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GEVREY EXPANSIONS OF HYPERGEOMETRIC INTEGRALS I

FRANCISCO-JESÚS CASTRO-JIMÉNEZ AND MICHEL GRANGER

Abstract. We study integral representations of the Gevrey series solutions of irregular hyper-
geometric systems. In this paper we consider the case of the systems associated with a one row
matrix, for which the integration domains are one dimensional. We prove that any Gevrey series
solution along the singular support of the system is the asymptotic expansion of a holomorphic
solution given by a carefully chosen integral representation.

February 5, 2013

1. Introduction

Hypergeometric systems also known as GKZ systems were introduced in [GGZ87] and [GZK89] as
a far reaching generalisation of the Gauss hypergeometric differential equation. They appear as a
special family of D-modules and they have been first studied in the regular case. For example in
[GKZ90] the authors consider integral representations of the solutions of hypergeometric systems,
at generic points of the space, which they call Euler integrals. In the irregular or confluent case, A.
Adolphson considers in [A94] other integral representations of solutions which involve exponentials
of polynomial functions and appropriate integration cycles. In this paper we develop new aspects
in the irregular case namely the link between Gevrey series solutions and holomorphic solutions
in sectors following Adolphson’s approach. We want to materialise a Gevrey series solution as an
asymptotic expansion in a sector of such an integral solution.

Let us fix some notations: D stands for the complex Weyl algebra of order n, where n ≥ 0 is an
integer. Elements in D are linear partial differential operators with polynomial coefficients. The
polynomial ring C[∂] := C[∂1, . . . , ∂n] is a subring of the Weyl algebra D, where the ∂j’s represent
the partial derivatives with respect to the variables in the space Cn. The input data for a GKZ
system is a pair (A, β) where β is a vector in Cd and A = (aij) = (a(1), · · · , a(n)) ∈ Zd×n is a matrix
of rank d whose jth column is a(j). The toric ideal IA ⊂ C[∂] is the ideal generated by the family
of binomials ∂u − ∂v where u, v ∈ Nn and Au = Av. The ideal IA is a prime ideal and the Krull
dimension of the quotient ring C[∂]/IA equals d. Following [GGZ87, GZK89], the hypergeometric
ideal associated with the pair (A, β) is :

HA(β) = DIA +D(E1 − β1, . . . , Ed − βd)

where Ei =
∑n

j=1 aijxj∂j is the ith Euler operator associated with the ith row of A. The correspond-

ing hypergeometric D–module (or hypergeometric system) is the quotient D–module MA(β) :=
D

HA(β)
.

In [GZK89] and [A94] it is proven that any hypergeometric D-module is holonomic. Moreover, a
characterization of the regularity of MA(β) is provided in the series of papers [Ho98], [SST] and
[SW08]: The holonomic D-module MA(β) is regular if and only if the toric ideal IA is homogeneous
for the standard grading in the polynomial ring C[∂]. In particular the condition to be regular
for MA(β) is independent of β. The concept of regularity has been studied first in the case of an
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2 FRANCISCO-JESÚS CASTRO-JIMÉNEZ AND MICHEL GRANGER

ordinary differential equation given by an operator P ∈ D for n = 1. Regularity is characterised
according to Fuchs theorem by the nullity of the irregularity number, an invariant combinatorially
defined from the Newton polygon of P . In [M74] B. Malgrange proved that the irregularity is
the dimension of the space of solutions at the origin of C with values in the space C[[x]]/C{x} of
formal power series modulo convergent ones. Later J.P. Ramis gave a refined version of this result
in [R84] calculating the space of solutions of a given Gevrey index again by using the Newton
polygon of the operator.

The concept of irregularity in higher dimension is considerably more involved but generalizes the
above results. Let us consider the structure sheaf OX of a complex manifold X, the sheaf of rings
DX of linear differential operators with holomorphic coefficients on X and denote O

dX|Y
the com-

pletion of OX along a smooth hypersurface Y . In [Me90] Z. Mebkhout introduces for a holonomic
DX–module M its irregularity complex along Y , IrrY (M) = RHomDX

(M,O
dX|Y
/OX|Y ), and in

[LM99] the Gevrey filtration of this complex is introduced and related to other invariants of the
system, the algebraic slopes in the sense of Y. Laurent.

In the case of hypergeometric D-modules the irregularity sheaves along coordinate subspaces, and
Gevrey series solutions are studied and described in [F10] (see also [FC11a, FC11b]). Beforehand
A. Adolphson [A94] gave a formula for the dimension of the space of holomorphic solutions at a
generic point of the space and for a generic value of the parameter β, and he also described integral
representations of solutions of these confluent hypergeometric systems. In the non-confluent case
an analogous dimension formula was previously given in [GZK89]. In [ET12] A. Esterov and K.
Takeuchi prove that these generic solution spaces are in fact completely described by integral
representations along rapid decay cycles as introduced by M. Hien in [Hi07] and [Hi09].

We want to explore the more hidden link between these integral representations and the Gevrey
series solutions described in [F10] and [FC11b, FC11a]. In this paper we treat the case of a matrix
with one row A = (a1, . . . , an) with 0 < a1 < · · · < an a list of co-prime integers. This is the
case where the integration cycles are paths, and as explained below the significant Gevrey series
are along the hyperplane xn = 0. We prove that any Gevrey series solution of the system can be
obtained as the asymptotic expansion of an integral representation along a well chosen path. A
specificity of the one row case is that the rank of the space of Gevrey solutions is independent of
β and we can treat all the values of β. For a generic β we only use the space of rapid decay cycles
and for special values of β, namely for β ∈ Z \ (Na1 + · · · + Nan) we must add an exceptional
path, without the rapid decay property. The method of the proof is to reduce the statement to the
case of the matrix A = (a, b), using the fact that the restriction is compatible with being a Gevrey
solution as well as with taking integrals on a fixed path. In parallel we know by an argument using
a Gevrey version of Cauchy-Kovalevskaya theorem that the dimension of the Gevrey solution space
is an−1 [FC11b]. In the case A = (a, b) the Gevrey expansion is with respect to the second variable
x2. Its coefficients depend on the variable x1 and are holomorphic in some sector depending on
the chosen paths. The main issue is to choose carefully a number of paths of integration that
yield a basis of the space of Gevrey series solutions and share a common sector of convergence for
these coefficients. This choice appears to be possible if we restrict the range in the argument of
the variable x2 around a given direction.

Here is a summary of the contents of this paper. In Section 2 general facts are given about Gevrey
series solutions following [F10]. In the case of a one row matrix we know that the characteristic
variety of the hypergeometric system is the union T ∗

XX ∪ T ∗
YX of the zero section and of the

conormal to the hypersurface Y : (xn = 0). It is therefore sufficient to consider the irregularity sheaf
and the germs of Gevrey series solutions with respect to the hyperplane Y and at a generic point
(0, . . . , 0, ǫ, 0) of Y . We recall from [FC11b] the description of a basis of the space of Gevrey series
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solutions in terms of Γ-series and the proof that the dimension of this space is always equal to an−1.
We also describe its behaviour by the restriction operation which consists in omitting variables
among x1, . . . , xn−2. In Section 3 we recall the definition of hypergeometric integrals of exponential
type and the fact that they are solutions of the system. It is a quite general fact that these solutions
have an asymptotic expansion as a Gevrey series with respect to the variable xn provided that
we choose an integration path of rapid decay both for the function t−β−1 exp (x1t

a1 + · · · + xnt
an)

and for t−β−1 exp (x1t
a1 + · · · + xn−1t

an−1). At the beginning of Section 4 we prove that these
expansions are Gevrey series of order less than or equal to an

an−1
.

In the remainder of this Section we prove the main result of this paper about realisation of these
Gevrey series as asymptotic expansion of integral solutions. First we treat in detail the case of
dimension 2 and the last Subsection consists in using various restriction operations on the integral
that are compared to the analogue described in Section 2 for the Gevrey series. In a short last
section we deduce from the previous results an explicit description of the germ of the irregularity
sheaf along Y at a generic point. We get a family of integral with asymptotic expansions that
yields as expected a basis of the space of classes of Gevrey series solutions modulo convergent ones.

2. Gevrey solutions of hypergeometric systems

In this Section we review some results on the construction of Gevrey series solutions of hypergeo-
metric systems with respect to a coordinate hyperplane. We consider X = Cn and the hyperplane
Y defined by xn = 0. With the hypergeometric system MA(β) we associate the left coherent DX–
module MA(β) := DX

DXHA(β)
which is called the analytic hypergeometric system associated with the

pair (A, β).

A germ f of the sheaf O
dX|Y

at a point (p, 0) ∈ Y has the form f =
∑

m≥0 fm(x1, . . . , xn−1)x
m
n

where all the fm are holomorphic functions in a common neighbourhood of p ; in particular the
restriction of OX to Y , denoted by OX|Y , is a subsheaf of O

dX|Y
.

For any real number s, we consider the sheaf O
dX|Y

(s) of Gevrey series along Y of order less than

or equal to s defined as the subsheaf of O
dX|Y

whose germs f at any (p, 0) ∈ Y satisfy the following

convergence condition:
∑

m≥0

fm(x1, . . . , xn−1)

m!s−1 xm
n ∈ OX|Y,(p,0).

If s′ < s then O
dX|Y

(s′) ⊂ O
dX|Y

(s). If a germ f belongs to O
dX|Y

(s) for some s but f /∈ O
dX|Y

(s′)

for all s′ < s, we say that the index of the Gevrey series f is s.

Let A = (a(1) · · · a(n)) be a full rank d × n matrix with a(j) ∈ Zd for j = 1, . . . , n. In [GZK89]
and [SST], the authors associate with any vector v ∈ Cn satisfying Av = β a series expression of
the form

(2.1) ϕA,β,v(x) := xv
∑

u∈Nv

Γ[v;u]xu

where Nv = {u ∈ kerZ(A) | nsupp(v + u) = nsupp(v)}, kerZ(A) = {u ∈ Zn : Au = 0} and
nsupp(w) := {i ∈ {1, . . . , n} |wi ∈ Z<0} is the negative support of w ∈ Cn. The coefficient Γ[v;u]

equals
[v]u−

[v+u]u+
where [v]u =

∏
i[vi]ui

and [vi]ui
=
∏ui

j=1(vi − j + 1) is the Pochhammer symbol for

vi ∈ C, ui ∈ N. They call it the Γ-series associated with v.
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We write ϕv = ϕA,β,v is no confusion is possible. It is proved in [SST, Proposition 3.4.13] that the
formal expression ϕv is annihilated by the hypergeometric ideal HA(β) if and only if the negative
support of v is minimal, which means that there is no u ∈ kerZ(A) with nsupp(v+ u) ( nsupp(v).

When β ∈ Cd is very generic, that is when β is not in a countable union of Zariski closed sets,
there is a basis of the Gevrey solutions space of MA(β) along Y at a generic point of Y , given by
series ϕv for suitable vectors v ∈ Cn, [F10, Th. 6.7].

In this article we restrict ourself to the case where A = (a1, . . . , an) is a row matrix with 0 <
a1 < · · · < an, (a1, . . . , an) coprime and n ≥ 2. We recall here some results about the Gevrey
series solutions of MA(β) as presented in [FC11b, Sections 4, 5]. Let us fix some notations. As
before X = Cn and Y ⊂ X denotes the hyperplane defined by xn = 0. Let us write Z ⊂ X the
hyperplane defined by xn−1 = 0.

When s < an

an−1
one sees from the results in [FC11b] that the set of Gevrey solutions in O

dX|Y
(s) is

zero if β /∈ NA and is a one dimensional space generated by a polynomial if β ∈ NA. This result
follows also from what we show in this paper and we focus now on the case s ≥ an

an−1
.

2.1. Case a1 = 1. Assume first n ≥ 3. A basis of the free Z–module kerZ(A) is formed of the
vectors {u(2), . . . , u(n)} where u(n−1) = (an−1, 0, . . . , 0,−1, 0) and for i = 2, . . . , n, i 6= n − 1, we
define

u(i) = (−ai, 0, . . . , 0, 1, 0, . . . , 0)

where 1 is in the i-th component. For each m = (m2, . . . ,mn) ∈ Zn−1 we write u(m) =
∑n

i=2miu
(i)

the corresponding element in kerZ(A).

For j = 0, . . . , an−1 − 1 define vj = (j, 0, . . . , 0, β−j
an−1

, 0) ∈ Cn and consider the associated Γ–series

(2.2) ϕA,β,vj = xvj
∑

m2,...,mn−1,mn≥0

j+an−1mn−1≥
P

i6=n−1 aimi

Γ[vj;u(m)]xu(m).

We write ϕ
(j)
A,β = ϕA,β,vj and also ϕ(j) = ϕA,β,vj if no confusion arises. By the choice of a basis of

kerZ(A) that we make ϕ(j) is a series in xvj

C[[x1, . . . , x
−1
n−1, xn]][x−1

1 ].

Notice here that the summation in ϕ(j) is taken, according to (2.1), over the setNv(j) = {u(m) | nsupp(v(j)+
u(m)) = nsupp(v(j)}. This set Nv(j) is indexed by

{
{m ∈ Nn−1 | j + an−1mn−1 ≥

∑
i6=n−1 aimi} if β−j

an−1
/∈ N

{m ∈ Nn−1 | j + an−1mn−1 ≥
∑

i6=n−1 aimi,
β−j
an−1

≥ mn−1} if β−j
an−1

∈ N.

In this last case we can write β = j+han−1 for unique 0 ≤ j < an−1 and h ∈ N and then the series
ϕ(j) is a polynomial since [h]mn−1 = 0 = Γ[vj;u(m)] if mn−1 ≥ h + 1. In fact ϕ(j) is a polynomial
if and only if we are in that case.

The negative support of each vj is ∅ if h ∈ N and {n − 1} if β − j is a negative multiple of an−1

and it is minimal in both cases. The series ϕ(j) is a polynomial in the first case and a solution of
the ideal HA(β) in both. More precisely,

Theorem 2.1. [FC11b, Th. 4.21, i)] Let A = (1, a2, . . . , an) ∈ Zn with 1 < a2 < · · · < an,
Y = (xn = 0) ⊂ X and Z = (xn−1 = 0) ⊂ X. Then the set of germs at p of Gevrey series
{ϕ(j) | j = 0, . . . , an−1 − 1} is a basis of HomDX

(MA(β),O
dX|Y

(s))p for all β ∈ C, p ∈ Y \ Z and

s ≥ an/an−1.
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It is also useful to consider the immersion i : C3 →֒ X defined by the equations x2 = · · · = xn−2 = 0
and the restriction ρ′ with respect to this immersion (coordinates in C3 are (x1, xn−1, xn)).

The series ϕ
(j)
A,β(x1, 0, . . . , 0, xn−1, xn) equals precisely ϕ

(j)
(1,an−1,an),β(x1, xn−1, xn) so the restriction

defines an isomorphism

(2.3) HomDX
(MA(β),O

dX|Y
(s))

ρ′

−−−−→ HomD
C3 (M(1,an−1,an)(β),O

Ĉ3|Y1
(s))

of the corresponding stalks at any point in Y1 \Z1 for all β ∈ C and s ∈ R where we denote Y1, Z1

the subspaces in C3 with equations xn = 0 and xn−1 = 0.

Remark 2.2. So far we have assumed n ≥ 3. The case n = 2 is special and will be treated now,
following [FC11a]. We can drop in this case the assumption on a1 and simply write a = a1, b = a2,
with 1 ≤ a < b and gcd(a, b) = 1.

The corresponding Γ–series have a slightly different shape (see [FC11a]): For j = 0, . . . , a − 1,
consider wj = (β−jb

a
, j) ∈ C2 and

(2.4) ψ
(j)
A,β = xwj

∑

m≥0

[β−jb
a

]bm

[am+ j]am

x−bm
1 xam

2 .

We have the following

Proposition 2.3. [FC11a, Prop. 5.3 and 5.4] Write X = C2, Y = (x2 = 0) ⊂ X. The set (of

germs) of Gevrey series {ψ
(j)
A,β | j = 0, . . . , a−1} is a basis of the stalk of HomDX

(MA(β),O
dX|Y

(s))

at any point in Y \ {(0, 0)}, for any real number s ≥ b
a

and any β ∈ C.

For a generic value of the parameter β, ϕ
(j)
(1,a,b)(x0, x1, x2) restrict by setting x0 = 0 to another

basis of the solution space in Proposition 2.3. The shape of the base change is a reindexation

j → j′ composed with a diagonal invertible matrix ϕ
(j)
(1,a,b)(0, x1, x2) = λjψ

(j′)
A,β. This fact and more,

is explained in Proposition 2.7 1) below.

2.2. Case a1 > 1. Recall that X = Cn, Y ⊂ X (resp. Z ⊂ X) is defined by xn = 0 (resp.
xn−1 = 0). First of all, we follow [FC11b, Rk. 5.4] to prove the following equality

Proposition 2.4.

(2.5) dimC

(
HomDX

(MA(β),O
dX|Y

(s))p

)
= an−1

if p ∈ Y \ Z and s ≥ an

an−1
for any β ∈ C.

Proof. We apply, among other results, Cauchy-Kovalevskaya’s Theorem for Gevrey series. We con-
sider A′ = (1, a1, . . . , an) and the hypergeometric system MA′(β) on X ′ := Cn+1 with coordinates
(x0, x1, . . . , xn). We denote by Y ′ ⊂ X ′ (resp. Z ′ ⊂ X ′) the hyperplane xn = 0 (resp. xn−1 = 0)
and we identify X ⊂ X ′ with the hyperplane x0 = 0. Notice that Y = Y ′ ∩X and Z = Z ′ ∩X.

By [CT03, Proposition 4.2] we can apply Cauchy-Kovalevskaya’s Theorem for Gevrey series solu-
tions (see [LM02, Corollary 2.2.4]) to deduce that there exists a Cauchy-Kovalevskaya’s isomor-
phism CKs

X′,X

HomDX′ (MA′(β),O
X̂′|Y ′(s))|X

CKs
X′,X

−−−−−−→ HomDX
(MA′(β)|X ,O dX|Y

(s))
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where MA′(β)|X stands for the restriction in the category of D–modules. This is true for any
s ∈ R and for any β and even if gcd(a1, . . . , an) 6= 1.

We write CKs = CKs
X′,X is no confusion is possible. The isomorphism CKs is induced by the

inclusion X ⊂ X ′, by the action of restriction on the modules involved. Theorem [FC11b, Th. 5.1]
states that for any β ∈ C there exists β′ ∈ C such that the restriction MA′(β)|X is isomorphic to
the hypergeometric DX–module MA(β′). Moreover, by the same Theorem [FC11b, Th. 5.1] one
can take β′ = β for all but finitely many β. We denote by sp(A) the finite set of β ∈ C such that
β′ 6= β. In particular, the isomorphism CKs and Theorem 2.1 prove equality (2.5) for p ∈ Y \ Z,
s ≥ an

an−1
and β 6∈ sp(A).

Assume now β∗ ∈ sp(A). We can take β = β∗ +A′γ′ = β∗ +Aγ for a suitable γ′ = (0, γ) ∈ Nn+1 ∪
(−N)n+1 in such a way that β 6∈ sp(A) and so the corresponding morphism CKs is an isomorphism.
By using [S01, Th. 2.1], [B11, Th. 6.5] one has that the morphism · ∂γ : MA(β∗) → MA(β) if
γ ∈ Nn (resp. · ∂−γ : MA(β) → MA(β∗) if γ ∈ (−N)n) is an isomorphism. This proves equality
(2.5) for β∗ ∈ sp(A). �

Once the equality (2.5) is established we give a description of a basis of the solution space of
MA(β) in O

dX|Y
(s)). We use the restriction morphism

(2.6) HomDX′ (MA′(β),O
X̂′|Y ′(s))|X

ρs
X′,X

−−−−−→ HomDX
(MA(β),O

dX|Y
(s))

for β ∈ C and s ∈ R. This morphism is well defined and it is induced by the restriction to x0 = 0.
It is useful to write x′ = (x0, x) and x = (x1, . . . , xn). Then ρs

X′,X(ϕ(x′)) = ϕ(0, x), since if ϕ(x′)
is a solution in the first space then ϕ(0, x) is a solution in the second one. Notice that it is an
approach of restriction that is different from the one by the CK’s.

We now consider the basis {ϕ
(j)
A′,β(x0, x)}

an−1−1
j=0 of germs (at a point in Y \Z ⊂ Y ′ \Z ′) of Gevrey

series solutions (of order ≤ s) of MA′(β) described in Theorem 2.1.We simply write ϕ(j) = ϕ
(j)
A′,β.

The terms in x
−β+j
an−1

n−1 ϕ(j) have the form

Γ[v(j);u(m)]xj
0(x

′)u(m) = Γ[v(j);u(m)]x
j+an−1mn−1−

P

i6=n−1 aimi

0 xm1
1 · · ·xmn−2

n−2 x
−mn−1

n−1 xmn
n

where u(m) is a general element of kerZ(A′) ⊂ Zn+1. The summation in ϕ(j) (see (2.2)) is taken
over the set {m ∈ Nn | j + an−1mn−1 ≥

∑
i6=n−1 aimi}.

It is useful to write the formal expansion of ϕ(j)(0, x). According to what is said before we have

(2.7) ϕ(j)(0, x) = x
β−j

an−1

n−1

∑

m1,...,mn−1,mn≥0

j+an−1mn−1=
P

i6=n−1 aimi

[ β−j
an−1

]mn−1j!

m1! · · ·mn−2!mn!
xm1

1 · · ·xmn−2

n−2 x
−mn−1

n−1 xmn
n .

Notice that the family of non zero ϕ(j)(0, x) is C–linearly independent because their supports are
pairwise disjoint. This, and equality (2.5), proves the following (see [FC11b, Remark 5.4])

Theorem 2.5. Assume that ϕ(j)(0, x) is non zero for j = 0, . . . , an−1 − 1. Then the set (of germs
of) Gevrey series {ϕ(j)(0, x) | j = 0, . . . , an−1−1} is a basis of the stalk of HomDX

(MA(β),O
dX|Y

(s))

at any point in Y \ Z for s ≥ an

an−1
.
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Remark 2.6. Assume now that for some j = 0, . . . , an−1−1 one has ϕ(j)(0, x) = 0. By [FC11b, Rk.
5.4] this condition happens if and only if β ∈ N\NA. Furthermore this j is then unique for a fixed
β and the image of the morphism ρs

X′,X has codimension 1 in the stalk of HomDX
(MA(β),O

dX|Y
(s))

at any point in Y \ Z and for all s ≥ an

an−1
. We will show in Theorem 4.8 how to describe a basis

of this last solution space for all β ∈ C.

2.3. The restriction to x0 = 0 for A′ = (1, ka, kb). Let us consider the morphism ρs
X′,X when

X = (x0 = 0) ⊂ X ′ = C3 and the matrix A′ = (1, ka, kb) with 1 ≤ a < b, 1 < ka and gcd(a, b) = 1.
The morphism ρs

X′,X , as defined in (2.6), sends solutions of MA′(β) to solutions of M(ka,kb)(β) and

this last DX–module is isomorphic to M(a,b)(
β
k
). In particular if k > 1, ρs

X′,X is not an isomorphism,
since the corresponding solutions spaces have dimensions ka and a respectively. Below we describe
in detail a different but related morphism involving the restrictions of the derivatives up to order
k − 1 with respect to the variable x0.

So, instead of considering A = (ka, kb) as before it is better to write A = (a, b). Coordinates in
X ′ are (x0, x1, x2).

For j = 0, . . . , ka− 1 let us write v(j) = (j, β−j
ka
, 0) and

ϕ
(j)
A′,β = x

β−j
ka

1

∑

m1,m2≥0

j+kam1≥kbm2

[β−j
ka

]m1j!

m2!(j + kam1 − kbm2)!
xj+kam1−kbm2

0 x−m1
1 xm2

2 .

Notice that if a series ϕ (as for example ϕ
(j)
A′,β) is a solution of MA′(β) then ∂ℓϕ

∂xℓ
0

∣∣∣
x0=0

is a solution

of the system MA(β−ℓ
k

) for all ℓ ≥ 0. We are going to compare this solution, for ϕ = ϕ
(j)
A′,β, to the

usual Gamma series solutions ψ
(j′)
A,β′(x1, x2), see (2.4), of this last system MA(β′) for β′ = β−ℓ

k
. We

consider the following C–linear map

(2.8) HomDX′ (MA′(β),O
X̂′|Y ′(s))|X

̟s
β

−−−−−→
k−1⊕

ℓ=0

HomDX

(
MA

(
β − ℓ

k

)
,O

dX|Y
(s)

)

which maps ϕ to the vector
(

∂ℓϕ
∂xℓ

0
(0, x1, x2)

)k−1

ℓ=0
. Here Y ′ = (x2 = 0) ⊂ X ′ and Y = X ∩ Y ′.

Notice that the morphism ̟s
β is well defined and that it coincides with the morphism (2.6) when

k = 1. The following Proposition generalizes to an arbitrary k what is already proved for k = 1 in
Theorem 2.5 and in Remark 2.6 :

Proposition 2.7. 1) Assume that β 6∈ N or β ∈
⋃k−1

r=0(r + kNA). Then the C–linear map ̟s
β is

an isomorphism of vector spaces.

2) Assume β ∈
⋃k−1

r=0(r + k(N \ NA)) and consider the integers j0, r0, q0 uniquely determined by
0 ≤ j0 < ka, 0 ≤ r0 < k and β = j0 + kah = r0 + kq0 + kah. Then the image of the map ̟s

β is the

codimension 1 subspace, generated by all the (0, . . . , 0, ψ
(j′)

A, β−r
k

, 0, . . . , 0), with a non zero term in

position r, and (j′, r) 6= (j′0, r0) for j′0 ∈ {0, . . . , a− 1} uniquely determined by bj′0 ≡ q0 (mod a).

Proof. We consider the morphism ̟s
β induced on the stalks at points in Y \Z, Z = (x1 = 0) ⊂ X

and s ≥ b
a
. Let us fix j = 0, . . . , ka− 1 and write j = kq + r for unique 0 ≤ q < a and 0 ≤ r < k.
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So we have
β − j

ka
=
β − kq − r

ka
=
β − r

ka
−
q

a
=

β−r
k

− q

a
.

The general exponent of x0 in ϕ
(j)
A′,β is j + k(am1 − bm2) = r + k(q + am1 − bm2). An exponent

of x1 in
∂ℓϕ

(j)

A′,β

∂xℓ
0

∣∣∣∣
x0=0

for 0 ≤ ℓ < k, can only come from a term in ϕ
(j)
A′,β for which the underlying

exponent of x0 is ℓ. Therefore the only pairs (m1,m2) ∈ N2 that may appear are those satisfying
the relation :

(2.9) j + k(am1 − bm2) − ℓ = k(q + am1 − bm2) + r − ℓ = 0.

This cannot happen if ℓ 6= r which means that
∂ℓϕ

(j)

A′,β

∂xℓ
0

∣∣∣∣
x0=0

= 0 if ℓ 6= r. The equality (2.9)

is equivalent to q = bm2 − am1 and ℓ = r. For any (m1,m2) ∈ N2 satisfying (2.9), we write
m2 = am+j′ with 0 ≤ j′ < a. We notice that the integer j′ depends only on q, hence on j because
q = b(am+j′)−am1 so that a divides bj′−q. For the rest of the proof we denote it j′ = p(j). By a

straightforward calculation the general exponent of x1 in
∂rϕ

(j)

A′,β

∂xr
0

∣∣∣∣
x0=0

is β−j
ka

−m1 = β−r
ka

− bp(j)
a

−bm

which equals the general exponent of x1 in ψ
(p(j))
A,β′ by (2.4) applied to β′ = β−r

k
. The series ϕ

(j)
A′,β

and ψ
(p(j))
A,β′ are indexed respectively by (m1,m2) and m. Their terms are in a 1-1 correspondence

through the relations

m1 = bm+
bp(j) − q

a
and m2 = am+ p(j).

Now we compare the corresponding coefficients in
∂rϕ

(j)

A′,β

∂xr
0

∣∣∣∣
x0=0

and in ψ
(p(j))
A,β′ . The quotient of these

two coefficients is well defined, for all m ≥ 0, when β /∈ N and it is

(2.10)

(
[β−kq−r

ka
]m1(kq + r)!

m2!

)(
[β′−p(j)b

a
]bmp(j)!

(am+ p(j))!

)−1

=
Γ(z − bm+m1)(kq + r)!

Γ(z)p(j)!

where z − 1 = β′−p(j)b
a

= β−r
ka

− p(j)b
a

.

This shows that this quotient is independent of the term chosen, because the integer bm −m1 =
q−bp(j)

a
does not depend on m,m1. So, if β 6∈ N we have found a constant λj ∈ C∗ such that

∂rϕ
(j)
A′,β

∂xr
0

∣∣∣∣∣
x0=0

= λjψ
(p(j))

A, β−r
k

and
∂ℓϕ

(j)
A′,β

∂xℓ
0

∣∣∣∣∣
x0=0

= 0 if ℓ 6= r.

When β ∈ N, we write β = j0 + kah = r0 + kq0 + kah, with unique 0 ≤ r0 < k and 0 ≤ q0 < a. If
j 6= j0 = r0 + kq0 the quotient in (2.10) is still well defined for all m and the relation λj 6= 0 still
valid.

If β ∈ r0 +k(N\N(a, b)), the quotient is still well defined but we have λj0 = 0 by Remark 2.6 since

ϕ
(j0)
A′,β is a polynomial solution of MA′(β) and MA

(
β−r0

k

)
has no non zero polynomial solution for

β−r0

k
/∈ N(a, b).

Assume now β−r0

k
= ha+ q0 ∈ N(a, b) so that ha+ q0 = ua+ vb for some u, v ∈ N. We can write

in a unique way q0 = −n1a+n2b with 0 ≤ n2 < a. One has (h−n1)a+n2b = ua+ vb which forces
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v ≥ n2 and h−n1 − u ≥ 0. In particular, h ≥ n1 and [h]n1 6= 0 and so λj0 6= 0. This proves 1) and
2) taking j′0 := p(j0). �

3. Hypergeometric integral of exponential type

With the pair (A, β) one associates the following integral (called hypergeometric integral of expo-
nential type):

Iγ(A, β;x) = I(β;x) :=

∫

γ

t−β−1 exp

(
n∑

j=1

xjt
aj

)
dt

where A = (a1, . . . , an) and γ is a cycle in the rapid decay homology with closed support of M.
Hien. We also write Iγ(β;x) = I(β;x) if there is no possible confusion on the matrix A.

The integral I(β;x) satisfies the equality P (I(β;x)) = 0 for any P in the hypergeometric ideal
HA(β). So we consider I(β;x) as a solution of MA(β). Our goal is to give an asymptotic expansion
of I(β;x) as Gevrey series along the coordinate hyperplane appearing in the singular support of
MA(β).

We are going to prove in this case that all the Gevrey series solutions can be obtained as an
asymptotic expansion of such an integral.

In the one row matrix case the rapid decay cycles are easy to describe and we prove first an
asymptotic expansion statement. In the following proposition we consider a path γ : R → C such
that the arguments of xnt

an and of xn−1t
an−1 both have limits in the open interval ]π

2
, 3π

2
[ when

t→ +∞ or t→ −∞. For a fixed γ this condition remains valid in some open sectors in the spaces
C∗ for the variables xn−1 and xn. These paths are exactly the rapid decay cycles for the function

t→ t−β−1 exp
(∑n

j=1 xjt
aj

)
and for its restriction to the hyperplane xn = 0.

Proposition 3.1. The integral depending on x = (x1, . . . , xn):

I(β;x) =

∫

γ

t−β−1 exp

(
n∑

j=1

xjt
aj

)
dt

admits an asymptotic expansion
∑∞

k=0 ck(x1, . . . , xn−1)x
k
n for xn tending to zero whose coefficients

are

(3.1) ck(x1, . . . , xn−1) =
1

k!

∫

γ

t−β−1+ank exp (x1t
a1 + · · · + xn−1t

an−1) dt.

For a fixed cycle γ this expansion is valid in a product Cn−2 × Sn−1 × Sn involving open sectors Si

in C∗.

Proof. By developing the exponential exntan
we may write

I(β;x) =

∫

γ

t−β−1 exp (x1t
a1 + · · · + xn−1t

an−1)

(
∞∑

k=0

(xnt
an)k

k!

)
dt

and we get

(3.2) I(β;x1, . . . , xn) =
N∑

k=0

xk
n

k!

∫

γ

tank−β−1 exp (x1t
a1 + · · · + xn−1t

an−1) dt+RN(β;x1, . . . , xn)
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where

RN(β;x1, . . . , xn) = RN(β;x) =

∫

γ

t−β−1 exp (x1t
a1 + · · · + xn−1t

an−1)

(
∞∑

k=N+1

(xnt
an)k

k!

)
dt.

These integrals are all convergent on γ due to its rapid decay properties and we shall use the
following elementary lemma involving an auxiliary complex variable z ∈ C :

Lemma 3.2. Let rN(z) =
∑∞

k=N+1
zk

k!
be the remainder of order N of the exponential power series.

There exists a positive real number C ′
N , depending only on N , such that for all z with ℜz < 0 one

has
|rN(z)| ≤ C ′

N |z|
N+1.

Since there is a compact set K such that for t ∈ γ \K we have ℜ(xnt
an) < 0 there is a possibly

larger constant CN depending also on γ such that

∀t ∈ γ, |rN(xnt
an)| ≤ CN |xnt

an|N+1

So we have

|RN(β;x)| =

∣∣∣∣x
N+1
n

∫

γ

tan(N+1)−β−1 exp (x1t
a1 + · · · + xn−1t

an−1)
rN(xnt

an)

(xntan)N+1
dt

∣∣∣∣

=|QN(β;x1, . . . , xn)| · |xn|
N+1.

This proves the existence of an asymptotic expansion which is locally uniform with respect to
(x1, . . . , xn−1). Indeed as indicated in the statement, the domain of convergence of the last integral
QN contains the product of Cn−2 by a product of sectors in the variables xn−1, xn . It is convergent
since the integrand is bounded by the integrable function :

CN

∣∣tan(N+1)−β−1 exp (x1t
a1 + · · · + xn−1t

an−1)
∣∣ .

�

4. Gevrey expansions of hypergeometric integrals for A = (a1, . . . , an)

First of all we prove the following

Proposition 4.1. The asymptotic expansion of the integral depending on (x1, . . . , xn):

I(β;x) =

∫

γ

t−β−1 exp

(
n∑

j=1

xjt
aj

)
dt

given in Proposition 3.1 is a Gevrey series of order less than or equal to s = an

an−1
with respect to

xn = 0.

Proof. We set (an−1, an) = (da, db) with gcd(a, b) = 1 and for each k ∈ N, k = aq + j with
0 ≤ j < a. Looking at the exponents of t in the integrands, the coefficients ck in (3.1) satisfy by
derivation under the sign

∫
γ

the relation

(qa+ j)!cqa+j(x1, . . . , xn−1) = j!
∂qbcj
∂xn−1

qb
(x1, . . . , xn−1)

Since each of the functions c0, . . . , ca−1 is holomorphic, we have in a small enough neighbourhood
of a point x1, . . . , xn−1 with ℜxn−1 < 0 a uniform upper bound involving a constant K that we
can choose common to all the indices j = 0, . . . , a− 1 :

(qa+ j)! |cqa+j(x1, . . . , xn−1)| ≤ j!(qb)!Kqb
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Then a local upper bound of ck(x1, . . . , xn−1) is the quotient

(a− 1)!
(⌊kb

a
⌋)!K

kb
a

k!
.

Hence, the asymptotic expansion that we consider is a Gevrey series of order at most b
a

= an

an−1
. �

Remark 4.2. We will see, as a consequence of Theorem 4.8, that in fact these Gevrey series have
index equal to an

an−1
when β is generic enough. See Section 5.

4.1. Case A = (a, b). The aim of this Subsection is to compare, in the case A = (a, b), the
Gevrey asymptotic expansions of the hypergeometric integrals to the Gevrey solutions described
in Proposition 2.3. This comparison is proved in Theorem 4.7. We consider here a, b ∈ Z, 1 ≤ a < b
and a, b are relative primes.

We consider the integrals

Iγ(A, β;x) = Iγ(β;x) =

∫

γ

t−β−1 exp
(
x1t

a + x2t
b
)
dt.

with respect to various specific cycles of rapid decay γ = Cp as in Figure 1.

ǫ

ǫωp

2πp
b

Fig. 1. The cycle Cp.

This path consists of the real half line [ǫ,+∞[ negatively oriented, and the half line ωp · [ǫ,+∞[

where ωp = e
2iπp

b is a b–th root of unity joined by the arc of a circle {ǫeiθ | 0 ≤ θ ≤ 2pπ
b
} with

ǫ > 0.

The cycles Cp ⊗ σ, for 1 ≤ p ≤ b are a basis of the rapid decay homology with closed support
as defined in [Hi07] where σ is a section of the local system C · t−β−1 exp(x1t

a + x2t
b) in C∗. We

choose the determination of log t as being real on [ǫ,+∞[. When β is generic, in practise here
when β /∈ Z, they are all non compact and when β is an integer the last cycle Cb is compact being
equivalent to the circle of radius ǫ because t−β−1 is uniform on C∗. The integral along Cp does not
depend on the choice of ǫ and we have an asymptotic expansion which is just a particular case of
Proposition 3.1:

Proposition 4.3. The integral depending on (x1, x2):

ICp
(β;x1, x2) =

∫

Cp

t−β−1ex1ta+x2tbdt

is defined when ℜx2 < 0 and admit an asymptotic expansion
∑∞

k=0 ck(x1)x
k
2 whose coefficients are

ck(x1) =
1

k!

∫

Cp

t−β−1+bkex1tadt.

This expansion is valid in the open sector defined by ℜx1 < 0,ℜ(ωa
px1) < 0.
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�

Remark 4.4. Notice that the open sector of the variable x1 described in Proposition 4.3 is empty
when ωa

p = −1 which happens if (2k + 1)b = 2pa. In Proposition 4.5 we will show that if we
restrict the domain of the variable x2 to some sector π − ǫ < arg x2 < π + ǫ for a small ǫ > 0 we
may enlarge the domain of validity in the variable x1.

We give now a more precise description of the asymptotic expansion of the integral ICp
(β;x1, x2).

The coefficient ck(x1) can be decomposed as a sum −Ik,1 + Jk + Ik,2 where

Ik,1(ǫ, x1) =
1

k!

∫ +∞

ǫ

sbk−β−1ex1sa

ds

Jk(ǫ, x1) =
1

k!

∫ 2pπ
b

0

ǫbk−β−1e−iθ(β+1−bk)ex1ǫaeiaθ

iǫ eiθdθ

Ik,2(ǫ, x1) =
1

k!

∫

ωp·[ǫ,+∞[

t−β−1+bkex1tadt =
1

k!

∫ +∞

ǫ

e
2ipπ

b
(bk−β)sbk−β−1ex1ωa

psa

ds.

For k large enough ℜ(bk−β) > 0 and the limit of Jk(ǫ, x1) is 0 when ǫ tends to 0. Under the same
condition the limit of the sum Ik,1 and of Ik,2 exist and then

(4.1) ck(x1) =
1

k!

∫ +∞

0

e
2ipπ

b
(bk−β)sbk−β−1ex1ωa

psa

ds−
1

k!

∫ +∞

0

sbk−β−1ex1sa

ds.

Let us denote ck(x1) = Ik,2(x1)−Ik,1(x1) this decomposition of the coefficient ck(x1) as a difference.
We transform Ik,1(x1) for x1 real negative by the change of variable u = |x1|s

a, ds = sdu
au

.

(4.2) Ik,1(x1) =
1

k!

∫ +∞

0

sbk−β−1ex1sa

ds =
1

k!

∫ +∞

0

(
u

|x1|

) bk−β
a e−udu

au
.

The final result is

Ik,1(x1) =
1

a k!
e−iπ(β−kb

a
)x

β−kb
a

1

∫ +∞

0

u
bk−β

a
−1e−udu

when we choose π as a determination of the argument of x1. The equality is valid on the half
plane ℜx1 < 0 because both sides are holomorphic and coincide on the real negative axis by the
equation (4.2). The last integral equals Γ( bk−β

a
).

Similarly the first part of the equation (4.1) for ck(x1) can be evaluated for the values of x1 ∈ C
such that x1ω

a
p is real negative and setting u = |x1|s

a for such a fixed x1

Ik,2(x1) =
1

k!

∫ +∞

0

e
2ipπ

b
(bk−β)sbk−β−1ex1ωa

psa

ds =
1

k!

∫ +∞

0

e
2ipπ

b
(bk−β)

(
u

|x1|

) bk−β
a e−udu

au

The appropriate argument for ωa
p is 2apπ

b
, therefore in order to get arg x1ω

a
p = π one must set

arg x1 = π − 2apπ
b

. By a calculation identical to the one used for Ik,1(x1) we get:

|x1|
β−kb

a = x
β−kb

a

1 e−iπ(β−kb
a

)e
2iapπ

b
(β−kb

a
) = x

β−kb
a

1 e−iπ(β−kb
a

)e
2ipπ

b
β

Ik,2(x1) =
1

a k!
x

β−kb
a

1 e−iπ(β−kb
a

)

∫ +∞

0

u
bk−β

a
−1e−udu.

We get an expression of Ik,2(x1) formally identical to the one for Ik,1(x1). However the respective
determinations of the argument of x1 that we use in these two integrals are in general different
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in the common domain of definition. This domain is the intersection Sp of the two half planes
ℜx1 < 0 and ℜx1ω

a
p < 0. Therefore in this common sector there is a constant c(k, p) such that

Ik,1(x1) = c(k, p)Ik,2(x1).

Assume that ωa
p 6= −1. We have arg(ω−a

p ) = −2πap
b

and we define the integer ℓ ∈ {0, . . . , a} by the
property that α = 2π(ℓ− ap

b
) is the determination of arg(ω−a

p ) in ] − π, π[

(4.3) −π < 2πℓ−
2πap

b
< π.

In other words ℓ = ⌈ap
b
− 1

2
⌉, and since ωa

p 6= −1, ℓ is the unique integer such that |ap
b
− ℓ| < 1

2
.

The argument used for x1 in the sector of validity of Ik,2(x1) is centered on the value π − 2apπ
b

∈
] − 2πℓ,−2π(ℓ − 1)[. Therefore it is equal to arg x1 − 2πℓ if we denote by arg x1 the standard
determination in ]0, 2π[ used for Ik,1(x1). By treating the effect of this difference on the monomial

x
β−kb

a

1 we obtain in the sector Sp :

Ik,2(x1) = Ik,1(x1) × e−2iπℓ(β−kb
a

)(4.4)

If we set k = am+ j it results in

Iam+j,2(x1) = Iam+j,1(x1) ·
(
e2iπ jb−β

a

)ℓ

.

The asymptotic expansion of ICp
(x1, x2) is valid in the same sector by the proof of Proposition 3.1

and we obtain still limiting ourselves to k or m large enough :

(4.5)

cam+j(x1) =

((
e2iπ jb−β

a

)ℓ

− 1

)
Iam+j,1(x1)

=

(
e2iπ jb−β

a

)ℓ

− 1

a(am+ j)!
eiπ( jb−β

a
)eiπbmx

β−jb
a

−bm

1 Γ

(
bm+

jb− β

a

)

Assume that β /∈ Z. Recall from (2.4) and Proposition 2.3, the elements ψ(j) := ψ
(j)
(a,b),β of a basis

of the Gevrey solution space of order less than or equal to s ≥ b
a

at generic points in Y = (x2 = 0).
We want to arrange the expression of cam+j(x1) in (4.5) so as to recognize in it a multiple by a

factor depending only on j of the coefficient of xam+j
2 in the expansion of ψ(j). See (4.6) below.

Using the well known identity

Γ(z)Γ(1 − z) =
π

sin πz
and

Γ(z + 1)

Γ(z −m+ 1)
= [z]m = z(z − 1) . . . (z −m+ 1)

Γ

(
bm+

bj − β

a

)
=

(−1)bmπ

sin(π · bj−β
a

)Γ(β−bj
a

− bm+ 1)
=

(−1)bmπ

sin(π · bj−β
a

)Γ(β−bj
a

+ 1)
·

[
β − bj

a

]

bm

,

the expression of the function cam+j is finally :

(4.6) cam+j(x1) =

[(
e2iπ jb−β

a

)ℓ

− 1

]
πe−iπ(β−jb

a
)

a j! sin(π · bj−β
a

)Γ(β−bj
a

+ 1)
·

[
β−bj

a

]
bm

[am+ j]am

x
β−bj

a
−bm

1

Now we are ready to prove a more precise statement about asymptotic expansion of the integral
along the cycle Cp.
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Proposition 4.5. (1) The integral ICp
(x1, x2) has, provided that e

2iπpa
b 6= −1, an asymptotic

expansion which is a linear combination of the Gevrey series ψ(j). When β /∈ Z the coeffi-

cient of ψ(j) in this linear combination is equal to the product of qℓ
j − 1 :=

(
e2iπ jb−β

a

)ℓ

− 1

by a non zero constant λj which does not depend on p while |ℓ− ap
b
| < 1

2
. When β ∈ Z the

same is true if β−bj
a

/∈ Z. Finally when β ∈ Z \ N(a, b) the coefficient of ψ(j0) is zero for

the unique j0 such that β−bj0
a

∈ Z<0.
(2) Assume ωa

p 6= −1 and set α = 2π(ℓ − ap
b
), |α| < π. Then the expansion in (1) is valid for

ℜx2 < 0 and x1 in the sector of angular width π − |α| defined by the condition :

arg x1 ∈

{
]π
2

+ α, 3π
2

[ if α ≥ 0

]π
2
, 3π

2
+ α[ if α ≤ 0.

(3) If we restrict the domain for the variable x2 to a sector | arg(x2)−π| < ǫ with ǫ sufficiently
small we can extend the domain of validity with respect to the variable x1 to a larger sector,
in such a way that for each ℓ ∈ {1, . . . , a} there exists p ∈ {1, . . . , b} for which |ℓ− ap

b
| < 1

2
and the open extended sector contains the real negative axis.

Proof. By Proposition 2.3 and since the integral ICp
(x1, x2) is a solution of the hypergeometric

system MA(β), the asymptotic expansion that we found in Proposition 4.3 is a linear combi-
nation of the Gevrey series ψ(j), described in equation (2.4). Let us call µj the coefficient of
this linear combination. Since the set of exponents of the series ψ(j) are mutually disjoint the
sum

∑
m≥0 cam+j(x1)x

am+j
2 must be the multiple µjψ

(j) of the series ψ(j). Assuming first that
β /∈ Z the calculation for m large enough in equation (4.5) is sufficient to determine µj and
comparing formula (4.6) with the expression of the series ψ(j) gives the result with the value

λj = πe−iπ(β−jb
a

)
(
a j! sin(π · bj−β

a
)Γ(β−bj

a
+ 1)

)−1
.

When β ∈ Z there is a unique j0 ∈ {0, . . . , a − 1} such that β−bj0
a

is an integer. For j 6= j0, the
same argument applies for the determination of µj. Let us write β = bj0 + aq, with q ∈ Z. In
that case cam+j0(x1) = 0 for m big enough. When q < 0 or equivalently β ∈ Z \ N(a, b) the series
ψ(j0) has an infinite number of terms and again the argument based on equation (4.5) gives the
announced result with µj0 = 0 by equation (4.5). When β ∈ N(a, b) the series ψ(j0) reduces to a
polynomial and equation (4.5) gives no information about µj0 to be reported in the statement of
Proposition 4.5.

In the exceptional case β ∈ N(a, b) we find directly that ψ(j0) comes from an integral solution.
Indeed by inspection of the Γ-series in (2.4) we find that ϕ(j0) is then the polynomial

⌊ q
b
⌋∑

m=0

[q]bm
[am+ j0]am

xq−bm
1 xam+j0

2

and this is exactly the integral

1

2πi q! j0!
Iγ(A, β;x) =

1

2πi q! j0!

∫

γ

t−β−1 exp
(
x1t

a + x2t
b
)
dt

along the compact cycle γ = (|t| = ǫ) for ǫ > 0 small enough.

Consider the two half planes ℜx1 < 0 and ℜ(x1ω
a
p) < 0 where the functions Ik,1 and Ik,2 are defined.

Since α is the principal argument of ω−a
p , they intersect along the common sector ]π

2
, 3π

2
[ ∩ ]π

2
+

α, 3π
2

+ α[. This gives the second statement.
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Furthermore for each ℓ ∈ {1, . . . , a} we choose p ∈ {1, . . . , b} such that |α| the smallest possible
which yields:

|α| = |2πℓ−
2πap

b
| ≤

πa

b

This remark is useful for the proof of the statement (3) and shows that the restriction ωa
p 6= −1 is

harmless since we can avoid it and reach any given ℓ.

In view of the last statement let us consider the family of paths eiθCp, for |θ| < π
2b

− ǫ
b
. When

x2 remains in the open sector | arg(x2) − π| < ǫ centered on real negative axis they are all rapid
decay cycles for the function t−β−1 exp(x1t

a+x2t
b) and are equivalent in the rapid decay homology.

Therefore we have :

ICp
(x1, x2) =

∫

Cp

t−β−1 exp(x1t
a + x2t

b)dt =

∫

eiθCp

t−β−1 exp(x1t
a + x2t

b)dt.

By Proposition 3.1 the Gevrey asymptotic expansion of ICp
(x1, x2) that we have obtained in

statement (1) of the Proposition can also be written
∑∞

k=0 cθ,k(x1)x
k
n with :

cθ,k(x1) =
1

k!

∫

eiθCp

tbk−β−1 exp(x1t
a)dt =

1

k!

∫

Cp

tbk−β−1 exp(x1e
iaθta)dt

The domain of validity with respect to the variable x1 of this asymptotic expansion therefore
contains a sector Sθ which is the image by a rotation with an angle −aθ of the initial sector obtained
from part (1) of the Proposition. Since we can continuously deform the paths of integration from
Cp to eiθCp the domain of validity of the asymptotic expansion of ICp

is the union of all the sectors
Sθ. The original sector S0 is centered at α

2
+ π and its width is π − |α|. When | arg(x2) − π| < ǫ

we have enlarged this width by an angle a
b
(π − 2ǫ). The width of the enlarged sector is :

π − |α| +
a

b
(π − 2ǫ) > π − 2ǫ.

Since this sector is centered at α
2

+ π ∈ ]π
2
, 3π

2
[ this proves that it contains the real negative axis

for ǫ > 0 small enough. �

Proposition 4.6. Assume that β /∈ Z. Then for every Gevrey series ϕ of order less than or equal
to s ≥ b

a
, which is a solution of the hypergeometric system MA(β), there is an holomorphic solution

defined in a product of sectors, which is a neighbourhood of the product of the real negative axes,
and which admits ϕ as an asymptotic expansion. This solution can be described as an integral of
the function t−β−1 exp(x1t

a + x2t
b) along a rapid decay cycle.

Proof. According to Proposition 2.3 it is sufficient to prove that each of the series ψ(j) or what
amount to the same each series λjψ

(j) is the asymptotic expansion of such an integral. In Propo-
sition 4.5, we have described such integrals and asymptotic expansions as linear combinations of
the λjψ

(j). The number a of these integrals is equal to the dimension of the space of Gevrey
solutions. Therefore in order to prove the statement we just have to show that the square matrix
of the coefficients of these linear combinations is invertible. In the notations of Proposition 4.5
this matrix is:

M =




q0 − 1 q2
0 − 1 . . . qa

0 − 1
. . . . . . . . . . . .
. . . . . . . . . . . .

qa−1 − 1 q2
a−1 − 1 . . . qa

a−1 − 1
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and one show by elementary calculations

detM =

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1
1 q0 q2

0 . . . qa
0

... . . . . . . . . . . . .

... . . . . . . . . . . . .
1 qa−1 q2

a−1 . . . qa
a−1

∣∣∣∣∣∣∣∣∣∣∣

=
a−1∏

i=0

(qi − 1)
∏

i<j

(qj − qi) 6= 0

where the last inequality follows from qj = e2iπ jb−β
a , with β /∈ Z and a, b co-prime. �

Theorem 4.7. For any β ∈ C and for every Gevrey series ϕ ∈ O
dX|Y

(s), s ≥ b
a
, which is a solution

of the hypergeometric system MA(β), there is an holomorphic solution defined in a product of
sectors, which is a neighbourhood of the product of the real negative axes, and which admits ϕ
as an asymptotic expansion. All these solutions can be described as an integral of the function
t−β−1 exp(x1t

a+x2t
b) along a rapid decay cycle when β /∈ Z\N(a, b). When β ∈ Z\N(a, b), the above

integral solutions span a codimension one subspace and there is a one dimensional supplementary
space obtained by expanding an integral along [0,+∞[.

Proof. When β /∈ Z, Proposition 4.6 gives a complete proof of the statement. When β ∈ Z we
write β = j0b + aq, 0 ≤ j0 < a. The proof of the same Proposition solves the case of the Gevrey
series ψ(j) for j 6= j0. Indeed the matrix M in this proposition has its last column equal to zero
and the row corresponding to ψ(j0) is zero too. We find that the matrix M is of rank exactly a− 1
so that all ψ(j) for j 6= j0 are obtained as integrals on rapid decay cycles. The non obtained Gevrey
series is:

ψ(j0) =
∑

m≥0

[q]bm
[am+ j0]am

xq−bm
1 xam+j0

2 .

It is a polynomial if and only if q ≥ 0, that is when β ∈ N(a, b). We notice that it is exactly the
case where the integral along a circle of radius ǫ > 0 centered at the origin which is equal to

∫

Cb

t−β−1ex1ta+x2tbdt = 2πi
∑

ℓ1a+ℓ2b=β

xℓ1
1 x

ℓ2
2

ℓ1!ℓ2!

is non zero. Since this is a polynomial solution we are done in this case.

Finally when β ∈ Z \ N(a, b), that is when q < 0, we notice that there is an integral holomorphic
solution given by the formula:

(4.7) Jβ(x1, x2) =

∫ +∞

0

t−β−1
(
ex1ta+x2tb − Pβ(x1, x2, t)

)
dt

where Pβ is zero if β < 0, and otherwise is the Taylor polynomial of degree ≤ β for t→ ex1ta+x2tb :

Pβ(x1, x2, t) =
∑

ℓ1a+ℓ2b≤β

xℓ1
1 x

ℓ2
2 t

ℓ1a+ℓ2b

ℓ1!ℓ2!
.

In fact degt Pβ < β, by the condition β /∈ N(a, b). This yields the convergence of Jβ at +∞.

The fact that Jβ is a solution of the system HA(β) is completely similar to the proof in [A94,
Section 2] for the case of rapid decay cycles. The reason is first that since ∂b

1 − ∂a
2 annihilates

ex1ta+x2tb , it annihilates as well the coefficients of all the monomials tj in its power expansion and
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hence also the polynomial Pβ(x1, x2, t). Concerning the Euler operator χ = ax1∂1 + bx2∂2 we just
have to notice that the relation for the integrand which leads to the proof is still valid :

χ
(
ex1ta+x2tb − Pβ(x1, x2, t)

)
= t∂t

(
ex1ta+x2tb − Pβ(x1, x2, t)

)
.

In order to end the proof of Theorem 4.7 we just have to check that Jβ admits under the same
conditions as in Section 4.1 an asymptotic expansion (of Gevrey order less than or equal to b

a
)

which must then be a linear combination
∑
µjψ

(j) of all the ψ(j). We rewrite it as follows

Jβ(x1, x2) =

∫ +∞

0

(
∞∑

k=0

t−β−1+bk

(
ex1ta −

∑

ℓa≤β−kb

xℓ
1t

ℓa

ℓ!

)
xk

2

k!

)
dt

and this leads to the existence of an asymptotic expansion completely similar to the one given in
the general case, but with a coefficient of xk

2 given by :

(4.8) ck(x1) =
1

k!

∫ +∞

0

t−β−1+bk

(
ex1ta −

∑

ℓa≤β−kb

xℓ
1t

ℓa

ℓ!

)
dt

which is again a convergent integral. The change of variable s = −x1t
a for x1 ∈ R<0 works exactly

in the same way as in Remark 4.4 and Proposition 4.5. In fact as soon as k is large enough the

correcting term
∑

ℓa≤β−kb
xℓ
1tℓa

ℓ!
is zero and we find explicitly :

ck(x1) =
1

ak!
e−iπ β−bk

a Γ

(
bk − β

a

)
x

β−kb
a

1 .

Considering the coefficients cam+j0(x1) for m large enough, we see that the coefficient µj0 of ψ
(j0)
A,β

is non zero in the asymptotic expansion of Jβ as expected. �

4.2. A basis of Gevrey asymptotic expansions. Let A = (a1, . . . , an) with integers 0 < a1 <
· · · < an and gcd(a1, . . . , an) = 1. By a rapid decay cycle we always mean in this section a
rapid decay cycle for the exponentials of both polynomials

∑
1≤j≤n xjt

aj and
∑

1≤j≤n−1 xjt
aj . In

Propositions 3.1 and 4.1 we prove that for any β ∈ C and any rapid decay 1-cycle γ there is an
asymptotic expansion of the integral Iγ(A, β, x). We denote it :

Φγ(A, β;x) = a.e.(Iγ(A, β, x)) = a.e.

(∫

γ

t−β−1 exp

(
n∑

j=1

xjt
aj

)
dt

)
.

We also prove that this asymptotic expansion Φγ(A, β;x) is a germ of Gevrey series in O
dX|Y

(s) at

any point in Y \ Z for all s ≥ an

an−1
. Let us consider a vector space E consisting in formal linear

combinations of geometric cycles of the above type. We get a map γ
GE

// Φγ from E to the

space of Gevrey series solutions of the system. When β ∈ Z \ NA, and restricting to a product of
sectors in the variables xn−1, xn centered on half lines whose respective arguments are (π − an−1θ
and π − anθ), we may as in the previous Section define an asymptotic expansion for the integral

Jβ(x1, . . . , xn) =

∫

eiθ·[0,+∞[

t−β−1
(
ex1ta1+···+xntan

− Pβ(x1, . . . , xn, t)
)
dt.

Here Pβ(x1, . . . , xn, t) is again the Taylor polynomial of degree β for t→ exp (x1t
a1 + · · · + xnt

an).
When β ∈ Z \NA we still denote Φγ(A, β;x) such an asymptotic expansion. By extension we still
call a vector space of cycles the formal direct sum of a one dimensional space C · eiθ · [0,+∞[ and
a subspace made of rapid decay cycles.
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The goal of the remaining part of this Section is to prove the following generalisation of the
surjectivity statement for GE that follows directly from Theorem 4.7.

Theorem 4.8. There exists an an−1 dimensional vector space E of cycles such that the map GE

from E to the set of germs of Gevrey asymptotic expansions is an isomorphism onto the stalk of

HomDX

(
MA(β),O

dX|Y
(s)
)

at any point in Y \ Z for s ≥ an

an−1
.

Remark 4.9. 1) By [FC11b, Remark 4.12] it is enough to prove the Theorem for points of the
form (0, . . . , 0, ε, 0) ∈ X with ε 6= 0.

2) In the proof of this Theorem we will see that for β /∈ Z \ NA the space E is a space of rapid
decay cycles. When β ∈ Z \ NA there exists a unique eiθ · [0,+∞[ which spans a one dimensional
complement in E to a space of rapid decay cycles.

3) In the statement of Theorem 4.8 it must be understood that a Gevrey expansion can be obtained
along any half line eiθ · [0,+∞[ in the variable xn. The space E depends on the arguments chosen
for xn−1, xn.

In the proof of Theorem 4.8 we first focus on products of sectors in the variables xn−1, xn that
are centered along the real negative axes, while the other variables x1, . . . , xn−2 are arbitrary in
C. The general statement follows easily from this particular case by considering actions of roots
of unity on the cycles and by controlling the width of the sectors of validity of the asymptotic
expansions.

Corollary 4.10. [of Theorem 4.7] Theorem 4.8 holds for n = 2 and a pair of sectors centered on
the real negative axis for each of the variables x1, x2. �

In order to simply notations we denote Sol(M) = HomD(M,O
dX|Y

( an

an−1
)) the sheaf of Gevrey

solutions of order less than or equal to an

an−1
of a holonomic DX–module M on X = Cn for

Y = (xn = 0) ⊂ X.

Remark 4.11. By Corollary 4.10, for all β ∈ C and for each r = 0, . . . , k− 1 there exists a family
γ1,r, . . . , γa,r of cycles such that the family

{
Φγ1,r

(
(a, b),

β − r

k
;x1, x2

)
, . . . ,Φγa,r

(
(a, b),

β − r

k
;x1, x2

)}

is a basis of the stalk of the solution space Sol(M(a,b)(
β−r

k
)) at any point in Y1 \Z1. Here Y1 ⊂ C2

(resp. Z1 ⊂ C2) is the line x2 = 0 (resp. x1 = 0).

In the statement of the following Proposition we use the morphism ̟β := ̟s
β, for s = an

an−1
,

defined in (2.8). Recall that, according to Proposition 2.7 in Section 2, ̟β is an isomorphism

if β /∈ N \
⋃k−1

r=0(r + kN(a, b)). But if there exists 0 ≤ r0 < k (necessarily unique) such that
β−r0

k
∈ Z \ N(a, b) then one of the cycles γτ0,r0 is [0,+∞[. All the other cycles γτ,r are in the set

of rapid decay ones and their asymptotic expansions span the image of ̟β which contains no non
zero polynomial.

Proposition 4.12. Theorem 4.8 holds for the matrix (1, ka, kb) with gcd(a, b) = 1 and k ≥ 1.
There exists a set of cycles {γ̃τ,r | 1 ≤ τ ≤ a, 0 ≤ r < k}, such that the asymptotic expansions
Φ

eγτ,r
((1, ka, kb), β) span the space of solutions Sol(M(1,ka,kb)(β)). More precisely :

If ̟β is an isomorphism, the image of the germ of Φ
eγτ,r

((1, ka, kb), β) by the morphism ̟β equals
(

0, · · · , 0,
1

k
Φγτ,r

(
(a, b),

β − r

k

)
, 0, · · · , 0

)
.
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If ̟β is not an isomorphism, the same is true for all the pairs (τ, r) such that Φγτ,r
is in the image

of ̟β. This exclude exactly one pair (τ0, r0) characterised by β = r0 + kq0, and Φτ0,r0 not in the
image of ̟β. Furthermore Φ

eγτ0,r0
((1, ka, kb), β) is a polynomial.

Proof. We consider the germs at a point (0, ε, 0) with ε 6= 0 and the stalk of the direct sum at
(ε, 0). We write B′ = (1, ka, kb) and B = (a, b), and (x0, x1, x2) for coordinates in C3. The proof
here depends heavily on Proposition 2.7 in Section 2.

Let us assume first that γτ,r is one of the rapid decay cycles among those considered in Remark 4.11.

They are relative to the matrix B and β−r
k

and this excludes [0,+∞[, when β ∈ r0 + k(Z \N(a, b))

for some r0 ∈ {0, . . . , k − 1}. Denote it for short γ := γτ,r and choose a kth root γ̃ in C∗ :
γ̃(t)k = γ(t).

The cycle γ̃ is of rapid decay with respect to B′ and we develop the integral

I
eγ = I

eγ(x0, x1, x2) = I
eγ(B

′, β;x0, x1, x2) =

∫

eγ

t−β−1 exp(x0t+ x1t
ka + x2t

kb)dt

as

I
eγ(x0, x1, x2) =

k−1∑

ℓ=0

xℓ
0J

ℓ
eγ(x

k
0, x1, x2).

Notice that
∂ℓI

eγ

∂xℓ
0
(0, x1, x2) = ℓ!J ℓ

eγ(0, x1, x2) and the change of variables s = tk shows that :

Iγ

(
B,

β − r

k
;x1, x2

)
:=

∫

γ

s−
β−r

k exp(x1s
a + x2s

b)
ds

s

=

∫

eγ

t−β+r exp(x1t
ka + x2t

kb)k
dt

t
= k

∂rI
eγ

∂xr
0

(0, x1, x2)

Let ω = e
2iπ
k and for ν = 0, . . . , k − 1, γ̃(ν) := ω−ν γ̃. We can write

I
eγ(x0, x1, x2) = ω−νβ

∫

eγ(ν)

s−β−1 exp(x0ω
νs+ x1s

ka + x2s
kb)ds = ω−νβI

eγ(ν)(x0ω
ν , x1, x2)

and then

I
eγ(ν)(x0, x1, x2) = ωνβI

eγ(x0ω
−ν , x1, x2) = ωνβ

k−1∑

ℓ=0

ω−νℓxℓ
0J

ℓ
eγ(x

k
0, x1, x2).

The matrix (ω−νℓ)0≤ν,ℓ≤k−1 being invertible we can write

(4.9) xℓ
0J

ℓ
eγ(x

k
0, x1, x2) =

k−1∑

ν=0

λℓ,νω
−νβI

eγ(ν)(x0, x1, x2)

for some λℓ,ν ∈ C. Now the cycle γ̃τ,r :=
∑k−1

ν=0 λr,νω
−νβ γ̃(ν) yields the expected result for γ = γτ,r :





∂ℓI
eγτ,r

∂xℓ
0

(0, x1, x2) = 0 if ℓ 6= r
∂rI

eγτ,r

∂xr
0

(0, x1, x2) = r!Jr
eγτ,r

(0, x1, x2) = 1
k
Iγ
(
B, β−r

k
;x1, x2

)
.

Consider the non rapid decay case γτ0,r0 = [0,+∞[. This happens when β ∈ Z\
⋃k−1

r=0(r+kN(a, b)),
β = β′k + r0 for unique integers β′ and 0 ≤ r0 < k. We know by Theorem 4.7 that Φτ0,r0 is the
asymptotic expansion attached to the integral :

Jβ−r0
k

,B
(x1, x2) =

∫ +∞

0

s−
β−r0

k (exp(x1s
a + x2s

b) − Pβ−r0
k

(x1, x2, s))
ds

s
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When ̟β is an isomorphism, we consider the expression

Jβ,B′(x0, x1, x2) =

∫ +∞

0

t−β−1(exp(x0t+ x1t
ka + x2t

kb) − Pβ(x0, x1, x2, t))dt

with notations analogous to those used in the proof of Theorem 4.7. It can be proved as in
Theorem 4.7 that Jβ,B′ is a holomorphic solution of the system MB′(β) and that it admits an
asymptotic expansion which is of Gevrey order less than or equal to b

a
that we denote Φ[0,+∞[. A

straightforward calculation, with the change of variables s = tk shows that:

∂r0Jβ,B′

∂xr0
0

(0, x1, x2) = Jβ−r0
k

,B
(x1, x2)

so that the r0-component of ̟β(Φ[0,+∞[), is equal to Φτ0,r0 . Using the already determined asymp-
totic expansions for all others Φ

eγp,r
we get the expected result with a uniquely determined linear

combination γ̃τ0,r0 = [0,+∞[−
∑

(τ,r) 6=(τ0,r0) cτ,rγ̃τ,r.

If β ∈ N, the integral along the cycle Cb (see notations in Subsection 4.1)
∫

Cb

t−β−1 exp(x0t+ x1t
ka + x2t

kb)dt

is a polynomial. Therefore if β ∈ r0 + k(N \ N(a, b)) for some r0 ∈ {0 . . . , k − 1}, its image by ̟β

is zero and it is the missing asymptotic expansion in the solution space Sol(M(1,ka,kb)(β)) by the
final part of Remark 4.11. This finishes the proof. �

Proof. [of Theorem 4.8, general case]. We may assume n ≥ 3. We simply write ka = an−1, kb = an

for some integer k ≥ 1 and gcd(a, b) = 1.

We first assume a1 > 1 and denote as usualA′ = (1, a1, · · · , an). We also denoteB′ = (1, an−1, an) =
(1, ka, kb) and B = (a, b). Let us consider the following diagram

Sol(MA′(β))p
ρ′

//

ρ

��

Sol(MB′(β))p

Sol(MA(β))p.

Let us explain the restriction morphisms in the above diagram: ρ′ is the restriction defined as

ρ′(f(x0, x1, . . . , xn)) = f(x0, 0, . . . , 0, xn−1, xn).

Similarly ρ(f(x0, x1, . . . , xn)) = f(0, x1, . . . , xn). We consider a point p = (0, . . . , ε, 0) ∈ Cn+1 with
ε 6= 0 and we also denote p the image of this point in the different considered spaces.

The morphism ρ′ is an isomorphism for any β ∈ C, see Subsection 2.1. The morphism ρ is an
isomorphism if β ∈ N \ NA, see Theorem 2.5 and Remark 2.6.

Let us consider the set of asymptotic expansions

{Φ
eγτ,r

(A′, β) | 1 ≤ τ ≤ a, 0 ≤ r < k}

where γ̃τ,r is the cycle built in the proof of Proposition 4.12. The image by ρ′ of Φ
eγτ,r

(A′, β) is just
Φ

eγτ,r
(B′, β). This proves the theorem for A′ and then for A if β 6∈ N \ NA (because in this case ρ

is an isomorphism and the image of Φ
eγτ,r

(A′, β) is precisely Φ
eγτ,r

(A, β)).
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If β ∈ N \NA then we have again ρ(Φ
eγτ,r

(A′, β)) = Φ
eγτ,r

(A, β) for all (τ, r) 6= (τ0, r0). The integral

(4.10) Jβ :=

∫ +∞

0

t−β−1

(
exp

(
n∑

i=1

xit
ai

)
− Pβ(x1, . . . , xn, t)

)
dt

defines a holomorphic function in a domain Cn−2 × Sn−1 × Sn where Si is a sector in C which is
a neighbourhood of the real negative axis for i = n − 1, n. Here Pβ is the Taylor polynomial, for
the exponential, of degree ≤ β in t.

As usual we consider, for k big enough,

(4.11) ck(x1, . . . , xn−1) =
1

k!

∫ +∞

0

t−β−1+ank exp

(
n−1∑

i=1

xit
ai

)
dt

the coefficient of xk
n in the expansion of Jβ. By developing we get

ck(x1, . . . , xn−1) =
∑

m1,...,mn−2≥0

cm1,...,mn−2,k(xn−1)x
m1
1 · · ·xmn−2

n−2

where, writing mn = k big enough,

cm1,...,mn−2,mn
(xn−1) =

1

m1! · · ·mn−2!mn!

∫ +∞

0

t−β−1+
P

i6=n−1 aimiexn−1tan−1
dt.

Up to a scalar multiple this last integral equals

x

β−
P

i6=n−1 aimi

an−1

n−1 Γ

(
−β +

∑
i6=n−1 aimi

an−1

)
.

The condition β ∈ N \NA implies that the argument of the Gamma factor is never a non-positive
integer. Writing β = qan−1 + j0 with 0 ≤ j0 < an−1 and choosing m1, . . . ,mn−2,mn−1,mn ≥ 0
such that j0 + an−1mn−1 =

∑
i6=n−1 aimi we see that the corresponding exponent of xn−1 in the

expansion of Jβ is
β−

P

i6=n−1 aimi

an−1
= q −mn−1 which is a negative integer if mn−1 is large enough.

Moreover, the asymptotic expansion of Jβ is a Gevrey series solution of MA(β) of order less than

or equal to an

an−1
which is linearly independent of the set {ϕ

(j)
A′,β(0, x) | j 6= j0}. This finishes the

proof of the theorem for A if a1 > 1.

If finally a1 = 1 then we apply previous discussion by using the restriction to the case (1, an−1, an).
�

Up to now we have considered only asymptotic expansions in a neighbourhood of the real negative
axes for xn−1, xn. Looking at the reductions that we have carried out we see that it is sufficient to
check the general statement about the arguments when n = 2. We set A = (a, b). If we consider

x2 = y2e
iθ of argument θ and changing all the cycles γ into ei π−θ

b · γ, we are reduced to the real
negative case for x2. Now we conclude with the following :

Lemma 4.13. Theorem 4.8 holds for n = 2 in a product of sectors near the real negative axis for
x2 and an arbitrary argument for x1.

Proof. Changing the cycles γ to e2ipπ/b ·γ preserves the hypothesis for x2 and modify the argument
of x1 by a factor e2ipaπ/b. By varying p, and because (a, b) = 1 we get all the b-roots of unity.
It is therefore sufficient to check that the asymptotic expansion found in Subsection 4.1 is valid
in sectors around the real negative axis whose union has a width strictly greater than 2π

b
. This

follows from a careful inspection of the proof of the enlargement statement in Proposition 4.5. �
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5. Gevrey solutions modulo convergent solutions

We can also give a description of the stalk of the solution space HomDX
(MA(β),QY (s)) at any

point of Y \ Z where, for s ≥ 1, QY (s) is the quotient of O
dX|Y

(s) by OX|Y . By [FC11b, Th. 5.3]

this space is just (0) if 1 ≤ s < an

an−1
and has dimension an−1 if s ≥ an

an−1
. We will assume in this

Section that s ≥ an

an−1
. Let φ(t) a C∞ function with compact support locally constant with value

1 near the origin. We consider the following integral, see (4.10):

(5.1) Jφ,β(x) = Jφ,β(x1, . . . , xn) :=

∫ +∞

0

t−β−1
(
ex1ta1+···+xntan

− Pβ(x, tφ(t))
)
dt

where Pβ(x, t) is the Taylor polynomial of the exponential of degree in t less than or equal to
β. We write Jφ,β(A;x) if we want to emphasize the dependence of this integral on the matrix A.
This integral defines a holomorphic function in Cn−2 × Sn−1 × Sn for some open sectors Si ⊂ C,
i = n−1, n, each of them containing the real negative axis. In general this integral is not a solution
of the hypergeometric system MA(β) but it is a solution modulo convergent power series.

Now we come back to the Gevrey solutions modulo convergent ones. We will treat the case
A = (a, b) first. According to Corollary 4.10, for β 6∈ Z the family of asymptotic expansions
{Φτ (A, β) := Φγτ

(A, β), τ = 1, . . . , a} is a basis of Gevrey solutions of MA(β) in O
dX|Y

(s). For

β 6∈ Z, the family {ψ
(j)
A,β | j = 0, . . . , a−1} is also a basis of Gevrey solutions and their classes modulo

convergent series form a basis of HomDX
(MA(β),QY (s)) [FC11a, Th. 5.9 (i)]. Then, the classes

of {Φτ (A, β), τ = 1, . . . , a} modulo convergent series forms a basis of HomDX
(MA(β),QY (s)).

Previous situation is still valid when β ∈ Z \ N(a, b), taking into account that we denote Φa(A, β)
the asymptotic expansion of an integral Jβ(x1, x2) over γ = [0,+∞[, see Theorem 4.7. For p = b
the integer ℓ is just a and the integral along the cycle Cb is zero. As explained in the proof of
Theorem 4.7 the asymptotic expansion of Jβ(x1, x2) replace the missing integral along rapid decay
cycles.

Assume now β ∈ N(a, b) and write β = j0b + qa with 0 ≤ j0 < a and q ≥ 0. We know that

the Gamma series ψ
(j0)
A,β is a polynomial and then its class modulo convergent series is zero. We

denote by Φa(A, β) the asymptotic expansion of Jφ,β(x1, x2), see (5.1). The coefficient ck(x1) of
this expansion is, for k big enough, exactly the same as in (4.8). In particular, the exponent of
x1 in cam+j0(x1) for m big enough is the negative integer q − bm. This proves that the family
{Φτ (A, β), τ = 1, . . . , a} is still linearly independent modulo convergent power series. Hence, it
defines a basis of HomDX

(MA(β),QY (s)).

We treat now the case A = (a1, . . . , an) and n ≥ 3. We write as usual an−1 = ka, an = kb for
k ≥ 1 and gcd(a, b) = 1. According to Theorem 4.8, for β 6∈ N the family of asymptotic expansions
{Φ

eγτ,r
(A, β), 1 ≤ τ ≤ a, 0 ≤ r < k} is a basis of Gevrey solutions of MA(β) in O

dX|Y
(s). For

β 6∈ N, the family {ϕ̃
(j)
A,β := ϕ

(j)
A′,β(0, x) | j = 0, . . . , an−1 − 1} is also a basis of Gevrey solutions and

their classes modulo convergent series form a basis of HomDX
(MA(β),QY (s)) [FC11b, Th. 5.5,

(i)]. Then, the classes of {Φ
eγτ,r

(A, β), 1 ≤ τ ≤ a, 0 ≤ r < k} modulo convergent series form a
basis of HomDX

(MA(β),QY (s)).

Previous situation is still valid when β ∈ N\NA, taking into account that we denoted Φ
eγτ0,r0

(A, β)
the asymptotic expansion of an integral Jβ(x) over [0,+∞[, see (4.10) and we considered this

asymptotic expansion as the generator of a complement space of {ϕ̃
(j)
A,β, j = 0, . . . , an−1 − 1}.

Assume now β ∈ NA. We denote by Φ
eγτ0,r0

(A, β) the asymptotic expansion of Jφ,β(x), see (5.1),
with respect to xn. The coefficient ck(x1, . . . , xn−1) of this expansion is, for k big enough, exactly
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the same as in (4.11). We can proceed as in the proof of the general case of Theorem 4.8 to see
that the classes modulo convergent power series of the asymptotic expansions Φ

eγτ,r
(A, β) form a

basis of the solution space HomDX
(MA(β),QY (s)).
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