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Abstract. The logistic regression model has become a standard tool to investigate the rela-
tionship between a binary outcome and a set of potential predictors. When analyzing binary
data, it often arises however that the observed proportion of zeros is greater than expected
under the postulated logistic model. Zero-inflated binomial (ZIB) models have been developed
to fit binary data that contain too many zeros. Maximum likelihood estimators in these models
have been proposed, and their asymptotic properties recently established. In this paper, we
use these asymptotic properties to construct simultaneous confidence bands for the proba-
bility of a positive outcome in a ZIB regression model. Simultaneous confidence bands are
especially attractive since they allow inference to be made over the whole regressor space.
We construct two types of confidence bands, based on: i) the Scheffé method for the linear
regression model ii) Monte Carlo simulations to approximate the distribution of the supremum
of a Gaussian field indexed by the regressor. The finite-samples properties of these two types
of bands are investigated and compared in a simulation study.

Keywords: Logistic regression model, mixture model, simultaneous inference, simu-
lations

1. Introduction

The logistic regression model has become a standard tool to describe the relationship be-
tween a binary response Y and a set of potential predictors X. In the medical setting for
example, the response may represent the infection status with respect to some disease. If Y;
denotes the infection status for the i-th individual in a sample of size n (Y; = 1 if the indi-
vidual is infected, and Y; = 0 otherwise) and X; = (1, X;o, ... ,X,;,,)T is the corresponding
predictor (or covariate), logistic regression models the conditional probability P(Y; = 1|X;)

of infection as P(Y; = 1|X;)
11X
, f i = BTX; !
0g<1_]p(yi —_1|X¢)> g v

tCorresponding author



2 Aba Diop, Aliou Diop, Jean-Frangois Dupuy

where 8 = (B4, ... ,ﬁp)T € RP is an unknown regression parameter to be estimated. Esti-
mation and testing procedures in the model (1) are well established (see for example Hos-
mer and Lemeshow (2000) and Hilbe (2009)). These procedures are usually based on the
maximum likelihood estimator of 3, which was shown to be consistent and approximately
normally distributed in large samples (Gouriéroux and Monfort, 1981). This estimator and
the related statistical inference are available in all standard statistical softwares and can
easily be implemented by non-statisticians.

However, when analyzing binary datasets, it often arises that the observed proportion of
zeros is greater than expected under the postulated logistic model. In the medical setting
for example, this situation usually occurs as a result of immunity. An individual 7 is said to
be immune (or ”cured”, as opposed to ”at-risk”) when he cannot experience the outcome
of interest. In this case, ¥; = 0 but this zero cannot be considered as generated from the
model (1). For this reason, Ridout et al. (1998) make the distinction between structural
zeros (which are inevitable, being due to individual immunity for example) and random
zeros (which arise by chance, under the model (1) for example). One problem arising
in this setting is that it is usually unknown who are the at-risk and the cured subjects
(unless the outcome of interest has been observed). Consider for example the occurrence of
infection from some disease to be the outcome of interest. Then, if a subject is uninfected,
the investigator does usually not know whether this subject is immune to the infection, or
at-risk albeit still uninfected (at-risk subjects are also called susceptibles). Based on such
data, the statistical inference in the model (1) is no more straightforward. This problem
can be considered within the general framework of zero-inflated models.

Generally speaking, zero-inflation occurs in the analysis of counts when the data gen-
erating process results into too many zeros. Failure to account for these extra zeros is
known to result in biased parameter estimates and inferences. Motivated by various ap-
plications in public health, epidemiology, sociology, engineering, agriculture, ..., a variety
of zero-inflated regression models have recently been proposed and applied, such as the
zero-inflated Poisson (ZIP) model (see, among others, Lambert (1992), Dietz and Bohning
(2000), Lam et al. (2006), Xiang et al. (2007), Li (2011)), and the zero-inflated binomial
(ZIB) model (Hall (2000), Diop et al. (2011)) which we shall concentrate on in this paper.
Various other models and numerous references can be found in Famoye and Singh (2006),
Lee et al. (2006), Kelley and Anderson (2008), and Moghimbeigi et al. (2009). Zero-inflated
data are commonly modeled by mixtures. Precisely, in a zero-inflated model, the count
response variable is assumed to be distributed as a mixture of a count distribution and
a distribution with point mass of one at zero. Diop et al. (2011) recently established the
consistency and asymptotic normality of the maximum likelihood estimator in a ZIB model
with logit links for both the response variable and the zero-inflation component.

One objective of logistic regression is to make inference on probabilities of the form
P(Y = 1|X = x) that is, on the probabilities of a positive outcome at x. Based on the
asymptotic results for the maximum likelihood estimator of 3, one can easily construct
asymptotic confidence regions for vectors of the form (P(Y = 1|X = x3),...,P(Y =1|X =
xi)). But such pointwise confidence regions are not adequate for making inference about
the response function x — P(Y = 1|X = x) across the whole range of X. Simultaneous
confidence bands provide the correct tool to use for that purpose. Generally speaking,
simultaneous confidence bands can be used to bound unknown functions just as usual con-
fidence intervals or regions bound unknown finite-dimensional parameters. In particular,
simultaneous confidence bands provide a useful tool to quantify the plausible range of an
unknown regression function and therefore, they have been widely investigated in linear



Simultaneous confidence bands in a zero-inflated regression model for binary data 3

and polynomial regression, in survival regression (see Fleming and Harrington (1991) for
example), and in generalized linear regression (see Sun et al. (2000) for example). We refer
to Liu (2011) for a detailed account of simultaneous inference in regression models, with
a particular emphasis on linear regression. Zero-inflated regression models are now widely
applied but despite this, it seems that simultaneous confidence bands have never been in-
vestigated in this class of models. Thus in the present paper, we consider the construction
of simultaneous bands for the probability of a positive outcome (viewed as a function of x)
in a zero-inflated Bernoulli regression model. As far as we know, this constitutes the first
attempt to construct simultaneous confidence bands in a zero-inflated model.

The rest of the paper is organized as follows. Section 2 describes the ZIB model of interest
and recalls the properties of the maximum likelihood estimator in this model. In the section
3, we construct two types of simultaneous confidence bands for the probability of a positive
outcome in the ZIB model. For the first type, we follow the Scheffé method for the linear
regression model. Then we propose an alternative confidence band, whose construction
relies on Monte Carlo simulations to approximate the distribution of the supremum of a
Gaussian field indexed by the regressor. The finite-samples properties of these two bands
are evaluated and compared in a simulation study reported in section 4. A discussion and
some perspectives conclude the paper (section 5).

2. Model and estimation

In this section, we provide a brief review of the ZIB model and we recall from Diop et al.
(2011) the properties of the maximum likelihood estimator of the regression parameter in
this model. These properties will be useful for constructing the simultaneous confidence
bands in section 3.

Let O; = (Y;,5:,X;,Z;), i = 1,...,n be independent copies of the random vector
O = (Y,8,X,Z), where for every i, Y; and S; are binary variables indicating respectively
whether the event of interest has occurred on the i-th individual (Y; = 1) or not (¥; = 0),
and whether the individual is susceptible to the event (S; = 1) or not (S; = 0). If Y; = 0, the
value of S; is unknown. X; = (1, Xj2,..., Xp) " and Z; = (1, Zi2,..., Ziy) | are covariate
vectors respectively related to the event risk and to the susceptibility status. X; and Z; may
contain quantitative and qualitative components, and may share some components (note
that here and in the sequel, all vectors are column vectors and T denotes the transpose).
A zero-inflated Bernoulli regression model (Hall (2000), Diop et al. (2011)) for the O;
(i=1,...,n) can be defined by the following equations for the event probability:

P(Y=1|X,.S; .
log (71—(@1“’(Y=‘1\Xi,5)i)> =pTX; if {S; =1} @)
P(Y =0X;,5;)=1 if {S; =0}

and by the following model for the susceptibility status:

]P(S = 1|Zi) T
1 — | =0 Z;.
o8 <1 —P(S =1]Z) 1 ®)
In this model, 5 = (b1, ..., BP)T € RP is an unknown regression parameter of interest (3

measures the association between the potential predictors X; and the risk of event for a
susceptible individual), and 6 = (01, ...,6,)" € RY is an unknown nuisance parameter. Let
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Y :=(B7,07)T. The log-likelihood for 1/ from the sample Oy, ..., O, (where S; is unknown
when Y; = 0) is 1,,(¢) = >_1, (15 O;), where I(¢; O;) =

Yi(BTXi +67Z:) + (1 - Yi)log(l +¢® Xi 4 e i) _1og (1 n eﬂTXi) _log (1 n e"Tzi)

The maximum likelihood estimator (MLE) Uy = (@r , @r )T of 4 is defined as the solution
of the score equation 90l,,(¥)/d¢¥ = 0 which can be solved, for example, using the optim
function of the software R. Diop et al. (2011) derived the asymptotic properties of @Zn under
the following regularity conditions (we refer to Diop et al. (2011) for a discussion of these
conditions):

A1 The covariates are bounded (in the sequel, we will denote by X the space for X). For
every i =1,2,...,j=2,...,p, k =2,...,q, var[X;;] > 0 and var[Z;;] > 0. For every
i=1,2,..., the X;; (j =1,...,p) are linearly independent, and the Z;, (k =1,...,q)
are linearly independent.

A2 There exists a continuous covariate V' which is in X but not in Z that is, if Sy and
Oy denote the coefficients of V' in the linear predictors (2) and (3) respectively, then
ﬁV#OandGV:O.

A3 The parameters § and 6 lie in the interior of known compact sets B C RP and G C R?
respectively.

A4 The matrix I,(v) = 9%1,(¥)/0ydwT is negative definite and of full rank, for every
n = 1,2,... Letting A\, and A, be the smallest and largest eigenvalues of [, (g)
respectively, there exists a finite positive constant ¢ such that A, /A, < ¢ for every
n=12,...

We need some further notations before stating the asymptotic properties of the MLE Bn of
the parameter of interest 3. Let T, = —E[0%(v; O)/9poyT], I = —n",(¢y), and M
be the (p x (p+ ¢)) block-matrix [Ip, 0p,4], where I, is the identity matrix of order p and
0p,q is the (p x ¢) matrix whose components are all equal to 0. Let also X3 = MZ, M7

and f]g,n = MI-'MT. Finally, % and 25 will denote the convergence in distribution

and in probabilit; respectively. Under the conditions above, Diop et al. (2011) prove the
following theorem:

THEOREM 1 (DioP et al. (2011)). As n —, \/T_L(Bn -8 N N(0,%8) and iﬁ’n 2,
Sp.

One issue of particular interest in the model (2)-(3) is to estimate the probability p(x) :=
P(Y = 1|X = x,5 = 1) of event for a susceptible individual with covariate value x. It is
straightforward to estimate p(x) by exp(@mr x)/(1 4+ exp(ﬁNnr x)), which is a consistent and
asymptotically normal estimator of p(x), for every x. This result can be used to compute
confidence intervals for the probabilities p(x) (or confidence regions for sets of probabilities
(p(x1),...,p(xx)) for some set of covariate values (x1,...,Xg)).

One further step, which shall give a deeper insight into the true relationship between x and
the event probability, is to obtain simultaneous confidence bands for the whole function p(-).
This is the topic of the next section, where we construct two different types of simultaneous
confidence bands for p(-) (note that one may also be interested in constructing confidence
bands for the probability function P(Y = 1|X = x,Z = z). Obviously, the techniques that
we will develop in the next section could be applied to this problem as well).
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3. Simultaneous confidence bands

As mentioned above, pointwise confidence intervals are not adequate for making inference
about the response function p(x) across the whole range of x. In this section, we investigate
two methods for constructing simultaneous confidence bands for the whole {p(x),x € X'}.

3.1. Method 1

Relying on arguments similar to that for deriving Scheffé’s band in a linear regression model
(see Liu (2011)), we construct a first type of simultaneous confidence band for {p(x),x € X'}
in the ZIB regression model (2)-(3). Bands of the Scheffé type in the usual logistic regression
model (1) have been investigated by Brand et al. (1973) and Hauck (1983). See also Li et al.
(2010), who recently constructed Scheffé-type bands in a semiparametric logistic regression
model. R

We need first some notations. Let 52(x) = x'¥3,%, and Xi1_a De the quantile of
order (1 — a) of the x; distribution. Then the following holds:

THEOREM 2. Let a € (0,1) and assume that the conditions A1-A4 hold. Then

[12
lim P [ 8"x € B x+5,(x) Xp’l_a,VxeX >1—a.
n—oo n

Proof of Theorem 2. From Theorem 1, n(,@n — B)T’Z\)gt(,@n %) BN X;Q; asn — oo. Then

lim P (n(Bn — 8) 55080 — 8) < x3aoa) =1 -0 (4)

n—oo

Now, using Cauchy-Schwarz inequality (Rao, 1973), we get that

(ﬁ(gn - B)TX>2 —~

B ) 25 (e =) )
and thus
(Vi 5)x)”
~ —~ —~ n{Pn — X
P (1B~ B) S50 Bn— B) < xX21oa) <P = <X2par VXEX

It follows from (4) that

_ < i
l—a < lmP 32 (%)

/2
< lim P|ATxe B x+5,(x) Xp’j, VxeX|. (6)
n—00 n

N
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From this, we can deduce a simultaneous confidence band of asymptotic confidence level
greater than or equal to (1 — a) for {p(x) = exp(8Tx)/(1 + exp(8Tx)),Vx € X'}, as

) (1)
{[lp(x)vn’ up(x),n]’ X € X}a (7)
where
exp (375 x = 5 () X2 ) exp (BI X + B (x)y/ Xe2=e )
Lom = and 2% =

p)n = P v pen = P
1+ exp <ﬁ;{x—an(x)\/%> 1+exp <5;{X+C’n(x) %)

Remark. Scheffé-type simultaneous confidence bands are conservative when the covariate
X is restricted to a subset X C RP. When X is unbounded, the < sign in (5) is an equality,
implying that the < sign in (6) is also an equality. In this case, the asymptotic confidence
level of the band (7) is 1 — . When X is bounded, Piegorsch and Casella (1988) provided
a method to compute bands of the Scheffé-type with asymptotic level 1 — «. However,
we will observe in our simulation study that even in the case of conservative bands, the
empirical coverage probability of Scheffé-type bands is lower than the desired 1 — a. This
may be due to the fact that the distribution of supyey(v/n(Bn — 8)Tx)?/x "S5 X is not
well-approximated by a x? distribution. The approximation made in (5) is thus too rough,
and the resulting confidence band appears to be narrower than it should be. Thus, we
do not pursue with Piegorsch and Casella (1988)’s correction for constructing (1 — «)-level
confidence bands in the zero-inflated regression model with bounded covariates. Rather, an
alternative and more precise approach is suggested in the next section.

3.2. Method 2

In this section, we propose an alternative method for constructing a simultaneous confi-
dence band for {p(x),x € X'} in the ZIB model (2)-(3). This approach relies on the weak
convergence of the normalized process W, (x) := \/ﬁ(ﬁn — B)Tx/5,(x) indexed by x € X,
and uses Monte Carlo simulations (we refer to Li et al. (2010) for a related approach in
a semiparametric logistic model). We first describe the asymptotic results needed for our
construction.

3.2.1. Preliminary results

Let C(X) be the space of real-valued continuous functions defined on X, provided with the
uniform norm. Let also o?(x) := x ' ¥gx.

THEOREM 3. Assume that the conditions A1-A4 hold. Then as n — oo, W,, converges
weakly to W in C(X), where W is a Gaussian process with mean 0 and covariance function

p(x,y) =x"Sgy/o(x)a(y).

Proof of Theorem 3. In a first step, we show that as n — oo,

sup |<’7\Z(x) — 02(x)| L.0.
xeX
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Note that

sup |3,21(X) - 02(x)| sup |x " (iﬁyn - Eg) x’
xXEX xXEX

< Sup{HXHH(E&n—-Eﬁ)XH}

xeX

o (B —25) 4|

= sup (x|

xeX, [x]|£0 ]|

2 s —3s)+

< sup  ||x]|”. sup

x€X, [[x[|£0 N B3]

sup x| Sa - s
X€EX, ||x]|#0
where the first to second line follows from the Cauchy-Schwarz inequality. Now, x is bounded
(by the assumption A1), and using the convergence of Xz, to X5 and the continuity of
the norm, it follows that the last line converges to 0 in probability as n — oo. Thus
SUDycx ]a,%(x) — O‘Z(X)’ 25 0asn — .
Now, the function ¢ : R? — C(X) defined by ¢(x)(y) = x "y is obviously continuous and
thus, ¢(v/n(Bn — B)) N G(N(0,55)) in C(X) that is, {v/n(B, — B)Tx;x € X} converges
weakly to {N(0,%5) x;x € X} in C(X). We have proved above that 2(-) converges
uniformly in probability to o2(-) and thus, by Slutsky’s theorem, {W, (x);x € X} con-
verges weakly to {W(x);x € X'} in C(X), where W(x) := N(0,%3) x/0(x). Finally, it is
straightfirward to check that

x" Y5y

p(x,y) = cov(W(x), W(y)) = m-

3.2.2. Application to simultaneous confidence bands
It follows from the Theorem 3 and the continuous mapping theorem (Billingsley, 1968) that

sup |W, (x)| LN sup |W(x)| as n — oo.
xeX xeX

Then, if we knew the quantile ¢;_,, of order (1 — &) of supycy |W(x)|, we could construct
an approximate simultaneous confidence band for {p(x),x € X'}. One would simply write
that

l—-a = P <sup W (x)] < cl_a>
xeX

= lim P <Sup [Wi(x)] < cl_a>
n—oo xeX

= lim P(M

on (%)
B . T ST ~ Cl—a
= nlgr;@]P’(ﬁ x € B, x £ (%) \/ﬁ,VxeX>

<cCl_a,VX € X)
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and deduce a simultaneous confidence band of asymptotic level (1 — «) for {#Tx,x € X'}
as:

~r . C1— ~T —~ C1—

Brnx— Un(X)T;ﬁnX+ Un(X)T;
from which a band for {p(x),x € X} can easily be derived. ¢;_, being unknown, we propose
to estimate it using a Monte Carlo approach. The basic idea is to simulate a large number
of replicates of U, := supycy |Wn(x)|, and to use their empirical quantile of order (1 — «)
to approximate c¢1_,. Precisely, the proposed algorithm is as follows:

1. Draw B bootstrap samples {(Yi(b),XEb), Zgb)),i =1,...,n} (b=1,...,B) from the orig-
inal data sample, and for each bootstrap sample, estimate v by its MLE wﬁb) in the
model (2)-(3). Then, calculate the empirical covariance matriz Spoo; = cov(ﬁéb);b =

1,...,B).
2. Draw L independent p-vectors k; ~ N (0, iboot), l=1,...,L.
3. Calculate

T
X, Kl

(X;r Ebom‘, Xi )

UW = max forl=1,..., L.

Xi

=

where the mazximum is taken over a grid of the covariable space X .

4. Approzimate c1—q by the empirical quantile ¢1_g, of order (1 — a) of ( 7(11)" ,(lL)).

ey

The first step of the algorithm should result in a more robust estimate of the variance
of B, than the estimate obtained from the sole original sample. Now, the empirical dis-
tribution of the U, ..., U provides an estimate of the distribution of SUPyex |[Wh(x)],
which in turn approximates the distribution of sup,¢y |W(x)|. Thus, we may expect ¢1_n
to approximate the (1 — a)-quantile ¢1_o of supycy [W(x)|. We can now construct an
approximate simultaneous confidence band of asymptotic level (1 — ) for {8Tx,x € X},
as:

—— —

~ N Gl ~ R Cl—
ﬁ;{x—an(x)g,,@;x—kan(x) S

Vvn Vvn
From this, we deduce an approximate simultaneous confidence band of asymptotic confi-
dence level (1 — ) for {p(x),x € X'}, as:

(e A% lxe X} 8)

p(x),n? Up(x),n

where
AT ~ éla T ~ éi-a
oo exp <5n X = on(X) ) o 2@ exp (Bn X + G (%) <L )
p(x),n TN p(x),n

Lt exp (BTx = Gu(x) L2 ) Lt exp (BT + Fa(x) 222 )
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4. Simulation study

The objective of this simulation study is to evaluate and compare the finite-sample per-
formance of the proposed simultaneous confidence bands (7) and (8) in the zero-inflated
Bernoulli regression model (2)-(3). Precisely, we aim at evaluating the influence of various
simulation parameters (sample size, proportion of immunes, proportion of infected among
the susceptibles) on the performance of the proposed bands. We first describe the simulation
design that was adopted for that purpose.

The simulation setting is as follows. We consider the following models for the infection
status:

{ log (%) =p1+ PaXio+ B34 i Si=1 ©

P(Y =11X;,5;,) =0 if 5;=0
and the immunity status:
P(S =1|Z;)
1 —_— | = Zio, 1
°g<1—w<5=1|z¢>> e 1o

where X;9 ~ N(0,1) and Z;5 ~ U[0,1]. The models for infection and immunity are allowed
to share one covariate. Ani.i.d. sample of size n of the vector O is generated from this model,
and for each individual i we get a realization O; = (y;, $i, Xi, %;), where s; is considered as
unknown if y; = 0. The MLE Bn of B = (B1,B2,03)" is obtained from this incomplete
dataset by using the procedure described in Section 2. As a by-product of the method, an
estimate of the nuisance parameter 6 = (f1,6,) " is also obtained, but will not be reported
here.
The properties of the proposed simultaneous confidence bands (7) and (8) are evaluated
for several sample sizes (n = 500, 1000, 1500) and values of the percentage of immunes in
the sample (25%, 50%). We also consider different values for the proportion of infected
individuals among the susceptibles (30% and 70%), and several confidence levels for the
bands (1 — a = 0.90,0.95,0.99). The desired proportions of immunes and infected are
obtained by choosing appropriate values for 8 and 6. The following values are considered
for 3:

e model M;: B = (—1,1.5,-0.4)7. Using these values, approximately 30% of the

susceptibles are infected.

e model Ms: 8= (0.5,1,—1)T. Approximately 70% of the susceptibles are infected.

For each configuration confidence level X sample size X percentage of immunes X
percentage of infected among susceptibles of the design parameters, N = 1000 sam-
ples are obtained. For each of these N samples, we compute the simultaneous confidence
bands (7) and (8). Then, for each type of band, we obtain the empirical coverage probabil-
ity, defined as the proportion of the N bands that contain the whole function p(x). We also
evaluate the precision of the bands (7) and (8) in terms of their widths. Their respective
mean width (averaged over a grid of values of x and over the N simulations) are computed.
Similarly, the averaged median width and averaged first and third quartiles of the widths
are obtained for each of the bands (7) and (8). All the results are reported in the tables 1
(for the model Mj) and 2 (for the model M3) below. There, ” Cov” indicates the empirical
coverage probability. The column ”Width” reports the averaged values of: the mean band
width (+), the median band width (%), the first (1) and third (F) quartiles of the band
widths.
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Table 1. Coverage probabilities and widths of the confidence bands (7) and
(8) in the model M, based on 1000 replicates.

Method 1 (band (7))

Method 2 (band (8))

25% 50% 25% 50%
11—« n Cov  Width Cov  Width Cov  Width Cov  Width
0.99 500 0.946 0.217F 0.879 0.325T 0.999 0.734F 0.998 0.885F
0.0821 0.138f 0.627% 0.827%
0.174* 0.279* 0.830* 0.954*
0.338F 0.495F 0.898F 0.983F
1000 0.931 0.134F 0.847 0.180F 0.994 0.593F 0.994 0.5967
0.031% 0.053f 0.2821 0.325f
0.087* 0.131* 0.775* 0.727*
0.220F 0.292F 0.877F 0.856F
1500 0.837 0.102T 0.865 0.143T 0.996 0.588F 0.991 0.533F
0.018t 0.031f 0.332% 0.196%
0.062* 0.092* 0.736* 0.690*
0.172F 0.239F 0.827F 0.823F
0.95 500 0.854 0.169F 0.797 0.232% 0.989 0.667F 0.997 0.797F
0.045% 0.082f 0.5261 0.684F
0.117* 0.178* 0.761* 0.908*
0.274F 0.365F 0.852F 0.966F
1000 0.791 0.108F 0.636 0.139F 0.989 0.530F 0.985 0.538F
0.019% 0.031f 0.187% 0.2721
0.063* 0.089* 0.698* 0.622*
0.181F 0.230F 0.829F 0.784F
1500 0.836 0.081T 0.731 0.1067 0.988 0.518F 0.986 0.448F
0.012% 0.020f 0.216% 0.135%
0.046* 0.064* 0.684* 0.547*
0.137F 0.177F 0.784F 0.722F
0.90 500 0.846 0.142F 0.716 0.197F 0.989 0.607F 0.984 0.757F
0.035% 0.059f 0.457% 0.614%
0.093* 0.141* 0.694* 0.875*
0.230F 0.316F 0.793F 0.946F
1000 0.788 0.092F 0.744  0.121F 0.990 0.485T 0.977 0.4697
0.015% 0.025% 0.160% 0.207t
0.053* 0.075* 0.624* 0.547*
0.154F 0.199F 0.775F 0.718F
1500 0.800 0.073T 0.607 0.093T 0.983 0.462F 0.966 0.4107
0.0107 0.0167 0.1277 0.1117
0.039* 0.054* 0.624* 0.479*
0.123F 0.156F 0.741F 0.670F

Note: Cov: coverage probability. Width: *: mean, : 15 quartile, *: median, ¥: 3'4 quar-
tile. 25% and 50% refer to the percentage of immunes in the samples.
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Table 2. Coverage probabilities and widths of the confidence bands (7) and
(8) in the model Ms, based on 1000 replicates.

Method 1 (band (7))

Method 2 (band (8))

25% 50% 25% 50%
11—« n Cov  Width Cov  Width Cov  Width Cov  Width
0.99 500 0.831 0.362F 0.690 0.479F 0.992 0.692F 0.996 0.830F
0.261% 0.339% 0.474% 0.696%
0.343* 0.435* 0.816* 0.927*
0.468F 0.636F 0.889F 0.974F
1000 0.775 0.219F 0.685 0.301F 0.982 0.5267 0.995 0.664F
0.139% 0.201F 0.2821 0.391F
0.214* 0.276* 0.635* 0.812*
0.292F 0.405F 0.729F 0.884F
1500 0.735 0.1717 0.679 0.2267 0.983 0.350T 0.987 0.552T
0.101% 0.143% 0.180% 0.273%
0.169* 0.213* 0.368* 0.677*
0.232F 0.306F 0.507F 0.774F
0.95 500 0.734 0.274F 0.574 0.362% 0.994 0.598% 0.986 0.7671
0.179% 0.231F 0.366% 0.599f
0.259* 0.317* 0.712* 0.871*
0.366F 0.501F 0.800F 0.934F
1000 0.662 0.172F 0.607 0.2267 0.973  0.4437 0.984 0.581F
0.100t 0.136% 0.205% 0.301f
0.167* 0.207* 0.528* 0.714*
0.235F 0.312F 0.639F 0.805F
1500 0.638 0.136T 0.618 0.174T 0.964 0.287T 0.975 0.465T
0.073% 0.098f 0.135% 0.205f
0.133* 0.163* 0.289* 0.552*
0.189F 0.243F 0.427F 0.675F
0.90 500 0.631 0.239F 0.533  0.311F 0.983 0.543% 0.986 0.728F
0.150% 0.189% 0.307% 0.539%
0.222* 0.266* 0.644* 0.835*
0.323F 0.437F 0.746F 0.911F
1000 0.588 0.151T 0.511 0.198F 0.950 0.403T 0.977 0.524F
0.083% 0.113f 0.172% 0.251F
0.145* 0.179* 0.472* 0.632*
0.209F 0.277F 0.589F 0.745F
1500 0.570 0.1207 0.517 0.153T 0.941 0.2557 0.960 0.429F
0.062° 0.0827 0.1097 0.174"
0.117* 0.141* 0.251* 0.503*
0.168F 0.215F 0.385F 0.637F
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From these tables, we note that the empirical coverage probabilities of the Scheffé-
type bands are always below the nominal confidence level. As mentioned above, this may
be due to the fact that the distribution of supycy(vn(Bn — B)'x)?/x"X5.,x is badly
approximated by a 2 distribution. The coverage probabilities of the alternative simulation-
based confidence bands are much higher (they are almost always above the nominal level),
which results in bands having somewhat large widths when the nominal confidence level
is very high and/or the proportion of immunes is high (50%). This conservative feature
was also observed by Li et al. (2010) in the semiparametric logistic regression model. Note
also that when the sample size increases, the coverage probabilities tend to decrease, which
is due to the fact that the width of the bands decreases. This decrease in the coverage
probabilities is marked for the Scheffé-type band but almost negligible for the simulation-
based confidence band. Based on these remarks, we recommend to use the simulation-based
approach to construct simultaneous confidence bands in the zero-inflated regression model

(2)-3).

5. Conclusions and perspectives

In this paper, we have shown that simultaneous confidence bands for the regression function
p(x) can be constructed in the zero-inflated Bernoulli regression model. Simultaneous bands
have been investigated in a variety of regression models but as far as we know, the present
work constitutes the first attempt to construct and evaluate such bands in a zero-inflated
regression model. We have first adapted the Scheffé-type confidence band to the ZIB model
(2)-(3). Our simulations suggest that this type of bands enjoys poor coverage probabilities in
finite samples. Thus, we have proposed an alternative construction which relies on Monte
Carlo simulations to approximate the distribution of the supremum of a Gaussian field
indexed by the regressors. This second type of band seems much more satisfactory.

Now, several further issues about simultaneous confidence bands in the ZIB regression model
(2)-(3) deserve attention. First, one may wish to use the proposed bands to construct
confidence regions for the ”effective dose” (namely, the values of the covariate X that will
produce a given response probability). One may also wish to apply the proposed confidence
bands to compare two zero-inflated Bernoulli models. Finally, another stimulating topic
for future research deals with the construction of simultaneous confidence bands in the
model (2)-(3) in a high-dimensional setting. Several recent articles (Huang et al. (2008),
Meier et al. (2008)) have considered estimation in the logistic model (without zero-inflation)
when the predictor dimension is much larger than the sample size (this problem arises for
example in genetic studies where high-dimensional data are generated using microarray
technologies). Extending the construction of simultaneous confidence bands for the model
(2)-(3) to a high-dimensional setting constitutes a further non-trivial topic of interest.
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