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GEVREY EXPANSIONS OF HYPERGEOMETRIC INTEGRALS I

FRANCISCO-JESÚS CASTRO-JIMÉNEZ AND MICHEL GRANGER

ABSTRACT. We study integral representations of the Gevrey series solutions of irregular hypergeometric

systems. In this paper we consider the case of the systems associated with a one row matrix, for which

the integration domains are one dimensional. We prove that any Gevrey series solution along the singular

support of the system is the asymptotic expansion of a holomorphic solution given by a carefully chosen

integral representation.

Friday 7th December, 2012

1. INTRODUCTION

Hypergeometric systems also known as GKZ systems were introduced in [GGZ87] and [GZK89] as a

far reaching generalisation of the Gauss hypergeometric differential equation. They appear as a special

family of D-modules and they have been first studied in the regular case. For example in [GKZ90] the

authors consider integral representations of the solutions of hypergeometric systems, at generic points of

the space, which they call Euler integrals. In the irregular or confluent case, A. Adolphson considers in

[A94] other integral representations of solutions which involve exponentials of polynomial functions and

appropriate integration cycles. In this paper we develop new aspects in the irregular case namely the link

between Gevrey series solutions and holomorphic solutions in sectors following Adolphson’s approach.

We aim at proving that we can materialise any Gevrey series solution as an asymptotic expansion in a

sector of such an integral solution.

Let us fix some notations : D stands for the complex Weyl algebra of order n, where n ≥ 0 is an integer.

Elements in D are linear partial differential operators with polynomial coefficients. The polynomial ring

C[∂] := C[∂1, . . . , ∂n] is a subring of the Weyl algebra D, where the ∂i’s represent the partial derivatives

with respect to the variables in the space Cn. The input data for a GKZ system is a pair (A, β) where β
is a vector in Cd and A = (aij) = (a(1), · · · , a(n)) ∈ Zd×n is a matrix of rank d whose jth column is a(j).

The toric ideal IA ⊂ C[∂] is the ideal generated by the family of binomials ∂u − ∂v where u, v ∈ Nn and

Au = Av. The ideal IA is a prime ideal and the Krull dimension of the quotient ring C[∂]/IA equals d.

Following [GGZ87, GZK89], the hypergeometric ideal associated with the pair (A, β) is :

HA(β) = DIA + D(E1 − β1, . . . , Ed − βd)

where Ei =
∑n

j=1 aijxj∂j is the ith Euler operator associated with the i-th row of A. The corresponding

hypergeometric D–module (or hypergeometric system) is nothing but the quotient D–module MA(β) :=
D

HA(β)
.

In [GZK89] and [A94] it is proven that any hypergeometric D-module is holonomic. Moreover, a charac-

terization of the regularity of MA(β) is provided in the series of papers [Ho98], [SST] and [SW08] : The

holonomic D-module MA(β) is regular if and only if the toric ideal IA is homogeneous for the standard

grading in the polynomial ring C[∂]. In particular the condition to be regular for MA(β) is independent

of β. The concept of regularity has been studied first in the case of an ordinary differential equation

given by an operator P ∈ A1. Regularity is characterised according to Fuchs theorem by the nullity of
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2 FRANCISCO-JESÚS CASTRO-JIMÉNEZ AND MICHEL GRANGER

the irregularity number, an invariant combinatorially defined from the Newton polygon of P . In [M74]

B. Malgrange proved that the irregularity is the dimension of the space of solutions at the origin of C
with values in the space C[[x]]/C{x} of formal series modulo convergent ones. Later J.P. Ramis gave a

refined version of this result in [R84] calculating the space of solutions of a given Gevrey index again by

using the Newton polygon of the operator.

The concept of irregularity in higher dimension is considerably more involved but generalizes the above

results. Let us consider the structure sheaf OX of a complex manifold X and denote O
dX|Y

its completion

along a smooth hypersurface Y . In [Me90] Z. Mebkhout introduces for a holonomic D–module M
its irregularity complex along Y , IrrY (M) = RHomDX

(M,O
dX|Y

/OX|Y ), and in [LM99] the Gevrey

filtration of this complex is introduced and related to other invariants of the system, the algebraic slopes

in the sense of Y. Laurent.

In the case of hypergeometric D-modules the irregularity sheaves along coordinate subspaces, and Gevrey

series solutions are studied and described in [F10] (see also [FC11a, FC11b]). Beforehand A. Adolph-

son [A94] gave a formula for the dimension of the space of holomorphic solutions at a generic point of

the space and for a generic value of the parameter β, and he also described integral representations of

solutions of these confluent hypergeometric systems. In the non-confluent case a analogous dimension

formula was previously given in [GZK89]. In [ET12] A. Esterov and K. Takeuchi prove that these generic

solution spaces are in fact completely described by integral representations along rapid decay cycles as

introduced by Hien in [Hi07] and [Hi09].

We want to explore the more hidden link between these integral representations and the Gevrey series

solutions described in [F10] and [FC11b, FC11a]. In this paper we first treat the case of a matrix with

one row A = (a1, . . . , an) with 0 < a1 < · · · < an a list of co-prime integers. This is the case where

the integration cycles are paths. We prove that any Gevrey series solution of the system can be obtained

as the asymptotic expansion of an integral representation along a well chosen path. A specificity of the

one row case is that the rank of the space of Gevrey solutions is independent of β and we can treat all

the values of β. For a generic β we only use the space of rapid decay cycles and for special values of

β, namely for β ∈ Z \ (Na1 + · · · + Nan) we must add an exceptional path, without the rapid decay

property. The method of the proof is to reduce the statement to the case of the matrix A = (a, b), using

the fact that the restriction is compatible with being a Gevrey solution as well as with taking integrals

on a fixed path. In parallel we know by an argument using a Gevrey version of Cauchy-Kovalevskaya

theorem that the dimension of the Gevrey solution space is an−1 [FC11b]. In the case A = (a, b) the

Gevrey expansion is with respect with the second variable x2 and the main issue is to choose the paths of

integration in a specific way to ensure a common sector of convergence for the coefficients which depend

on the variable x1.

Here is a summary of the contents of this paper. In Section 2 general facts are given about Gevrey series

solutions following [F10]. In the case of a one line matrix we know that the characteristic variety of

the hypergeometric system is the union T ∗
XX ∪ T ∗

Y X of the zero section and of the conormal to the

hypersurface Y : (xn = 0). It is therefore sufficient to consider the irregularity sheaf and the germs of

Gevrey series solutions at a generic point (0, . . . , 0, ǫ, 0) of Y . We recall from [FC11b] the description

given in that case of a basis of the space of Gevrey series solutions in terms of Γ-series and the proof

that the dimension of this space is always equal to an−1. We also describe its behaviour by the restriction

operation which consists in omitting variables among x1, . . . , xn−2. In Section 3 we recall the definition

of hypergeometric integrals of exponential type and the fact that in the irregular case they are solutions of

the system. It is a quite general fact that these solutions have an asymptotic expansion as a Gevrey series

with respect to the variable xn provided that we choose an integration path of rapid decay both for the

function t−β−1 exp (x1t
a1 + · · · + xnt

an) and for t−β−1 exp (x1t
a1 + · · · + xn−1t

an−1). At the beginning

of Section 4 we prove that these expansions are Gevrey series of index at most an

an−1
.
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In the remainder of this Section we prove the main result of this paper about realisation of these Gevrey

series as asymptotic expansion of integral solutions. We treat first in detail the case of dimension 2 and

the last Subsection consists in using various restriction operations on the integral that are compared to

the analogue described in Section 2 for the Gevrey series.

2. GEVREY SOLUTIONS OF HYPERGEOMETRIC SYSTEMS

In this Section we review some results on the construction of Gevrey series solutions of hypergeometric

systems with respect to a coordinate hyperplane. Let us write X = Cn, OX the sheaf of holomorphic

functions on X and DX the sheaf of linear differential operators with holomorphic coefficients. With the

hypergeometric system MA(β) we associate the left coherent DX–module MA(β) := DX

DXHA(β)
which is

called the analytic hypergeometric system associated with the pair (A, β).

Let us denote Y the hyperplane defined by xn = 0 and O
dX|Y

the formal completion of OX along Y . A

germ f of the sheaf O
dX|Y

at a point (p, 0) ∈ Y has the form f =
∑

m≥0 fm(x1, . . . , xn−1)x
m
n where all

the fm are holomorphic functions in a common neighbourhood of p ; in particular the restriction of OX

to Y , denoted by OX|Y , is a subsheaf of O
dX|Y

.

For any real number s, we consider the sheaf O
dX|Y

(s) of Gevrey series along Y of order less than or equal

to s defined as the subsheaf of O
dX|Y

whose germs f at any (p, 0) ∈ Y satisfy the following convergence

condition:
∑

m≥0

fm(x1, . . . , xn−1)

m!s−1 xm
n ∈ OX|Y,(p,0).

If s′ < s then O
dX|Y

(s′) ⊂ O
dX|Y

(s). If a germ f belongs to O
dX|Y

(s) for some s but f /∈ O
dX|Y

(s′) for all

s′ < s, we say that the index of the Gevrey series f is s.

Let A = (a(1) · · · a(n)) be a full rank d × n matrix with a(i) ∈ Zd for all i = 1, . . . , n. In [GZK89] and

[SST], the authors associate with any vector v ∈ Cn satisfying Av = β a series expression of the form

(2.1) ϕA,β,v(x) := xv
∑

u∈Nv

Γ[v; u]xu

where Nv = {u ∈ kerZ(A) | nsupp(v + u) = nsupp(v)}, kerZ(A) = {u ∈ Zn : Au = 0} and

nsupp(w) := {i ∈ {1, . . . , n} |wi ∈ Z<0} is the negative support of w ∈ Cn. The coefficient Γ[v; u]

equals
[v]u−

[v+u]u+
where [v]u =

∏
i[vi]ui

and [vi]ui
=
∏ui

j=1(vi − j + 1) is the Pochhammer symbol for

vi ∈ C, ui ∈ N.

We write ϕv = ϕA,β,v is no confusion is possible. It is proved in [SST, Proposition 3.4.13] that the formal

expression ϕv is annihilated by the hypergeometric ideal HA(β) if and only if the negative support of v
is minimal, which means that ∄u ∈ kerZ(A) with nsupp(v + u) ( nsupp(v).

When β ∈ Cd is very generic, that is when β is not in a countable union of Zariski closed sets, there is

a basis of the Gevrey solution space of MA(β) along Y at a generic point of Y , given by series ϕv for

suitable vectors v ∈ Cn, [F10, Th. 6.7].

In this article we restrict ourself to the case where A = (a1, . . . , an) is a row matrix with 0 < a1 < · · · <
an with (a1, · · · , an) coprime and n ≥ 2. We recall here some results about the Gevrey series solutions

of MA(β) as presented in [FC11b, Sections 4, 5]. Let us fix some notations. As before X = Cn and

Y ⊂ X denotes the hyperplane defined by xn = 0. Let us write Z ⊂ X the hyperplane defined by

xn−1 = 0.
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When s < an

an−1
one sees from the results in [FC11b] that the set of Gevrey solutions is zero if β /∈ NA

and is a one dimensional space generated by a polynomial if β ∈ NA. This result follows also from what

we show in this paper and we focus now on the case s ≥ an

an−1
.

2.1. Case a1 = 1. Assume first n ≥ 3. A basis of the free Z–module kerZ(A) is formed of the vectors

{u(2), . . . , u(n)} where u(n−1) = (an−1, 0, . . . , 0,−1, 0) and for i = 2, . . . , n, i 6= n − 1, we define

u(i) = (−ai, 0, . . . , 0, 1, 0, . . . , 0)

where 1 is in the i-th component. For each m = (m2, . . . ,mn) ∈ Zn−1 we write u(m) =
∑n

i=2 miu
(i)

the corresponding element in kerZ(A).

For j = 0, . . . , an−1 − 1 define vj = (j, 0, . . . , 0, β−j

an−1
, 0) ∈ Cn and consider the associated Γ–series, see

(2.1)

(2.2) ϕA,β,vj = xvj
∑

m2,...,mn−1,mn≥0

j+an−1mn−1≥
P

i6=n−1 aimi

Γ[vj; u(m)]xu(m).

We write ϕ
(j)
A,β = ϕA,β,vj and also ϕ(j) = ϕA,β,vj if no confusion arises. By the choice of a basis of

kerZ(A) that we make ϕ(j) is a series in xvj

C[[x1, . . . , x
−1
n−1, xn]][x−1

1 ].

Notice here that the summation in ϕ(j), is according to (2.1), taken over the set Nv(j) = {u(m) | nsupp(v(j)+
u(m)) = nsupp(v(j)}. We have

{
Nv(j) = {m ∈ Nn−1 | j + an−1mn−1 ≥

∑
i6=n−1 aimi} if β−j

an−1
/∈ N

Nv(j) = {m ∈ Nn−1 | j + an−1mn−1 ≥
∑

i6=n−1 aimi,
β−j

an−1
≥ mn−1} if β−j

an−1
∈ N.

In this last case we can write β = j + han−1 for unique 0 ≤ j < an−1 and h ∈ N and then the series ϕ(j)

is a polynomial since [h]mn−1 = 0 = Γ[vj; u(m)] if mn−1 ≥ h + 1. In fact ϕ(j) is a polynomial if and

only if we are in that case.

The negative support of each vj is ∅ if h ∈ N and {n− 1} if β − j is a negative multiple of an−1 and it is

minimal in both cases. The series ϕ(j) is a polynomial in the first case and a solution of the ideal HA(β)
in both. More precisely,

Theorem 2.1. [FC11b, Th. 4.21, i)] Let A = (1 a2 · · · an) ∈ Zn with 1 < a2 < · · · < an, Y = (xn =
0) ⊂ X and Z = (xn−1 = 0) ⊂ X . Then the set (of germs of) Gevrey series {ϕ(j) | j = 0, . . . , an−1 − 1}
is a basis of HomDX

(MA(β),O
dX|Y

(s))p for all β ∈ C, p ∈ Y \ Z and s ≥ an/an−1.

It is also useful to consider the immersion i : C3 →֒ X defined by the equations x2 = · · · = xn−2 = 0
and the restriction ρ′ with respect to this immersion (coordinates in C3 are (x1, xn−1, xn)).

The series ϕ
(j)
A,β(x1, 0, . . . , 0, xn−1, xn) equals precisely ϕ

(j)
(1,an−1,an),β(x1, xn−1, xn) so the restriction de-

fines an isomorphism

(2.3) HomDX
(MA(β),O

dX|Y
(s))

ρ′

−−−−→ HomD
C3 (M(1,an−1,an)(β),O

Ĉ3|Y1
(s))

of the corresponding stalks at any point in Y1 \ Z1 for all β ∈ C and s ∈ R where we denote Y1, Z1 the

subspaces in C3 with equations xn = 0 and xn−1 = 0.

Remark 2.2. So far we have assumed n ≥ 3. The case n = 2 is special and will be treated now, following

[FC11a]. We can drop in this case the assumption on a1 and simply write a = a1, b = a2, with 1 ≤ a < b
and gcd(a, b) = 1.
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The corresponding Γ–series have a slightly different shape (see [FC11a]): For p = 0, . . . , a− 1, consider

wp = (β−pb

a
, p) ∈ C2 and

(2.4) ϕ
(p)
A,β = xwp

∑

m≥0

[β−pb

a
]bm

[am + p]am

x−bm
1 xam

2 .

We have the following

Proposition 2.3. [FC11a, Prop. 5.3 and 5.4] Write X = C2, Y = (x2 = 0) ⊂ X . The set (of germs) of

Gevrey series {ϕ
(p)
A,β | p = 0, . . . , a− 1} is a basis of the stalk of HomDX

(MA(β),O
dX|Y

(s)) at any point

in Y \ {(0, 0)}, for any real number s ≥ b
a

and any β ∈ C.

2.2. Case a1 > 1. Recall that X = Cn, Y ⊂ X (resp. Z ⊂ X) is defined by xn = 0 (resp. xn−1 = 0).

First of all, we follow [FC11b, Rk. 5.4] to prove the following equality

Proposition 2.4.

(2.5) dimC

(
HomDX

(MA(β),O
dX|Y

(s))p

)
= an−1

if p ∈ Y \ Z and s ≥ an

an−1
for any β ∈ C.

Proof. We apply, among other results, Cauchy-Kovalevskaya’s Theorem for Gevrey series. We con-

sider A′ = (1, a1, . . . , an) and the hypergeometric system MA′(β) on X ′ := Cn+1 with coordinates

(x0, x1, . . . , xn). We denote by Y ′ ⊂ X ′ (resp. Z ′ ⊂ X ′) the hyperplane xn = 0 (resp. xn−1 = 0) and

we identify X ⊂ X ′ with the hyperplane x0 = 0. Notice that Y = Y ′ ∩ X and Z = Z ′ ∩ X .

By [CT03, Proposition 4.2] we can apply Cauchy-Kovalevskaya’s Theorem for Gevrey series solutions

(see [LM02, Corollary 2.2.4]) to deduce that there exists a Cauchy-Kovalevskaya’s isomorphism CKs
X′,X

HomDX′ (MA′(β),O
X̂′|Y ′(s))|X

CKs
X′,X

−−−−−−→ HomDX
(MA′(β)|X ,O

dX|Y
(s))

where MA′(β)|X stands for the restriction in the category of D–modules. This is true for any s ∈ R and

for any β and even if gcd(a1, . . . , an) 6= 1.

We write CKs = CKs
X′,X is no confusion is possible. The isomorphism CKs is induced by the inclusion

X ⊂ X ′, by the action of restriction on the modules involved. Theorem [FC11b, Th. 5.1] states that for

any β ∈ C there exists β′ ∈ C such that the restriction MA′(β)|X is isomorphic to the hypergeometric

DX–module MA(β′). Moreover, by the same Theorem [FC11b, Th. 5.1] one can take β′ = β for all

but finitely many β. We denote by sp(A) the finite set of β ∈ C such that β′ 6= β. In particular, the

isomorphism CKs and Theorem 2.1 prove equality (2.5) for p ∈ Y \ Z, s ≥ an

an−1
and β 6∈ sp(A).

Assume now β∗ ∈ sp(A). We can take β = β∗ + A′γ′ = β∗ + Aγ for a suitable γ′ = (0, γ) ∈ Nn+1 ∪
(−N)n+1 in such a way that β 6∈ sp(A) and so the corresponding morphism CKs is an isomorphism. By

using [S01, Th. 2.1], [B11, Th. 6.5] one has that the morphism · ∂γ : MA(β∗) → MA(β) if γ ∈ Nn

(resp. · ∂−γ : MA(β) → MA(β∗) if γ ∈ (−N)n) is an isomorphism. This proves equality (2.5) for

β∗ ∈ sp(A). �

Once the equality (2.5) is established we give a description of a basis of the solution space of MA(β) in

O
dX|Y

(s)). We use the restriction morphism

(2.6) HomDX′ (MA′(β),O
X̂′|Y ′(s))|X

ρs
X′,X

−−−−−→ HomDX
(MA(β),O

dX|Y
(s))
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for β ∈ C and s ∈ R. This morphism is well defined and it is induced by the restriction to x0 = 0. It

is useful to write x′ = (x0, x) and x = (x1, . . . , xn). Then ρs
X′,X(ϕ(x′)) = ϕ(0, x), since if ϕ(x′) is a

solution in the first space then ϕ(0, x) is a solution in the second one. Notice that it is an approach of

restriction that could be different from the one by the CK’s.

We now consider the basis {ϕ
(j)
A′,β(x0, x)}an−1−1

j=0 of germs (at a point in Y \Z ⊂ Y ′ \Z ′) of Gevrey series

solutions (of order ≤ s) of MA′(β) described in Theorem 2.1.We simply write ϕ(j) = ϕ
(j)
A′,β . The terms

in x
−β+j
an−1

n−1 ϕ(j) have the form

Γ[v(j); u(m)]xj
0(x

′)u(m) = Γ[v(j); u(m)]x
j+an−1mn−1−

P

i6=n−1 aimi

0 xm1
1 · · ·xmn−2

n−2 x
−mn−1

n−1 xmn
n

where u(m) is a general element of kerZ(A′) ⊂ Zn+1. The summation in ϕ(j) (see (2.2)) is taken over

the set {m ∈ Nn | j + an−1mn−1 ≥
∑

i6=n−1 aimi}.

It is useful to write the formal expansion of ϕ(j)(0, x). According to what is said before we have

(2.7) ϕ(j)(0, x) = x
β−j

an−1

n−1

∑

m1,...,mn−1,mn≥0

j+an−1mn−1=
P

i6=n−1 aimi

[ β−j

an−1
]mn−1j!

m1! · · ·mn−2!mn!
xm1

1 · · ·xmn−2

n−2 x
−mn−1

n−1 xmn
n .

Notice that the family of non zero ϕ(j)(0, x) is C–linearly independent because their supports are pairwise

disjoint. This, and equality (2.5), proves the following (see [FC11b, Remark 5.4])

Theorem 2.5. Assume that ϕ(j)(0, x) is non zero for j = 0, . . . , an−1 − 1. Then the set (of germs of)

Gevrey series {ϕ(j)(0, x) | j = 0, . . . , an−1 − 1} is a basis of the stalk of HomDX
(MA(β),O

dX|Y
(s)) at

any point in Y \ Z for s ≥ an

an−1
.

Remark 2.6. Assume now that for some j = 0, . . . , an−1 − 1 one has ϕ(j)(0, x) = 0. By [FC11b, Rk.

5.4] this condition happens if and only if β ∈ N \ NA. Furthermore this j is then unique for a fixed β
and the image of the morphism ρs

X′,X has codimension 1 in the stalk of HomDX
(MA(β),O

dX|Y
(s)) at

any point in Y \Z and for all s ≥ an

an−1
. We will show in Theorem 4.8 how to describe a basis of this last

solution space for all β ∈ C.

2.3. The restriction to x0 = 0 for A′ = (1, ka, kb). Let us consider the morphism ρs
X′,X when X =

(x0 = 0) ⊂ X ′ = C3 and the matrix A′ = (1, ka, kb) with 1 ≤ a < b, 1 < ka and gcd(a, b) = 1.

The morphism ρs
X′,X , as defined in (2.6), sends solutions of MA′(β) to solutions of M(ka,kb)(β) and this

last DX–module is isomorphic to M(a,b)(
β

k
). In particular if k > 1, ρs

X′,X is not an isomorphism, since

the corresponding solutions spaces have dimensions ka and a respectively. Below we describe in detail a

different but related morphism involving the restrictions of the derivatives up to order k − 1 with respect

to the variable x0.

So, instead of considering A = (ka, kb) as before it is better to write A = (a, b). Coordinates in X ′ are

(x0, x1, x2).

For j = 0, . . . , ka − 1 let us write v(j) = (j, β−j

ka
, 0) and

ϕ
(j)
A′,β = x

β−j
ka

1

∑

m1,m2≥0

j+kam1≥kbm2

[β−j

ka
]m1j!

m2!(j + kam1 − kbm2)!
xj+kam1−kbm2

0 x−m1
1 xm2

2 .
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Notice that if a series ϕ (as for example ϕ
(j)
A′,β) is a solution of MA′(β) then ∂ℓϕ

∂xℓ
0

∣∣∣
x0=0

is a solution of

the system MA(β−ℓ

k
) for all ℓ ≥ 0. We are going to compare this solution, for ϕ = ϕ

(j)
A′,β , to the usual

Gamma series solutions ϕ
(p)
A,β′(x1, x2), see (2.4), of this last system MA(β′) for β′ = β−ℓ

k
. We consider

the following C–linear map

HomDX′ (MA′(β),O
X̂′|Y ′(s))|X

̟s
β

−−−−−−→
k−1⊕

ℓ=0

HomDX

(
MA

(
β − ℓ

k

)
,O

dX|Y
(s)

)

which maps ϕ to the vector
(

∂ℓϕ

∂xℓ
0
(0, x1, x2)

)k−1

ℓ=0
. Here Y ′ = (x2 = 0) ⊂ X ′ and Y = X ∩ Y ′.

Notice that the morphism ̟s
β is well defined and that it coincides with the morphism (2.6) when k = 1.

The following Proposition generalizes to an arbitrary k what is already proved for k = 1 in Theorem 2.5

and in Remark 2.6 :

Proposition 2.7. 1) Assume that β 6∈ N or β ∈
⋃k−1

r=0(r + kNA). Then the C–linear map ̟s
β is an

isomorphism of vector spaces.

2) Assume β ∈
⋃k−1

r=0(r+k(N\NA)) and consider the integers j0, r0, q0 uniquely determined by 0 ≤ j0 <
ka, 0 ≤ r0 < k and β = j0 + kah = r0 + kq0 + kah. Then the image of the map ̟s

β is the codimension

1 subspace, generated by all the (0, . . . , 0, ϕ
(p)

A, β−r
k

, 0, . . . , 0), with a non zero term in position r, and

(p, r) 6= (p0, r0) for p0 ∈ {0, . . . , a − 1} uniquely determined by bp0 ≡ q0 (mod a).

Proof. We consider the morphism ̟s
β induced on the stalks at points in Y \ Z, Z = (x1 = 0) ⊂ X and

s ≥ b
a
. Let us fix j = 0, . . . , ka − 1 and write j = kq + r for unique 0 ≤ q ≤ a − 1 and 0 ≤ r ≤ k − 1.

So we have

β − j

ka
=

β − kq − r

ka
=

β − r

ka
−

q

a
=

β−r

k
− q

a
.

The general exponent of x0 in ϕ
(j)
A′,β is j + k(am1 − bm2) = r + k(q + am1 − bm2). An exponent of x1

in
∂ℓϕ

(j)

A′,β

∂xℓ
0

∣∣∣∣
x0=0

for 0 ≤ ℓ ≤ k − 1, can only come from a term in ϕ
(j)
A′,β for which the underlying exponent

of x0 is ℓ. Therefore the only pairs (m1, m2) ∈ N2 that may appear are those satisfying the relation :

(2.8) j + k(am1 − bm2) − ℓ = k(q + am1 − bm2) + r − ℓ = 0.

This cannot happen if ℓ 6= r which means that
∂ℓϕ

(j)

A′,β

∂xℓ
0

∣∣∣∣
x0=0

= 0 if ℓ 6= r. The equality (2.8) is equivalent

to q = bm2 − am1 and ℓ = r. For any (m1, m2) ∈ N2 satisfying (2.8), we write m2 = am + p with

0 ≤ p ≤ a−1. We notice that the integer p depends only on q, hence on j because q = b(am+p)−am1

so that a divides bp − q. We denote it p = p(j). By a straightforward calculation the general exponent

of x1 in
∂rϕ

(j)

A′,β

∂xr
0

∣∣∣∣
x0=0

is β−j

ka
− m1 = β−r

ka
− bp(j)

a
− bm which equals the general exponent of x1 in ϕ

(p(j))
A,β′

by (2.4) applied to β′ = β−r

k
, and the respective indices for these series (m1, m2) and m are in a 1-1

correspondence through the relations

m1 = bm +
bp(j) − q

a
and m2 = am + p(j).
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Now we compare the corresponding coefficients in
∂rϕ

(j)

A′,β

∂xr
0

∣∣∣∣
x0=0

and in ϕ
(p)
A,β′ . The quotient of these two

coefficients is well defined, for all m ≥ 0, when β /∈ N and it is

(2.9)

(
[β−kq−r

ka
]m1(kq + r)!

m2!

)(
[β′−pb

a
]bmp!

(am + p)!

)−1

=
Γ(z − bm + m1)(kq + r)!

Γ(z)p!

where z − 1 = β′−pb

a
= β−r

ka
− pb

a
.

We notice here that once j is fixed, p = p(j) is also fixed and the integer bm − m1 = q−bp

a
does not

depend on m, m1. So, if β 6∈ N we have found a constant λj ∈ C∗ such that

∂rϕ
(j)
A′,β

∂xr
0

∣∣∣∣∣
x0=0

= λjϕ
(p(j))

A, β−r
k

and
∂ℓϕ

(j)
A′,β

∂xℓ
0

∣∣∣∣∣
x0=0

= 0 if ℓ 6= r.

When β ∈ N, we write β = j0 +kah = r0 +kq0 +kah, with unique 0 ≤ r0 ≤ k−1 and 0 ≤ q0 ≤ a−1.

If j 6= j0 = r0 + kq0 the quotient in (2.9) is still well defined for all m and the relation λj 6= 0 still valid.

If β ∈ r0 + k(N \ N(a, b)), the quotient is still well defined but we have λj0 = 0 by Remark (2.6)

since ϕ
(j0)
A′,β is a polynomial solution of MA′(β) and MA

(
β−r0

k

)
has no non zero polynomial solution for

β−r0

k
/∈ N(a, b).

Assume now β−r0

k
= ha + q0 ∈ N(a, b) so that ha + q0 = ua + vb for some u, v ∈ N. We can write in a

unique way q0 = −n1a + n2b with 0 ≤ n2 ≤ a − 1. One has (h − n1)a + n2b = ua + vb which forces

v ≥ n2 and h − n1 − u ≥ 0. In particular, h ≥ n1 and [h]n1 6= 0 and so λj0 6= 0. This proves 1) and 2)

taking p0 := p(j0). �

3. HYPERGEOMETRIC INTEGRAL OF EXPONENTIAL TYPE

With the pair (A, β) one associates the following integral (called hypergeometric integral of exponential

type):

Iγ(A, β; x) = I(β; x) :=

∫

γ

t−β−1 exp

(
n∑

j=1

xjt
aj

)
dt

where A = (a1, . . . , an) and γ is a cycle in the rapid decay homology with closed support of M. Hien.

We also write Iγ(β; x) = I(β; x) if there is no possible confusion on the matrix A.

The expression I(β; x) formally satisfies the equality P (I(β; x)) = 0 for any P in the hypergeometric

ideal HA(β). So we consider I(β; x) as a solution of MA(β). Our goal is to give an asymptotic expansion

of I(β; x) as Gevrey series along the coordinate hyperplane appearing in the singular support of MA(β).

We are going to prove in this case that all the Gevrey series solutions can be obtained as an asymptotic

expansion of such an integral.

In the one row matrix case the rapid decay cycles are easy to describe and we prove first an asymptotic

expansion statement. In the following Proposition we consider a path γ : R → C such that when

t → ±∞ the arguments of xnt
an and of xn−1t

an−1 have both a limit in ]π
2
, 3π

2
[. These paths are exactly

the rapid decay paths for both the function t → t−β−1 exp
(∑n

j=1 xjt
aj

)
and for its restriction to the

hyperplane xn = 0.
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Proposition 3.1. The integral depending on x = (x1, . . . , xn):

I(β; x) =

∫

γ

t−β−1 exp

(
n∑

j=1

xjt
aj

)
dt

admits an asymptotic expansion
∑∞

k=0 ck(x1, . . . , xn−1)x
k
n for xn tending to zero whose coefficients are

(3.1) ck(x1, . . . , xn−1) =
1

k!

∫

γ

t−β−1+ank exp (x1t
a1 + · · · + xn−1t

an−1) dt.

This expansion is valid for a fixed cycle γ in some product of open sectors in C∗.

Proof. By developing the exponential exntan
we may write

I(β; x) =

∫

γ

t−β−1 exp (x1t
a1 + · · · + xn−1t

an−1)

(
∞∑

k=0

(xnt
an)k

k!

)
dt

and we get

(3.2) I(β; x1, . . . , xn) =
N∑

k=0

xk
n

k!

∫

γ

tank−β−1 exp (x1t
a1 + · · · + xn−1t

an−1) dt + RN(β; x1, . . . , xn)

where

RN(β; x1, . . . , xn) = RN(β; x) =

∫

γ

t−β−1 exp (x1t
a1 + · · · + xn−1t

an−1)

(
∞∑

k=N+1

(xnt
an)k

k!

)
dt.

These integrals are all convergent due to the choice of the path and we shall use the following elementary

lemma involving an auxiliary complex variable z ∈ C :

Lemma 3.2. Let rN(z) =
∑∞

k=N+1
zk

k!
be the remainder of order N of the exponential power series.

There exists a positive real number C ′
N , depending only on N , such that for all z with ℜz < 0 on has

|rN(z)| ≤ C ′
N |z|

N+1.

Since there is a compact set K such that for t ∈ γ \ K we have ℜ(xnt
an) < 0 there is a possibly larger

constant CN depending also on γ such that

∀t ∈ γ, |rN(xnt
an)| ≤ CN |xnt

an|N+1

So we have

|RN(β; x)| =

∣∣∣∣x
N+1
n

∫

γ

tan(N+1)−β−1 exp (x1t
a1 + · · · + xn−1t

an−1)
rN(xnt

an)

(xntan)N+1
dt

∣∣∣∣

=|QN(β; x1, . . . , xn)| · |xn|
N+1

this proves the existence of an asymptotic expansion which is locally uniform with respect to (x1, . . . , xn−1).
Indeed as indicated in the statement, the domain of convergence of the last integral QN contains the

product of Cn−2 by a product of sectors in the variables xn−1, xn . It is convergent since the integrand is

bounded by the integrable function :

CN

∣∣tan(N+1)−β−1 exp (x1t
a1 + · · · + xn−1t

an−1)
∣∣ .

�
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4. GEVREY EXPANSIONS OF HYPERGEOMETRIC INTEGRALS FOR A = (a1, . . . , an)

First of all we prove the following

Proposition 4.1. The asymptotic expansion of the integral depending on (x1, . . . , xn):

I(β; x) =

∫

γ

t−β−1 exp

(
n∑

j=1

xjt
aj

)
dt

given in Proposition 3.1 is a Gevrey series of order less than or equal to s = an

an−1
with respect to xn = 0.

Proof. We set (an−1, an) = (da, db) with gcd(a, b) = 1 and for each k ∈ N, k = aq + j with 0 ≤ j ≤
a − 1. The coefficients ck in (3.1) satisfy by derivation under the sign

∫
γ

the relation

(qa + j)!cqa+j(x1, . . . , xn−1) = j!
∂qbcj

∂xn−1
qb

(x1, . . . , xn−1)

Since each of the functions c0, . . . , ca−1 is holomorphic, we have in a small enough neighbourhood of a

point x1, . . . , xn−1 with ℜxn−1 < 0 a uniform upper bound involving a constant K that we can choose

common to all the indices j = 0, . . . , a − 1 :

(qa + j)! |cqa+j(x1, . . . , xn−1)| ≤ j!(qb)!Kqb

Then a local upper bound of ck(x1, . . . , xn−1) is the quotient

(a − 1)!(⌊kb
a
⌋)!K

kb
a

k!
.

This proves that the asymptotic expansion that we consider is a Gevrey series of order ≤ b
a
. �

Remark 4.2. We will see, as a consequence of Theorem 4.8, that in fact these Gevrey series have index

equal to an

an−1
when β is generic enough. See Subsection 4.3.

4.1. Case A = (a, b). The aim of this Subsection is to compare, in the case A = (a, b), the Gevrey

asymptotic expansions of the hypergeometric integrals to the Gevrey solutions described in Proposition

2.3. This comparison is proved in Theorem 4.7. We consider here a, b ∈ Z, 1 ≤ a < b and a, b are

relative primes. We consider the integrals

Iγ(A, β; x) = Iγ(β; x) =

∫

γ

t−β−1 exp
(
x1t

a + x2t
b
)
dt.

with respect to various specific cycles of rapid decay γ = Cp as in Figure 1.

ǫ

ǫωp

2pπ
b

Fig. 1. The cycle Cp.
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This path consists of the real half line [ǫ, +∞) negatively oriented, and the half line ωp · [ǫ, +∞) where

ωp = e
2ipπ

b is a b–th root of unity joined by the arc of a circle {ǫeiθ | 0 ≤ θ ≤ 2pπ

b
} with ǫ > 0.

The cycles Cp ⊗ σ, for 1 ≤ p ≤ b are a basis of the rapid decay homology with closed support as defined

in [Hi07] where σ is a section of the local system C · t−β−1 exp(x1t
a + x2t

b) in C∗. We choose the

determination of t−β−1 as being real on [ǫ, +∞).

When β is generic, in practise here when β /∈ Z, they are all non compact and when β is an integer the

last cycle Cb is compact being equivalent to the circle of radius ǫ because the determinations t−β−1 are

the same for the argument 0 and 2π.

The integral along Cp does not depend of the choice of ǫ and we have an asymptotic expansion which is

just a particular case of Proposition 3.1:

Proposition 4.3. The integral depending on (x1, x2):

ICp
(β; x1, x2) =

∫

Cp

t−β−1ex1ta+x2tbdt

is defined when ℜx2 < 0 and admit an asymptotic expansion
∑∞

k=0 ck(x1)x
k
2 whose coefficients are

ck(x1) =
1

k!

∫

Cp

t−β−1+bkex1tadt.

This expansion is valid in the open sector defined by ℜx1 < 0,ℜ(ωa
px1) < 0.

�

Remark 4.4. Notice that the open sector of the variable x1 described in Proposition 4.3 is empty when

ωa
p = −1 which happens if (2k+1)b = 2pa. In a forthcoming Proposition we will show that if we restrict

the domain of the variable x2 to some sector π − ǫ < arg x2 < π + ǫ for a small ǫ > 0 we may enlarge

the domain of validity in the variable x1.

We give now a more precise description of the asymptotic expansion of the integral ICp
(β; x1, x2). The

coefficient ck(x1) can be decomposed as a sum (−Ik,1) + Jk + Ik,2 where

Ik,1(ǫ, x1) =
1

k!

∫ +∞

ǫ

sbk−β−1ex1sa

ds

Jk(ǫ, x1) =
1

k!

∫ 2pπ
b

0

ǫbk−β−1e−iθ(β+1−bk)ex1ǫaeiaθ

iǫ eiθdθ

Ik,2(ǫ, x1) =
1

k!

∫

ωp·[ǫ,+∞)

t−β−1+bkex1tadt =
1

k!

∫ ∞

ǫ

e
2ipπ

b
(bk−β)sbk−β−1ex1ωa

psa

ds

For k large enough ℜ(bk − β) > 0 and the limit of Jk(ǫ, x1) is 0 when ǫ tends to 0. Under the same

condition the limit of the sum Ik,1 and of Ik,2 exist and then

(4.1) ck(x1) =
1

k!

∫ +∞

0

e
2ipπ

b
(bk−β)sbk−β−1ex1ωa

psa

ds −
1

k!

∫ +∞

0

sbk−β−1ex1sa

ds

Les us denote ck(x1) = Ik,2(x1) − Ik,1(x1) this decomposition of the coefficient ck(x1) as a difference.

We transform Ik,1(x1) for x1 real negative by the change of variable u = |x1|s
a, ds = sdu

au
.

(4.2) Ik,1(x1) =
1

k!

∫ ∞

0

sbk−β−1ex1sa

ds =
1

k!

∫ +∞

0

(
u

|x1|

) bk−β
a e−udu

au
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The final result is

Ik,1(x1) =
1

a k!
e−iπ(β−kb

a
)x

β−kb
a

1

∫ +∞

0

u
bk−β

a
−1e−udu

when we choose π as a determination of the argument of x1. The equality is valid on the half plane

ℜx1 < 0 because both sides are holomorphic and coincide on the real negative half line by the equation

(4.2). The last integral equals Γ( bk−β

a
).

Similarly the first part of the equation (4.1) for ck(x1) can be evaluated for the values of x1 ∈ C such that

x1ω
a
p is real negative and setting u = |x1|s

a for such a fixed x1

Ik,2(x1) =
1

k!

∫ +∞

0

e
2ipπ

b
(bk−β)sbk−β−1ex1ωa

psa

ds =
1

k!

∫ +∞

0

e
2ipπ

b
(bk−β)

(
u

|x1|

) bk−β
a e−udu

au

The appropriate argument for is ωa
p is 2apπ

b
, therefore in order to get obtain the argument π for x1ω

a
p it is

natural to set arg x1 = π − 2apπ

b
. With this choice of arg x1 and by a calculation identical to the one used

for Ik,1(x1) we get :

|x1|
β−kb

a = x
β−kb

a

1 e−iπ(β−kb
a

)e
2iapπ

b
(β−kb

a
) = x

β−kb
a

1 e−iπ(β−kb
a

)e
2ipπ

b
β

Ik,2(x1) =
1

a k!
x

β−kb
a

1 e−iπ(β−kb
a

)

∫ +∞

0

u
bk−β

a
−1e−udu.

We get an expression of Ik,2(x1) formally identical to the one for Ik,1(x1). However the determination

of the argument of x1 is in general different in the intersection Sp of the two half planes ℜx1 < 0
and ℜx1ω

a
p < 0. Therefore in this common sector there is a constant c(k, p) such that Ik,1(x1) =

c(k, p)Ik,2(x1).

Assume that ωa
p 6= −1. We have arg(ω−a

p ) = −2πap

b
and we define the integer ℓ ∈ {0, . . . , a} by the

property that α = 2π(ℓ − ap

b
) is the determination of the argument of arg(ω−a) in ] − π, π[

(4.3) −π < 2πℓ −
2πap

b
< π

in other words ℓ = ⌊ap

b
− 1

2
⌋, and since ωa

p 6= −1, ℓ is the unique integer such that |ap

b
− ℓ| < 1

2
.

The argument used for x1 in the sector of validity of Ik,2(x1) is centered on the value π − 2apπ

b
∈

] − 2πℓ,−2π(ℓ − 1)[. Therefore to obtain in the common sector the determination of arg x1 used for

Ik,1(x1) we must add 2πℓ and therefore we obtain at any point the sector Sp by treating the effect of this

difference on the monomial x
β−kb

a

1 :

Ik,2(x1) = Ik,1(x1) × e−2iπℓ(β−kb
a

)(4.4)

If we set k = am + j it results in

Iam+j,2(x1) = Iam+j,1(x1) ×
(
e2iπ jb−β

a

)ℓ

.

The asymptotic expansion of ICp
(x1, x2) is valid in the same sector by the proof of Proposition 3.1 and

we obtain still limiting ourselves to k hence to m large enough:

(4.5)

cam+j(x1) =

((
e2iπ jb−β

a

)ℓ

− 1

)
Iam+j,1(x1)

=

(
e2iπ jb−β

a

)ℓ

− 1

a(am + j)!
eiπ( jb−β

a
)eiπbmx

β−jb
a

−bm

1 Γ

(
bm +

jb − β

a

)
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Assume that β /∈ Z. Using the well known identity

Γ(z)Γ(1 − z) =
π

sin πz
and

Γ(z + 1)

Γ(z − m + 1)
= [z]m = z(z − 1) . . . (z − m + 1)

Γ

(
bm +

bj − β

a

)
=

(−1)bmπ

sin(π · bj−β

a
)Γ(β−bj

a
− bm + 1)

=
(−1)bmπ

sin(π · bj−β

a
)Γ(β−bj

a
+ 1)

·

[
β − bj

a

]

bm

,

the expression of the function cam+j is finally :

(4.6) cam+j(x1) =

((
e2iπ jb−β

a

)ℓ

− 1

)
·

πe−iπ(β−jb
a

)

a j! sin(π · bj−β

a
)Γ(β−bj

a
+ 1)

x
β−bj

a

1

[
β−bj

a

]
bm

[am + j]am

x−mb
1

Now we are ready to prove a more precise statement about asymptotic expansion of the integral along the

cycle Cp. Recall that we denote ϕ(j), see (2.4), the elements of a basis of the Gevrey solution space of

order less than or equal to s ≥ b
a

at generic points in Y = (x2 = 0), see Proposition 2.3. We recognize in

the expression (4.6) of cam+j(x1) a multiple by a factor depending only on j of the coefficient of xam+j
2

in the expansion of ϕ(j).

Proposition 4.5. (1) The integral ICp
(x1, x2) has, provided that e

2iπpa
b 6= −1, an asymptotic expan-

sion which is a linear combination of the Gevrey series ϕ(j). When β /∈ Z the coefficient of ϕ(j)

in this linear combination is equal to the product of qℓ
j − 1 :=

(
e2iπ jb−β

a

)ℓ

− 1 by a non zero

constant λj which does not depend on p while |ℓ − ap

b
| < 1

2
. When β ∈ Z the same is true if

β−bj

a
/∈ Z. Finally when β ∈ Z \ N(a, b) the coefficient of ϕ(j0) is zero for the unique j0 such that

β−bj0
a

∈ Z<0.

(2) This expansion is valid for ℜx2 < 0 and x1 in the sector of angular width π − |α|, with α =
2π(ℓ − ap

b
) defined by the condition:

arg x1 ∈

{
]π
2

+ α, 3π
2

[ if α ≥ 0

]π
2
, 3π

2
+ α[ if α ≤ 0.

(3) If we restrict the domain for the variable x2 to a sector | arg(x2)−π| < ǫ with ǫ sufficiently small

we can extend the domain of validity with respect to the variable x1 to a larger sector, in such a

way that for each ℓ ∈ {1, . . . , a} there exist a p such that |ℓ − ap

b
| < 1

2
and the open extended

sector contains the real negative half line.

Proof. By Proposition 2.3 and since the integral ICp
(x1, x2) is a solution of the hypergeometric system

MA(β), the asymptotic expansion that we found in Proposition 4.3 is a linear combination of the Gevrey

series ϕ(j), described in equation (2.4). Let us call µj the coefficient of this linear combination. Since the

set of exponents of these series are mutually disjoint the sum
∑

m≥0 cam+j(x1)x
am+j
2 must be the multiple

µjϕ
(j) of the series ϕ(j). Assuming first that β /∈ Z the calculation for m large enough in equation (4.5)

is sufficient to determine µj and comparing formula (4.6) with the expression of the series ϕ(j) gives the

result with the value λj = πe−iπ(β−jb
a

)
(
a j! sin(π · bj−β

a
)Γ(β−bj

a
+ 1)

)−1
, which yields µj 6= 0.

When β ∈ Z here is a unique j0 ∈ {0, . . . , a − 1} such that β−bj0
a

is an integer. For j 6= j0, the same

argument applies for the determination of µj and again µj 6= 0. Let us write β = bj0 + aq, with q ∈ Z.

In that case cam+j0(x1) = 0 for m big enough. When q < 0 or equivalently β ∈ Z \ N(a, b) the series

ϕ(j0) has an infinite number of terms and again the argument based on equation (4.5) gives the announced

result but now with µj0 = 0 by equation (4.5). Finally when β ∈ N(a, b) the series ϕ(j0) reduces to a

polynomial and equation (4.5) gives no information about µj0 .
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In the exceptional case β ∈ N(a, b) we find directly that ϕ(j0) comes from an integral solution. Indeed by

inspection of the Γ-series in (2.4) we find that ϕ(j0) is then the polynomial

⌊ q
b
⌋∑

m=0

[q]bm
[am + j0]am

xq−bm
1 xam+j0

2

and this is exactly the integral

1

2πi q! j0!
Iγ(A, β; x) =

1

2πi q! j0!

∫

γ

t−β−1 exp
(
x1t

a + x2t
b
)
dt

along the compact cycle γ = (|t| = ǫ) for ǫ > 0 small enough.

Recall that α = 2πℓ− 2πap

b
∈]−π, π[ and consider the two half planes where the function Ik,1 and Ik,2 are

defined. They intersect along the common sector of complex numbers with arguments in ]π
2
, 3π

2
[∩]π

2
+

α, 3π
2

+ α[. This gives the second statement.

Furthermore for each ℓ ∈ {1, . . . , a} we choose p such that |α| the smallest possible which yields :

|α| = |2πℓ −
2πap

b
| ≤

πa

b

This remark is useful for the proof of the statement (3) and shows that the restriction ωa
p 6= −1 is harmless

since we can avoid it and reach any given ℓ.

In view of the last statement let us consider the family of paths eiθCp, for |θ| < π
2b
− ǫ

b
. When x2 remains

in the open sector | arg x2 − π| < ǫ centered on real negative axis they are all rapid decay cycles for the

function t−β−1 exp(x1t
a + x2t

b) and are equivalent in the rapid decay homology. Therefore we have :

ICp
(x1, x2) =

∫

Cp

t−β−1 exp(x1t
a + x2t

b)dt =

∫

eiθCp

t−β−1 exp(x1t
a + x2t

b)dt.

By Proposition 3.1 the Gevrey asymptotic expansion of ICp
(x1, x2) that we have obtained in statement

(1) of the Proposition can also be written
∑∞

k=0 cθ,k(x1)x
k
n with :

cθ,k(x1) =
1

k!

∫

eiθCp

tbk−β−1 exp(x1t
a)dt =

1

k!

∫

Cp

tbk−β−1 exp(x1e
iaθta)dt

The domain of validity with respect to the variable x1 of this asymptotic expansion therefore contains

a sector Sθ which is the image by a rotation with an angle −aθ of the initial sector obtained from the

part 1 of the Proposition. Since we can continuously deform the paths of integration from Cp to eiθCp

the domain of validity of the asymptotic expansion of ICp
is the union of all the sectors Sθ. The original

sector S0 is centered at α
2

+ π and its width is π − |α|. When | arg(x2) − π| < ǫ we have enlarged this

width by an angle a
b
(π − 2ǫ). The width of the enlarged sector is :

π − |α| +
a

b
(π − 2ǫ) > π − 2ǫ.

Since this sector is centered at α
2

+ π ∈]π
2
, 3π

2
[ this proves that it contains the real negative half line for

ǫ > 0 small enough. �

Proposition 4.6. Assume that β /∈ Z. Then for every Gevrey series ϕ of order less than or equal to

s ≥ b
a
, which is a solution of the hypergeometric system MA(β), there is an holomorphic solution

defined in a product of sectors, which is a neighbourhood of the product of the real negative axes, and

which admits ϕ as an asymptotic expansion. This solution can be described as an integral of the function

t−β−1 exp(x1t
a + x2t

b) along a rapid decay cycle.
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Proof. According to Proposition 2.3 it is sufficient to prove that each of the series ϕ(j) or what amount to

the same each series λjϕ
(j) is the asymptotic expansion of such an integral. In Proposition 4.5, we have

described such integrals and asymptotic expansions as linear combinations of the λjϕ
(j). The number a

of these integrals is equal to the dimension of the space of Gevrey solutions. Therefore in order to prove

the statement we just have to show that the square matrix of the coefficients of these linear combinations

is invertible. In the notations of Proposition 4.5 this matrix is :

M =




q0 − 1 q2
0 − 1 . . . qa

0 − 1
. . . . . . . . . . . .
. . . . . . . . . . . .

qa−1 − 1 q2
a−1 − 1 . . . qa

a−1 − 1




and one show by elementary calculations

det M =

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1
1 q0 q2

0 . . . qa
0

... . . . . . . . . . . . .

... . . . . . . . . . . . .
1 qa−1 q2

a−1 . . . qa
a−1

∣∣∣∣∣∣∣∣∣∣∣

=
a−1∏

i=0

(qi − 1)
∏

i<j

(qj − qi) 6= 0

where the last inequality follows from qj = e2iπ jb−β
a , with β /∈ Z and a, b co-prime. �

Theorem 4.7. For any β ∈ C and for every Gevrey series ϕ ∈ O
dX|Y

(s), s ≥ b
a
, which is a solution

of the hypergeometric system MA(β), there is an holomorphic solution defined in a product of sectors,

which is a neighbourhood of the product of the real negative axes, and which admits ϕ as an asymptotic

expansion. All these solutions can be described as an integral of the function t−β−1 exp(x1t
a + x2t

b)
along a rapid decay cycle when β /∈ Z\N(a, b). When β ∈ Z\N(a, b), the above integral solutions span

a codimension one subspace and there is a one dimensional supplementary space obtained by expanding

an integral along [0, +∞).

Proof. When β /∈ Z, Proposition 4.6 give a complete proof of the statement. When β ∈ Z we shall write

β = p0b + aq, 0 ≤ p0 < a and the proof of the same Proposition shows that all the Gevrey series ϕ(p) for

p 6= p0 are obtained as integrals on rapid decay cycles. The non obtained Gevrey series is :

ϕ(p0) =
∑

m≥0

[q]bm
[am + p0]am

xq−bm
1 xam+p0

2

It is a polynomial if and only if q ≥ 0, that is when β ∈ N(a, b). We notice that it is exactly the case

where the integral along a circle of radius ǫ > 0 centered at the origin which is equal to

∫

Cb

t−β−1ex1ta+x2tbdt = 2πi
∑

ℓ1a+ℓ2b=β

xℓ1
1 xℓ2

2

ℓ1!ℓ2!

is non zero. Since this is a polynomial solution we are done in this case.

Finally when β ∈ Z\N(a, b), that is when q > 0, we notice that there is an integral holomorphic solution

given by the formula :

(4.7) Jβ(x1, x2) =

∫ ∞

0

t−β−1
(
ex1ta+x2tb − Pβ(x1, x2, t)

)
dt
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where Pβ(x1, x2, t) = 0 if β < 0, and if β ∈ N \ N(a, b), we take the Taylor polynomial of degree ≤ β
in t :

Pβ(x1, x2, t) =
∑

ℓ1a+ℓ2b≤β

xℓ1
1 xℓ2

2 tℓ1a+ℓ2b

ℓ1!ℓ2!
.

It is in fact of degree < β, by the condition β /∈ N(a, b) which guarantees the convergence of Jβ .

The fact that Jβ is a solution of the system HA(β) is completely similar to the proof in [A94, Section 2]

for the case of rapid decay cycle. The reason is first that since ∂b
1−∂a

2 annihilates ex1ta+x2tb , it annihilates

as well the coefficients of all the monomials tj in its power expansion of hence also the polynomial

Pβ(x1, x2, t). Concerning the Euler operator χ = ax1∂1 + bx2∂2 we just have to notice that the relation

for the integrand which leads to the proof is still valid and it is :

χ
(
ex1ta+x2tb − Pβ(x1, x2, t)

)
= t∂t

(
ex1ta+x2tb − Pβ(x1, x2, t)

)
.

In order to conclude the proof we just have to check that Jβ admits under the same conditions as in

Section 4.1 an asymptotic expansion (of Gevrey order less than or equal to b
a
) which must then be a linear

combination
∑

µpϕ
(p) of all the ϕ(p). We rewrite it as follows

Jβ(x1, x2) =

∫ ∞

0

(
∞∑

k=0

t−β−1+bk

(
ex1ta −

∑

ℓa≤β−kb

xℓ
1t

ℓa

ℓ!

)
xk

2

k!

)
dt

and this lead to the existence of an asymptotic expansion completely similar to the one given in the

general case, but with a coefficient of xk
2 given by :

(4.8) ck(x1) =
1

k!

∫ ∞

0

t−β−1+bk

(
ex1ta −

∑

ℓa≤β−kb

xℓ
1t

ℓa

ℓ!

)
dt

which is again a convergent integral. The change of variable s = −x1t
a for x1 ∈ R<0 works exactly in

the same way as in Remark 4.4 and Proposition 4.5. In fact as soon as k is large enough the correcting

term
∑

ℓa≤β−kb

xℓ
1tℓa

ℓ!
is zero and we find explicitly :

ck(x1) =
1

ak!
e−iπ β−bk

a Γ

(
bk − β

a

)
x

β−kb
a

1 .

Considering the coefficients cam+p0(x1) for m large enough, we see that the coefficient µp0 of ϕ
(p0)
A,β is

non zero in the asymptotic expansion of Jβ as expected. �

4.2. A basis of Gevrey asymptotic expansions. Let A = (a1, . . . , an) with integers 0 < a1 < · · · < an

and gcd(a1, . . . , an) = 1. For any β ∈ C and any rapid decay 1-cycle γ we write Φγ(A, β; x) the

asymptotic expansion of the integral Iγ(A, β, x), that is

Φγ(A, β; x) = a.e.(Iγ(A, β, x)) = a.e.

(∫

γ

t−β−1 exp(
∑

j

xjt
aj)dt

)
.

In Propositions 3.1 and 4.1 we have proved that for some well defined cycles γ : R → C∗ there ex-

ists an asymptotic expansion of the integral Iγ(β; x) = Iγ(A, β, x) and that this asymptotic expansion

Φγ(A, β; x) is a germ of Gevrey series in O
dX|Y

(s) at any point in Y \ Z for all s ≥ an

an−1
. When

β ∈ Z \ NA, and restricting to a product of sector in the variable xn−1, xn containing the real negative

axes we may, as in the previous Section, define an asymptotic expansion for the integral

Jβ(x1, . . . , xn) =

∫ ∞

0

(
t−β−1 exp (x1t

a1 + · · · + xnt
an) − Pβ(x1, . . . , xn, t)

)
dt
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where Pβ(x1, . . . , xn, t) is the Taylor polynomial of degree ≤ β in t of the function exp (
∑n

i=1 xit
ai).

When β ∈ Z \ NA and γ = [0, +∞) we still denote Φγ(A, β; x) this asymptotic expansion, and by

extension we will still call cycle an element of the formal direct sum of C · [0, +∞) and of the space of

a rapid decay cycle.

The goal of the remaining part of this Section is to prove the following

Theorem 4.8. There exists a family of cycles γ1, . . . , γan−1 in C∗ such that the set of (germs of) Gevrey

asymptotic expansions {
Φγj

(A, β; x) | j = 1, . . . , an−1

}

is a basis of the stalk of HomDX

(
MA(β),O

dX|Y
(s)
)

at any point in Y \Z, for β ∈ C and for s ≥ an

an−1
.

Remark 4.9. 1) By [FC11b, Remark 4.12] it is enough to prove the Theorem for points of the form

(0, . . . , 0, ε, 0) ∈ X with ε 6= 0.

2) In the proof of this Theorem we will see that for β /∈ Z \ NA the cycles γj are all rapid decay cycles.

When β ∈ Z \ NA there exists a unique Φγj0
(A, β; x) which is obtained by expanding an integral along

[0, +∞) the other cycles being again cycles with the rapid decay property.

3) In the proof of Theorem 4.8 we obtain integral solutions in the neighbourhood of a product of sectors

for the variables xn−1, xn centered along the real negative axes, while the other variables x1, . . . , xn−2 are

arbitrary in C. We can deduce from it the same statement for products of sectors centered along arbitrary

rays ]0, +∞) · eiθ1×]0, +∞) · eiθ2 . For the proof we use cycles of the form eiθ · γj and eiθ · [0, +∞) when

the argument of x2 is near θ2 = bθ (mod 2)π. The result can be obtain from this data by using carefully

the width of the sector of validity with respect to x1 as described in Proposition 4.5 and playing with the

different determinations of θ = θ2/b.

Corollary 4.10. [of Theorem 4.7] Theorem 4.8 holds for n = 2.

Proof. In the proof of Theorem 4.7 one describes, by using Propositions 4.5 and 4.6, how to build the

cycles γ1, . . . , γa for A = (a, b), 1 ≤ a < b, gcd(a, b) = 1. If β /∈ Z \ N(a, b) all the γp are rapid decay

cycles. When β ∈ Z \ N(a, b) among them a unique cycle is [0,∞). �

In order to simply notations we will denote Sol(M) = HomD(M,O
dX|Y

( an

an−1
)) the sheaf of Gevrey

solutions of order less than or equal to an

an−1
of a holonomic DX–module M on X = Cn for Y = (xn =

0) ⊂ X .

Remark 4.11. By Corollary 4.10, for all β ∈ C and for each r = 0, . . . , k − 1 there exists a family

γ1,r, . . . , γa,r of cycles such that the family
{

Φγ1,r

(
(a, b),

β − r

k
; x1, x2

)
, . . . , Φγa,r

(
(a, b),

β − r

k
; x1, x2

)}

is a basis of the stalk of the solution space Sol(M(a,b)(
β−r

k
)) at any point in Y1 \Z1. Here Y1 ⊂ C2 (resp.

Z1 ⊂ C2) is the line x2 = 0 (resp. x1 = 0). If there exists 0 ≤ r0 < k (necessarily unique) such that
β−r0

k
∈ Z \ N(a, b) then among them one of these cycles is [0,∞).

In the statement of the following Proposition we are going to use the morphism ̟β := ̟s
β , for s = an

an−1
,

defined in Subsection 2.3.

Proposition 4.12. Theorem 4.7 holds for the matrix (1, ka, kb) with gcd(a, b) = 1 and k ≥ 1. More

precisely, there exists a set of cycles {γ̃p,r | 0 ≤ p < a, 0 ≤ r < k} such that the image (of the germ) of

Φ
eγp,r

((1, ka, kb), β) by the morphism ̟β equals (0, · · · , 0, 1
k
Φγp,r

((a, b), β−r

k
), 0, · · · , 0) in⊕k−1

r=0 Sol(M(a,b)(
β−r

k
)).
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Proof. We consider the germs at a point (0, ε, 0) with ε 6= 0 and the stalk of the direct sum at (ε, 0). Write

B′ = (1, ka, kb) and B = (a, b). We write (x0, x1, x2) for coordinates in C3. The proof here depend

heavily on the Proposition 2.7 in Section 2. When β /∈ Z or when β ∈
⋃k−1

r=0(r +kN(a, b)) the morphism

̟s
β studied in this Proposition is an isomorphism and all the cycles that we obtain are rapid decay cycles.

When β ∈ Z \
⋃k−1

r=0(r + kN(a, b)) one of these cycles is special. This last cose containing the one case

β ∈ N \
⋃k−1

r=0(r + kN(a, b)) where ̟s
β is not an isomorphism.

Let us assume first β 6∈ Z. We fix γp,r one of the cycles described in Corollary 4.10 with respect to the

matrix B and β−r

k
. Consider any cycle γ in C∗ such that γk = γp,r. We develop the integral

Iγ = Iγ(x0, x1, x2) =

∫

γ

t−β−1 exp(x0t + x1t
ka + x2t

kb)dt

as

Iγ(x0, x1, x2) =
k−1∑

ℓ=0

xℓ
0J

ℓ
γ(x

k
0, x1, x2).

Notice that
∂ℓIγ

∂xℓ
0
(0, x1, x2) = ℓ!J ℓ

γ(0, x1, x2). Notice also that

∂rIγ

∂xr
0

(0, x1, x2) =
1

k

∫

γp,r

s−
β−r

k
−1 exp(x1s

a + x2s
b)ds =

1

k
Iγp,r

(
B,

β − r

k
; x1, x2

)
.

Write ω = e
2iπ
k and for ν = 0, . . . , k − 1, γ(ν) := ω−νγ. We can write

Iγ(x0, x1, x2) = ω−νβ

∫

γ(ν)

s−β−1 exp(x0ω
νs + x1s

ka + x2s
kb)ds = ω−νβIγ(ν)(x0ω

ν , x1, x2)

and then

Iγ(ν)(x0, x1, x2) = ωνβIγ(x0ω
−ν , x1, x2) = ωνβ

k−1∑

ℓ=0

ω−νℓxℓ
0J

ℓ
γ(x

k
0, x1, x2).

The matrix (ω−νℓ)0≤ν,ℓ≤k−1 being invertible we can write

(4.9) xℓ
0J

ℓ
γ(x

k
0, x1, x2) =

k−1∑

ν=0

λℓ,νω
−νβIγ(ν)(x0, x1, x2)

for some λℓ,ν ∈ C.

Consider now the cycle γ̃p,r :=
∑k−1

ν=0 λr,νω
−νβγ(ν) and the integral I

eγp,r
(x0, x1, x2). Then we have

∂ℓI
eγp,r

∂xℓ
0

(0, x1, x2) = 0

if ℓ 6= r and
∂rI

eγp,r

∂xr
0

(0, x1, x2) = r!Jr
eγp,r

(0, x1, x2) =
1

k
Iγp,r

(
B,

β − r

k
; x1, x2

)
.

Assume now β ∈ Z. Write β = β′k + r0 for unique integers β′ and 0 ≤ r0 < k. Write by

Euclidean division β′ = ha + p0, 0 ≤ p0 < a. We can apply the argument for β 6∈ Z to any

(p, r) 6= (p0, r0) to prove that there exists a cycle γ̃p,r such that the image of Φ
eγp,r

(B′, β) by the morphism

̟β is (0, . . . , 0, 1
k
Φγp,r

(B, β−r

k
; x1, x2), 0, . . . , 0).

Let us treat now the case of (p0, r0). If β ∈ Z \
⋃k−1

r=0(r + kN(a, b)) then we consider the expression

Jβ =

∫ ∞

0

t−β−1(exp(x0t + x1t
ka + x2t

kb) − Pβ(x0, x1, x2, t))dt



GEVREY EXPANSIONS OF HYPERGEOMETRIC INTEGRALS I 19

with analogous notation to the one used in the proof of Theorem 4.7. It can be proved as in Theorem

4.7 that Jβ is a holomorphic solution of the system MB′(β) and that it admits an asymptotic expansion

which is of Gevrey order less than or equal to an

an−1
. In fact Jβ is holomorphic in a product of sectors

which is a neighbourhood of the product of the real negative axes. Then we conclude that this asymptotic

expansion is a linear combination
∑

j λjϕ
(j)
B′ with λp0 6= 0.

If β ∈
⋃k−1

r=0(r + kN(a, b)), the integral along the cycle Cb (see notations in Subsection 4.1)

∫

Cb

t−β−1 exp(x0t + x1t
ka + x2t

kb)dt

is a polynomial and its image by ̟β is a non-zero scalar multiple of (0, . . . , 0, ϕ
(p0)
B (β−r0

k
), 0, . . . , 0).

This finishes the proof. �

Proof. [of Theorem 4.8, general case]. We may assume n ≥ 3. We simply write ka = an−1, kb = an for

some integer k ≥ 1 and gcd(a, b) = 1.

We first assume a1 > 1 and denote as usual A′ = (1, a1, · · · , an). We also denote B′ = (1, an−1, an) =
(1, ka, kb) and B = (a, b). Let us consider the following diagram

Sol(MA′(β))p

ρ′
//

ρ

��

Sol(MB′(β))p

Sol(MA(β))p.

Let us explain the restriction morphisms in the above diagram: ρ′ is the restriction defined as

ρ′(f(x0, x1, . . . , xn)) = f(x0, 0, . . . , 0, xn−1, xn).

Similarly ρ(f(x0, x1, . . . , xn)) = f(0, x1, . . . , xn). We consider a point p = (ε, 0) ∈ C2 with ε 6= 0 and

we also denote p the image of this point in the different considered spaces.

The morphism ρ′ is an isomorphism for any β ∈ C, see Subsection 2.1. The morphism ρ is an isomor-

phism if β ∈ N \ NA, see Theorem 2.5 and Remark 2.6.

Let us consider the set of asymptotic expansions

{Φ
eγp,r

(A′, β) | 0 ≤ p < a, 0 ≤ r < k}

where γ̃p,r is the cycle built in the proof of Proposition 4.12. The image by ρ′ of Φ
eγp,r

(A′, β) is just

Φ
eγp,r

(B′, β). This prove the theorem for A′ and then for A if β 6∈ N \ NA (because in this case ρ is an

isomorphism and the image of Φ
eγp,r

(A′, β) is precisely Φ
eγp,r

(A, β)).

If β ∈ N \ NA then we have again ρ(Φ
eγp,r

(A′, β)) = Φ
eγp,r

(A, β) for all (p, r) 6= (p0, r0). The integral

(4.10) Jβ :=

∫ ∞

0

t−β−1

(
exp

(
n∑

i=1

xit
ai

)
− Pβ(x1, . . . , xn, t)

)
dt

defines a holomorphic function in a domain Cn−2 × Sn−1 × Sn where Si is a sector in C which is a

neighbourhood of the real negative axis for i = n − 1, n. Here Pβ is the Taylor polynomial, for the

exponential, of degree ≤ β in t.
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As usual we consider, for k big enough,

(4.11) ck(x1, . . . , xn−1) =
1

k!

∫ ∞

0

t−β−1+ank exp

(
n−1∑

i=1

xit
ai

)
dt

the coefficient of xk
n in the expansion of Jβ . By developing we get

ck(x1, . . . , xn−1) =
∑

m1,...,mn−2≥0

cm1,...,mn−2,k(xn−1)x
m1
1 · · ·xmn−2

n−2

where, writing mn = k big enough,

cm1,...,mn−2,mn
(xn−1) =

1

m1! · · ·mn−2!mn!

∫ ∞

0

t−β−1+
P

i6=n−1 aimiexn−1tan−1
dt.

Up to a scalar multiple this last integral equals

x

β−
P

i6=n−1 aimi

an−1

n−1 Γ

(
−β +

∑
i6=n−1 aimi

an−1

)
.

The condition β ∈ N\NA implies that the argument of the Gamma factor is never a non-positive integer.

Writing β = qan−1 + j0 with 0 ≤ j0 < an−1 and choosing m1, . . . ,mn−2, mn−1, mn ≥ 0 such that

j0 +an−1mn−1 =
∑

i6=n−1 aimi we see that the corresponding exponent of xn−1 in the expansion of Jβ is
β−

P

i6=n−1 aimi

an−1
= q−mn−1 which is a negative integer if mn−1 is large enough. Moreover, the asymptotic

expansion of Jβ is a Gevrey series solution of MA(β) of order less than or equal to an

an−1
which is linearly

independent of the set {ϕj
A′,β(0, x) | j 6= j0}. This finishes the proof of the theorem for A if a1 > 1.

If finally a1 = 1 then we apply previous discussion by using the restriction to the case (1, an−1, an). �

4.3. Gevrey solutions modulo convergent solutions. We can also give a description of the stalk of

HomDX
(MA(β),QY (s)) at any point of Y \ Z where, for s ≥ 1, QY (s) is the quotient of O

dX|Y
(s) by

OX|Y . By [FC11b, Th. 5.3] this space is just (0) if 1 ≤ s < an

an−1
and has dimension an−1 if s ≥ an

an−1
.

We will assume in this Subsection that s ≥ an

an−1
.

Let φ(t) a C∞ function with compact support locally constant with value 1 near the origin. We consider

the following integral, see (4.10):

(4.12) Jφ,β(x) = Jφ,β(x1, . . . , xn) :=

∫ ∞

0

t−β−1
(
ex1ta1+···+xntan

− Pβ(x, tφ(t))
)
dt.

We write Jφ,β(A; x) if we want to emphasize the dependence of this integral on the matrix A. This integral

defines a holomorphic function in Cn−1 × Sn−1 × Sn for some open sectors Si ⊂ C, i = n − 1, n, each

of them containing the real negative axis. In general this integral is not a solution of the hypergeometric

system MA(β) but it is a solution modulo convergent power series.

Now we come back to the Gevrey solutions modulo convergent ones. We will treat the case A = (a, b)
first. According to Corollary 4.10, for β 6∈ Z the family of asymptotic expansions {Φℓ(A, β) :=
Φγℓ

(A, β), ℓ = 1, . . . , a} is a basis of Gevrey solutions of MA(β) in O
dX|Y

(s). For β 6∈ Z, the

family {ϕ
(p)
A,β | p = 0, . . . , a − 1} is also a basis of Gevrey solutions and their classes modulo con-

vergent series form a basis of HomDX
(MA(β),QY (s)) [FC11a, Th. 5.9 (i)]. Then, the classes of

{Φℓ(A, β), ℓ = 1, . . . , a} modulo convergent series forms a basis of HomDX
(MA(β),QY (s)).

Previous situation is still valid when β ∈ Z \ N(a, b), taking into account that we have denoted Φa(A, β)
the asymptotic expansion of an integral Jβ(x1, x2) over [a,∞), see (4.7).
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Assume now β ∈ N(a, b) and write β = p0b + qa with 0 ≤ p0 < a and q ≥ 0. We know that the

Gamma series φ
(p0)
A,β is a polynomial and then its class modulo convergent series is zero. We denote by

Φa(A, β) the asymptotic expansion of Jφ,β(x1, x2). The coefficient ck(x1) of this expansion is, for k big

enough, exactly the same as in (4.8). In particular, the exponent of x1 in cam+p0(x1) for m big enough

is the negative integer q − bm. This proves that the family {Φℓ(A, β), ℓ = 1, . . . , a} is still linearly

independent modulo convergent power series. Hence, it defines a basis of HomDX
(MA(β),QY (s)).

We treat now the case A = (a1, . . . , an) and n ≥ 3. We write as usual an−1 = ka, an = kb for

k ≥ 1 and gcd(a, b) = 1. According to Theorem 4.8, for β 6∈ N the family of asymptotic expansions

{Φ
eγp,r

(A, β), 0 ≤ p < a, 0 ≤ r < k} is a basis of Gevrey solutions of MA(β) in O
dX|Y

(s). For

β 6∈ N, the family {ϕ̃
(j)
A,β := ϕ

(j)
A′,β(0, x) | j = 0, . . . , an−1 − 1} is also a basis of Gevrey solutions and

their classes modulo convergent series form a basis of HomDX
(MA(β),QY (s)) [FC11b, Th. 5.5, (i)].

Then, the classes of {Φ
eγp,r

(A, β), 0 ≤ p < a, 0 ≤ r < k} modulo convergent series form a basis of

HomDX
(MA(β),QY (s)).

Previous situation is still valid when β ∈ N \NA, taking into account that we have denoted Φ
eγp0,r0

(A, β)
the asymptotic expansion of an integral Jβ(x) over [a,∞), see (4.10) and we have considered this as-

ymptotic expansion as the generator of a complement space of {ϕ̃
(j)
A,β, j = 0, . . . , an−1 − 1}.

Assume now β ∈ NA. We denote by Φ
eγp0,r0

(A, β) the asymptotic expansion of Jφ,β(x), see (4.12), with

respect to xn. The coefficient ck(x1, . . . , xn−1) of this expansion is, for k big enough, exactly the same

as in (4.11). We can proceed as in the proof of the general case of Theorem 4.8 to see that the classes

modulo convergent power series of the asymptotic expansions Φ
eγp,r

(A, β) form a basis of the solution

space HomDX
(MA(β),QY (s)).
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