Sk ≥ x)dx

Note that in the limit c→ ∞, we recover the first example.

4. Let S be deterministic, Sn = −n. Also, suppose that ν̂ is the Dirac mass
at 0. Then the event that T1 > n is the intersection of the events {H1 ≤ 1},
{H2 ≤ 2}, . . . {Hn ≤ n}, all these events being independent. Therefore,

P(T1 > n) =

n∏

i=1

ν([0, n])
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In particular, the sequence of ratios

P(T1 > n+ 1)

P(T1 > n)
= ν([0, n+ 1])

can be chosen to be any nondecreasing sequence of reals ∈ [0, 1]. If we consider
the dual process, we see that

P(n ∈ R̂) =

n∏

i=1

ν([0, n])

This is the lattice equivalent of Corollary 2.5 in [10]. In particular, if the support

of ν is bounded, say supp(ν) ⊂ [0, A], then P(n ∈ R̂) is constant for n ≥ A.
This corresponds to the examples given in Section 3 in [10].

Acknowledgments. I thank Löıc Chaumont for references.
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