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In model-based process optimization one uses a mathematical model to opti-
mize a certain criterion, for example the product yield of a chemical process.
Models often contain parameters that have to be estimated from data. Typi-
cally, a point estimate (e.g. the least squares estimate) is used to fix the model
for the optimization stage. However, parameter estimates are uncertain due
to incomplete and noisy data. In this paper, it is shown how parameter un-
certainty can be taken into account in process optimization. To quantify the
uncertainty, Markov Chain Monte Carlo (MCMC) sampling, an emerging stan-
dard approach in Bayesian estimation, is used. In the Bayesian approach, the
solution to the parameter estimation problem is given as a distribution, and
the optimization criteria are functions of that distribution. The formulation
and implementation of the optimization is studied, and numerical examples
are used to show that parameter uncertainty can have a large effect in opti-
mization results.
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1. Introduction

In mathematical modeling, one often has unknown parameters in the model that need
to be estimated from measured data. After fitting the model to the measurements, the
model can be used to study the phenomenon of interest. One common use for the fitted
model is process optimization, where the goal is to find operating conditions that optimize
a certain criterion, e.g. maximize the yield of a desired product in a chemical reaction
system. The problem in the optimization is that parameter estimates are often uncertain,
since they are estimated from incomplete and noisy measurements. Traditionally, one
chooses a specific point estimate for the parameter, e.g., the least squares estimate,
and ignores the uncertainty in the parameters. In this paper, incorporating parameter
uncertainty into process optimization is studied. To quantify the parameter uncertainty,
Bayesian parameter estimation and MCMC sampling is used (see section 2 for a short
introduction and the appendix for more details).

Let us define more clearly what is meant by model-based process optimization. Nonlin-
ear models of form y = f(x, θ) + ε are considered, where x are the controllable variables
and θ the unknown parameters. In parameter estimation, the task is to estimate θ from
measurements y. Measurement error is denoted by ε. In process optimization, one wishes
to optimize some criterion c(x, θ) with respect to the control variables x. For example, in
chemical reaction engineering, x could be the temperature of a reaction, θ might represent
the reaction rate constants and c(x, θ) could be the yield of a product. A common way to
optimize processes is to use response surface methods, where a sequence of experiments is
used to create empirical regression models, that are used to find the optimal process, see
e.g. (Myers et al. 2009). In many cases, however, a mechanistic model f(x, θ) is available,
that enables more comprehensive design optimization, often with much smaller amount
of experimental work. This approach is called model-based process optimization.

In process optimization literature, a few approaches for handling parameter uncer-
tainty have been proposed. In these approaches – see e.g. (Ma and Braatz 2003, Rooney
and Biegler 2003) and the review paper of Lee and Chen (2009) – a fixed parametric
form for the parameter uncertainty (e.g. Gaussian) is used. This is in accordance with
the standard nonlinear parameter estimation procedures in engineering: usually a Gaus-
sian approximation of parameter uncertainty is used to calculate confidence intervals
for parameter estimates, based on linearization around a point estimate. The approach
presented in this paper provides a fully nonlinear extension to the existing methods, that
utilizes the output from MCMC parameter estimation.

Recently, Bayesian model fitting methods have opened a way for proper statistical
analysis of parameter estimation for nonlinear models. For examples of Bayesian pa-
rameter estimation and MCMC for model fitting in engineering applications (chemical
reaction engineering) see e.g. (Vahteristo et al. 2008, Kuosa et al. 2009). In the Bayesian
approach, one can avoid linear approximations in parameter uncertainty analysis. In this
paper, it is shown how these results can further be used as input for process optimization.
The approach for solving the resulting stochastic optimization problem is based on the
same random sampling methods as those used in parameter estimation.

The paper is organized as follows. Section 2 begins by shortly recalling how Bayesian
parameter estimation with MCMC works. Then, the process optimization approach to-
gether with some general purpose optimization criteria are presented that can be used
when the parameters are given as a distribution instead of a point estimate. Section 3
contains remarks and discussion and in Section 4 two synthetic examples of the approach
are given. Section 5 concludes the paper. Since MCMC is not a standard tool in engi-
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Process Optimization with Parameter Uncertainty 3

neering, a brief introduction and a simple parameter estimation example is given in the
appendix.

2. Parameter Uncertainty in Process Optimization

When unknown parameters are estimated from data, it is important to obtain infor-
mation about the uncertainty of the estimates. Uncertainties can be quantified using
statistical methods. Classical statistical analysis, that gives the optimal parameter val-
ues and error estimates for them, is approximate (based on linearization of the model)
and may sometimes be quite misleading. Moreover, the question of the reliability of the
model predictions is left open, i.e., how is the uncertainty in model parameters reflected
to the model response. Both of these problems may be properly treated by Markov chain
Monte Carlo (MCMC) methods. In MCMC, the estimation of model parameters and
predictions are performed according to the Bayesian paradigm. All uncertainties in the
data as well as the modeling results are treated as random variables that have statistical
distributions. Instead of a single fit to the data, ’all’ parameterizations of the model
that, statistically, fit the data ’equally well’ are determined. A distribution of the un-
known parameters is generated using available prior information (e.g. previous studies)
and statistical knowledge of the observation noise. Computationally, the distribution can
generated using the Markov chain Monte Carlo (MCMC) sampling approach.

MCMC gives the solution to the parameter estimation problem as a set of samples
from the distribution of the parameters, instead of a point estimate. See the appendix
for a brief introduction to MCMC and for a demonstration of the differences between
MCMC and classical parameter estimation. In the rest of the paper, it is assumed that
MCMC parameter estimation can be done, and samples from the parameter distribution
are available. In this Section, it is shown how the uncertainty presented in the form of
samples can be incorporated into model-based optimization problems.

In more detail, Bayesian estimation considers θ as a random variable that has prob-
ability density p(θ|y), from which one can produce samples using e.g. MCMC (see the
appendix for more details). Following this interpretation, also the optimization criterion
c(x, θ) is a distribution that can obtain a range of possible values at any point x. Thus,
we are dealing with an optimization problem with a stochastic target function. There
are numerous approaches for these kind of optimization problems, see e.g. (Shapiro et al.
2009) for a methodological introduction. In this paper, a novel approach is presented,
based on the same MCMC methods that are used for the parameter estimation.

Instead of optimizing c(x, θ) for a specific fixed θ, the Bayesian approach allows one
to optimize a function of the distribution of c(x, θ). However, it is not obvious how this
statistical knowledge of the modeling uncertainty should be taken into account. Should
one, for example, maximize the expected value of the cost function? Or should one
employ a more conservative ’worst-case’ approach where the smallest predicted product
yield is maximized, taking into account the parameter distribution? Moreover, one has to
consider the algorithmic details of the optimization, to avoid excessive CPU times that
often plague Monte Carlo type calculations.

Below, some ’distribution-based’ optimization criteria are introduced, and two ways
to evaluate them are presented. First, the obvious (but computationally costly) Monte
Carlo approach is discussed, where the distribution of c(x, θ) is directly simulated with
different parameter samples given by MCMC parameter estimation. Then, an efficient
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way to compute similar criteria using MCMC integration is presented.

2.1. Direct Monte Carlo Sampling

An obvious candidate criterion for optimization is the expectation: one averages c(x, θ)
over θ and optimizes the mean. This reduces the risk of obtaining x that produces a good
value for c(x, θ) only locally for a specific value for θ. The mean criterion is defined as

C(x) = Ep(θ|y)[c(x, θ)] =

∫
c(x, θ)p(θ|y)dθ. (1)

This integral can be approximated using the existing MCMC samples from p(θ|y). The
most obvious way is to pick a (large) number of samples (θ1, ..., θN ) from the MCMC
output and use a direct Monte Carlo approximation:

C(x) ≈ 1

N

N∑
i=1

c(x, θi). (2)

However, using expectation alone as an optimization criterion does not take into account
the variability in the criterion. For instance, it might be useful to look for solutions
that both give good criterion values on average and have small variances. A requirement
of small variance can be added to the optimization criterion by e.g. penalizing large
standard deviations:

C(x) = Ep(θ|y)[c(x, θ)]− αStdp(θ|y)[c(x, θ)]. (3)

Tuning parameter α defines the weight given for the variability in the criterion: decreasing
α gives more weight to the expectation. Note that this criterion is close to the mean-risk
models discussed, e.g., by Shapiro et al. (2009). This robust mean criterion in equation 3
can also be computed easily using the direct Monte Carlo approximation using empirical
mean and standard deviation formulas.

As the third option, the ’worst case criterion’ is mentioned, where the worst possible
value of c(x, θ) is maximized:

C(x) = min
θ
c(x, θ). (4)

In this case, direct Monte Carlo approximation means calculating c(x, θ) with different
possible values for θ and finding the minimum from the calculated samples.

The direct Monte Carlo approximation of the above criteria is simple to implement
and include in different optimization routines. However, the approach is computationally
challenging, since we might need a large number of points θi to evaluate C(x) just once.
This can be a problem, if the optimization criterion (simulation model) is computationally
expensive to evaluate. In the following, another way to approximate C(x) using MCMC
sampling and to optimize C(x) using a simulated annealing approach are presented,
following the optimal experimental design method of Müller et al. (2004).
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2.2. MCMC Sampling and Simulated Annealing

The idea, originally presented by Müller et al. (2004) in a design of experiments context,
is to use MCMC sampling for approximating C(x). When the expectation is maximized
(see equation 1), this can be done by running MCMC with target density

π(x, θ) = c(x, θ)p(θ|y), (5)

assuming that c(x, θ) is non-negative and bounded for all x and θ. The above target
density admits C(x) as its marginal. Thus, one can use MCMC to sample from π(x, θ)
and read C(x) from the resulting chain. Sampling from π(x, θ) can be done using e.g.
the Metropolis algorithm by proposing a new x, picking a sample from p(θ|y) from
an existing MCMC chain, evaluating c(x, θ) and accepting or rejecting the proposed x
according to the Metropolis acceptance rule (see the appendix). The MCMC sampler is
run in the joint space of x and θ, where parameters θ are proposed directly from the
parameter posterior distribution and controls x from a separate proposal distribution as
in the Metropolis algorithm.

Thus, in addition to using MCMC to produce samples from p(θ|y), MCMC sampling is
used to explore the ’x-space’ and approximate C(x) as well. This might seem contradic-
tory, since we are dealing with an optimization problem instead of a sampling problem.
However, using MCMC can add value to optimization: C(x) might not have a unique
optimum and some variables in x might not even have a significant effect on C(x). This
kind of sensitivity information can be obtained by MCMC.

The mean criterion surface C(x) might be flat so that it is hard to distinguish the
optimal x from the obtained samples. As noted by Müller et al. (2004) in an optimal
design context, a more peaked surface can be obtained by sampling from an augmented
target

π(x, θ1, ..., θJ) =
J∏
i=1

c(x, θi)p(θi|y) (6)

that has the marginal distribution C(x)J . In this case, one has to pick (θ1, ..., θJ) at each
MCMC iteration randomly from the existing parameter chain. Increasing J concentrates
the samples more tightly around the regions of high C(x). Increasing J along the sampling
process is analogous to simulated annealing, which is a popular stochastic optimization
method. Thus, MCMC sampling can be turned into optimization by increasing J .

The robust mean criterion in equation (3) cannot be expressed as a convenient integral
like the expectation, and the MCMC sampling approach used with expectation in equa-
tion (5) cannot be directly applied. However, note that the expression Stdp(θ|y)[c(x, θ)]
essentially gives weight to deviations of the cost function, |c(x, θ) − c(x, θ′)|. Thus, a
similar effect of penalizing large deviations in c(x, θ) can be obtained by defining the
criterion as

C(x) = Ep(θ|y)[c(x, θ)]− αEp(θ,θ′|y)[|c(x, θ)− c(x, θ′)|] (7)

where p(θ, θ′|y) ∝ p(θ|y)p(θ′|y) is the joint distribution of two independent and iden-
tically distributed parameter vectors. It is straightforward to write this as an integral,
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which can be approximated by MCMC sampling from target

π(x, θ, θ′) =
(
c(x, θ)− α|c(x, θ)− c(x, θ′)|

)
p(θ|y)p(θ′|y). (8)

Thus, at each MCMC iteration, one picks two independent random samples θ and θ′ from
the parameter distribution and evaluates the expression c(x, θ)−α|c(x, θ)−c(x, θ′)|. Nat-
urally, the annealed target (see equation 6 for expectation) can be used with the robust
mean criterion as well. This can be done simply by picking (θ1, ..., θJ) and (θ′1, ..., θ

′
J)

from the parameter distribution and using MCMC to sample from the augmented target

π(x, θ1, ..., θJ , θ
′
1, ..., θ

′
J) =

J∏
i=1

π(x, θi, θ
′
i). (9)

The presented MCMC sampling and simulated annealing approaches cannot be imple-
mented for all target function formulations. The requirement is that the criterion can be
written as an integral (expectation) over the parameter distribution. For example, the
worst-case criterion in equation (4) cannot be written in such a form, and one has to use
the direct Monte Carlo approximation.

3. Remarks and Discussion

• Lee and Chen (2009) conduct a comparative study of different methods to quantify
uncertainties in different performance measures (model outputs) caused by uncertain
model inputs (parameters in our case). They consider direct numerical integration
methods, based on quadrature formulas, and more sophisticated methods like the
polynomial chaos expansion (PCE) for approximating the distribution of the perfor-
mance measures. In the comparisons, they use certain fixed forms for the parameter
distributions. The starting point of this study is different: we estimate the true, ana-
lytically intractable parameter distribution by MCMC from measured data, and study
how the output of the (increasingly popular) MCMC estimation can be used as input
in optimization tasks. For process optimization after MCMC parameter estimation,
Monte Carlo type of approaches are natural, since the parameter distribution is only
available as samples, not in closed form. The posterior distribution often does not
follow any known parametric form, and approximating the posterior with a certain
distribution might give in biased parameter estimation and optimization results.

• Another source of uncertainty in process optimization is the variation in ’external’
operating conditions x̃ that one cannot control (related to e.g. weather). It would be
desirable to control the system so that it works well for a range of possible values
for x̃. While this paper concentrates on handling parameter uncertainty, note that it
might be useful consider also x̃ as a random variable, with some given density p(x̃).
The uncertainty in x̃ can be taken into account by integrating over x̃. For example,
for the mean criterion one can write

C(x) =

∫ ∫
c(x, θ, x̃)p(θ|y)p(x̃)dθdx̃.

The integration over x̃ can be done using direct Monte Carlo integration or MCMC
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integration, in a similar way as with model parameters θ. In MCMC integration,
the uncertainty in x̃ can be incorporated simply by picking x̃ at each MCMC step
from the known distribution p(x̃). The distribution p(x̃) can be of some parametric
form or it can be the empirical distribution (density estimate) obtained from existing
measurements.

• When using direct Monte Carlo approximation in evaluating the criteria, one has
to decide which samples θi are used for evaluating C(x). In practice, one could
always pick the same (large) subset of the MCMC chain for the evaluation of C(x),
which would result in a deterministic optimization problem that could be solved
with many nonlinear optimization methods. However, the results calculated in
this way would be dependent on the chosen parameter subset. Another option is
to pick the parameter points randomly from the MCMC chain whenever C(x) is
evaluated. This leads to a stochastic optimization problem: C(x) evaluated twice
with the same x gives two different values. In this case, one has to use an opti-
mization method that can handle noise in the target function. The amount of noise
can be controlled by the number of samples chosen for the Monte Carlo approximation.

• In this paper, the parameter α that defines the weight given for the variance
in c(x, θ) in the optimization is chosen by hand. A useful approach might be to
consider the problem as a multi-objective optimization problem with two objec-
tives: large expectation and small deviations. The ’optimal compromises’ could
be read from the resulting Pareto-optimal front. The challenge in applying multi-
objective optimization techniques is the stochastic nature of the optimization problem.

• The downside of the presented approach is, as in many Monte Carlo methods, the
large number of model evaluations required. In the simulated annealing approach,
the amount of computation per step increases as J is increased. However, parallel
computing is directly applicable here: one can evaluate each term in the product in
equation (6) independently.

• If parameter estimation is done in a Bayesian way, using for example MCMC, it is
natural to ask how the parameter estimation output can be used in other common
statistical analyses, such as simulation, experimental design and model-based opti-
mization. Simulation is straightforward: one can simply solve the model with different
parameter values given by MCMC estimation and study the uncertainty in model sim-
ulations. Recently, also optimal experimental design methods that can utilize MCMC
output have been proposed, see e.g. (Müller et al. 2004, Solonen et al. 2011). Thus,
these common statistical analyses for mathematical models can now be performed in
a unified Bayesian way.

4. Examples

In this section, process optimization using MCMC output is demonstrated with two
synthetic examples. Data is simulated with assumed true parameter values, based on
which MCMC parameter estimation is performed. Based on the resulting MCMC chain,
a process criterion is optimized, both by fixing θ to its MAP-estimate (least squares
estimate) and by taking the possible parameter values given by MCMC into account in
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the proposed way. In the examples, we use the robust mean criterion.

4.1. Chemical Reaction

First, a simple chemical reaction A → B → C is considered. Compound A transforms
into B with rate k1(T ) and B into C with rate k2(T ). The reaction rates depend on
temperature T . The model is written as an ODE system as

dA

dt
= −k1(T )A

dB

dt
= k1(T )A− k2(T )B

dC

dt
= k2(T )B.

The temperature dependency of the reaction rates is defined using the Arrhenius equation

ki(T ) = ai exp

(
−Ei
R

(
1

T
− 1

T0

))
, (10)

where ai are the reaction rates at the reference temperature T0, Ei are the activation
energies of the reactions, and R is the gas constant. In parameter estimation, the goal is
to estimate θ = (a1, a2, E1, E2) by measuring A and B.

In process optimization, the task is to calculate the collection time and the tempera-
ture that maximize the concentration of the intermediate product B. Thus, the control
variables are x = (t, T ) and the criterion function is defined as

c(x, θ) = B(t, T, θ) (11)

where B(t, T, θ) denotes the component B of the solution of the above ODE at time t
with temperature T and parameter values θ.

4.1.1. Parameter Estimation

Synthetic data is generated, assuming that the true parameter values are θtrue =
(0.005, 0.001, 4E4, 3.8E4). The values are chosen by hand, roughly corresponding to ’typ-
ical’ Arrhenius parameter values in chemical kinetics. Gaussian noise is added to the true
model response. Instead of using the model directly, noise is added using

√
yi =

√
fi+ εi.

This transformation produces positive measurements, where measurement error increases
as the model response increases, see e.g. (Malve et al. 2006). As a reference tempera-
ture, T0 = 323.15K is used. Data is simulated at two temperatures, T = 313.15K and
T = 343.15K.

The same error structure that was used in data generation is used as the likelihood in
MCMC sampling. Thus, the likelihood is formulated as

p(y|θ) ∝ exp

(
− 1

2σ2
||√y −

√
f(x, θ)||2

)
. (12)

A priori, positivity constraints are set for the parameters. In data generation, σ = 0.5 is
used. For MCMC sampling, an effective adaptive MCMC method called Delayed Rejec-
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tion Adaptive Metropolis (DRAM) of Haario et al. (2006) is employed, see the appendix
for some discussion of adaptive MCMC. The DRAM algorithm is run for 10000 iterations.

Simulated data, model fit and parameter posterior p(θ|y) obtained by MCMC are
plotted in figure 1. From the fit one can see that all parameters can be estimated from
data with rather good accuracy. However, even this small uncertainty has an effect in
the process optimization, as seen in the next section.
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Figure 1. Top: simulated data and predictive distributions calculated from MCMC. Bottom:
pairwise marginals from the parameter posterior distribution with 1d and 2d density estimates.

4.1.2. Optimal Process

Since there are only two control variables in this case and a simple model (the ODE
system can be solved analytically), it is possible to demonstrate different optimization
criteria by calculating direct Monte Carlo approximations on a 2D-grid of different values
for the two control variables. Here, the optimal processes given by a point estimate (least
squares estimate) and by the robust mean criterion in equation 8 are compared. The
term x∗α denotes the optimal process condition given by the robust mean criterion with
weight α given for the deviations, and x∗map denotes the optimal condition given by using
only the MAP estimate for θ.
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For evaluating the robust mean criterion (equation 3), 1000 samples from the parameter
distribution are chosen. The different optimization criteria in a 100x100 grid that has
evenly based points in intervals t ∈ [5, 100] and T ∈ [60, 160] are evaluated. In figure
2, the robust mean criterion with different values for α and the criterion value with the
MAP estimate are compared. The results differ significantly for varying values for α. The
optimum with the MAP estimate is at x∗map = (10.8, 143.8). The robust mean criterion
gives x∗0 = (16.5, 128.7), x∗0.1 = (24.2, 117.6), x∗0.5 = (98.1, 81.2) and x∗1 = (100, 80.2).
With larger values for α, the optimum does not change much from x∗1.

Using the MAP estimate only in the optimization suggests that in order to get maximal
product yield, the temperature should be set high and the product should be collected
soon after the process starts. Optimization with the robust mean criterion tells another
story: it is better to put the temperature to a lower value and to wait for a bit longer
before collecting the product. This difference is caused by the fact that, based on the
parameter estimation, we do not know accurately how the system behaves, especially at
high temperatures where we have no measurements. To illustrate this, the distributions
of model responses with x∗map and x∗1 are compared in figure 4. The distribution of the
product yields with different values for α are given in figure 3.

Note that taking the parameters into account as a distribution can yield different solu-
tions for the process optimization problem, even if the parameter uncertainty is relatively
small (as in this toy example). In real situations, one often cannot estimate parameters
as well as in this example. The more uncertainty there is in parameter estimates, the
more important it is to consider the optimized quantity as a distribution instead of a
point estimate.

4.1.3. Comparison to the Classical Approach

From the MCMC output, one can study the sensitivity of the process optimum found
with different methods, see e.g. figure 3, but the analysis does not tell how one method
compares to another in real life. In synthetic cases, however, the ’true’ behavior of the
model is known, and one can compare how the MCMC approach performs compared to
the classical approach, where a fixed point estimate is used and the parameter uncertainty
is neglected.

Here, such an experiment is performed as follows. First, synthetic data is generated, as
in the previous sections, by adding noise to the model simulated with ’true’ parameter
values. Then, parameters are estimated using both least squares and MCMC, and the
optimization is performed using the obtained estimates. Thus, in the least squares ap-
proach the obtained point estimate is fixed at the optimization stage, and in the MCMC
approach the parameter uncertainty is taken into account as in the previous section.
Finally, the obtained optimization results are plugged in to the true model (model with
assumed true parameters) to see how large product yields were actually obtained with
the two methods. The above procedure is repeated a number of times (here 400) to get
statistics for the performance comparison.

The results of the comparison are illustrated in figure 5. For the 400 test cases, the
proposed approach that takes parameter uncertainty into account gives robust results,
whereas using the point estimate only can lead to poor product yield. For instance, the
product yield was below 60 in 33/400 cases when the point estimate was used, but only
in 1/400 cases when the MCMC approach was applied. Note that it is possible that the
least squares approach gives better results for individual cases, e.g. if the obtained point
estimate happens to be very close to the ’true’ value. In the long run, however, it pays
off to take the uncertainty into account.
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Figure 2. Criterion surfaces with the MAP estimate (top left) and with the robust mean criterion
with different values for α. Temperatures are in Celcius.
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Figure 3. Distributions of product yield at MAP-optimal conditions and with the robust mean
criterion with different values for α.
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Figure 4. Distribution of model response at the MAP-optimal conditions (left) and at the optimal
temperature calculated with the robust mean criterion (right). Two confidence envelopes, 50%
(dark gray) and 99% (light gray) are plotted.
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Figure 5. The optimal product yield (dashed line) and the actual product yield obtained using
the proposed approach and the classical way (solid lines).

4.2. Williams-Otto Process

In this example, we consider the well-known Williams-Otto plant, introduced by Williams
and Otto (1963), which is a commonly used benchmark problem in process optimization.
The process consists of an ideal stirred tank reactor, in which three elementary chemical

Page 12 of 43

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

July 28, 2011 14:0 Engineering Optimization geno˙mcmc˙R3

Process Optimization with Parameter Uncertainty 13

reactions take place:

A+B
r1−→ C

C +B
r2−→ P + E

P + C
r3−→ G.

The raw materials A and B are fed into the reactor with rates FA and FB. The reaction
mixture is directed into a cooler with rate FR, after which the residue G is totally
separated in a decanter. The remaining mixture is fed into a distillation column, where
the desired product P is separated. The recovery of P is not complete and some P is left
in the bottom of the distillation column. A fraction of the bottom product is recycled
back to the reactor (flow FT ) and the rest is removed from the process. The process is
given as a flowchart in figure 6.

Figure 6. The Williams-Otto plant as a flowchart. Figure provided by prof. Ugur Akman.

The reaction rates are given by

r1 = k1FRAFRBV ρ/F
2
R

r2 = k2FRBFRCV ρ/F
2
R

r3 = k3FRCFRPV ρ/F
2
R

where FRA, FRB, FRC and FRP are the flow rates in the reactor. Reactor volume and
density of the reaction mixture are denoted by V and ρ respectively. The reaction rate
coefficients follow the Arrhenius equation:

ki(T ) = qi exp

(
−bi

(
1

T
− 1

T0

))
(13)

where T is the reactor temperature and T0 the reference temperature. The kinetic pa-
rameters θ = (q,b) are estimated from measurements (details below).
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Finally, the model can be written as a steady state model using the flow rates. Here,
the model is written separately for different parts of the plant. First, for the reactor the
model reads as

FA + FTA − FRA − r1 = 0

FB + FTB − FRB − r1 − r2 = 0

FTC − FRC + 2r1 − 2r2 − r3 = 0

FTE − FRE + 2r2 = 0

FTG − FRG + 1.5r3 = 0

FTP − FRP + r2 − 0.5r3 = 0.

The equations in the decanter are trivial. In the distillation column, some product is left
in the bottom of the column, since P forms an azeotrope with E. In the Williams-Otto
plant, the amount of P retained in the column is taken to be 10% of the flow rate of E.
Thus, one can write

FP = FSP − 0.1FSE

FY P = 0.1FSE .

In the splitter, a fraction α of the total flow is removed from the process and the rest is
recycled back to the reactor:

FT i = (1− α)FY i

FDi = αFY i,

where i = (A,B,C, P,E). For the flow rates, the model is a nonlinear system of algebraic
equations and can be solved with numerical methods.

4.2.1. Parameter Estimation

To estimate the kinetic parameters θ = (q,b), the chemical reaction is studied sepa-
rately by running an experiment in a separate batch reactor with no flows. The kinetic
system is now written as an ODE system:

dA

dt
= −k1AB

dB

dt
= −k1AB − k2CB

dC

dt
= 2k1AB − 2k2CB − k3CP

dP

dt
= k2CB − 0.5k3CP

dE

dt
= 2k2CB

dG

dt
= 1.5k3PC.
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Assume that we can measure the concentration of components A and B at different
temperatures. Synthetic measurements are generated by adding normally distributed
random noise to model responses with assumed ’true’ parameter values given in table 1.
To get the model response, the ODE system is solved numerically, using initial values
A(0) = B(0) = 1 and C(0) = P (0) = E(0) = G(0) = 0. Three batches of data are
simulated in temperatures 320K, 340K and 360K, and 350K is used as the reference
temperature T0. The reactor is run for 0.1 hours in each case and the concentrations
of the compounds are collected in 20 evenly spaced times. An MCMC chain of length
10000 is created from the parameter distribution using the DRAM algorithm of Haario
et al. (2006) and the appendix for DRAM details. Figures 7 and 8 show the distribution
of the parameters and the model fit. Note that again the situation is very idealized: in
real problems, the data and parameter identifiability are often worse. As shown in the
next section, even this seemingly harmless parameter uncertainty has a clear impact on
process optimization results.

Table 1. True parameter values for the Williams-Otto plant, obtained from (Kajaluoto 1984).

Parameter True value
q1 31.9223
b1 6666.67
q2 118.57622
b2 8.333e+03
q3 157.1899
b3 1.111e+04
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b 1
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200
250

q 3
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Figure 7. Posterior distribution of the kinetic parameters.
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Figure 8. Simulated data and model fit for measured components A and B.

4.2.2. Process Optimization

Given a specific parameter value, the steady-state model can be used, and the system
can be solved in terms of flow rates. The control variables are the input flow rates of the
raw materials, the reactor temperature and the purge fraction: x = (FA, FB, T, α).

As a cost function, the ”return of of investment”, a similar cost function that was
used by Kajaluoto (1984), is used. In practice, raw materials and disposal of unwanted
products cost money and profit is obtained from the desired product P . The cost function
is written as

c(x, θ) = (84Ain − 201.96ṁD − 336ṁG + 1995.52ṁP − 2.22ṁR)/(6V ρ). (14)

The robust mean criterion and MCMC integration for process optimization (equation 8)
are employed. The estimation is run with α = 0.5, α = 1 and α = 3. The annealed target
with J = 40 is used to obtain enough contrast in the surface C(x). The robust mean
criterion is given in figure 9 as an example for α = 1.

When using the MAP estimate θ̂ only (traditional approach), one obtains opti-
mal conditions x∗map = [6489, 15589, 379.3, 0.1002] that gives objective function value

c(x∗map, θ̂) = 144.3. The results agree well with the ones obtained by Kajaluoto (1984).
The optimal conditions x∗α given by the robust mean criterion with different val-
ues for α are x∗0.5 = [6415, 12390, 370.5, 0.081], x∗1 = [6016, 13760, 367.6, 0.081] and
x∗3 = [4395, 8034, 358.6, 0.0556]. The distributions of the cost functions with the robust
mean criterion and the MAP-optimal point are illustrated in figure 10.

It turns out that the distribution of the objective function value, given the uncertainty
in the reaction kinetics, is rather wide, indicating that the objective function is sensitive
to the values of the kinetic parameters (see figure 10). With the results given by the
robust mean approach, the risk of obtaining poor (even negative) return of investment
is minimized. However, putting more weight to small deviations comes at a cost: the
expected value decreases slightly as the deviations are emphasized.
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Figure 9. Robust mean criterion surface with α = 1 and the MAP-optimal conditions (dot).
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Figure 10. Distributions of product yield at MAP-optimal conditions and optimal conditions
calculated with the robust mean criterion with different values for α.

5. Conclusions

In this paper, a way to incorporate parameter uncertainty into process optimization is
presented. The approach utilizes the output from MCMC methods that are more and
more routinely used in statistical model fitting problems. The same MCMC methods can
also be used in calculating the optimization criteria effectively, instead of direct Monte
Carlo approximations. The approach is tested in two simple chemistry examples. Even in
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these simple cases, with small parameter uncertainties, the difference to the traditional
approach is clearly visible. With the presented approach it is possible to reduce the risk
of obtaining poor process optimization results caused by incomplete knowledge of the
process.
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Appendix

In this appendix, the basic concepts and algorithms of Bayesian parameter estimation
and MCMC are briefly summarized. In addition, a simple example that demonstrates
the difference of the MCMC approach to classical nonlinear parameter estimation
procedures is given.

MCMC basics

In the Bayesian approach the unknown parameter vector is interpreted as a ran-
dom variable. The aim of the analysis is to find its distribution. Before experimental
data is available the parameter θ has a prior distribution p(θ). The observations y
update the distribution p(θ) to the posterior distribution by the Bayes formula

π(θ) =
p(y|θ)p(θ)∫
p(y|θ)p(θ) dθ

. (15)

Here p(y|θ) is the likelihood function that gives the likelihood of data y for given param-
eter value θ. The posterior distribution π(θ) = p(θ|y) gives the probability distribution
of parameter values, given the measured data y. The integral

∫
p(y|θ)p(θ) dθ is needed

as the normalizing constant, to ensure that π indeed is a probability measure, with total
measure equal to one,

∫
θ π(θ) dθ = 1.

In the usual settings the parameter vector θ and data y are connected by a model
y = f(x, θ) + ε, where the experimental error ε ∼ N(0, σ2I), i.e., in all experiments the
measurement noise is Normally distributed, independent and with standard deviation of
size σ. It is not difficult to see that then

p(y|θ) =
1

(2πσ2)n/2
exp

(
−

n∑
i=1

(yi − f(xi, θ))
2/2σ2

)
.

So, one arrives at the familiar least squares function: maximizing the likelihood function
turns out to be equivalent to minimizing the residual sum of squares.

In principle, the Bayes formula solves the estimation problem in a fully probabilistic
sense: one finds the peak, the maximum a posteriori (MAP) point, of the parameter dis-
tribution. Then one determines a required portion of the probability mass (typically some
95% or 99% of the mass) around it. However, the problems of how to define the a priori
distribution and how to calculate the integral of the normalizing constant are faced. Of-
ten, only a ’flat’ prior is used, that is, a uniform distribution that only defines physically
possible lower and upper bounds for each parameter. However, the integration of the
normalizing constant often is a formidable task, even for only moderately high number
of parameters in a nonlinear model. So, a direct application of the Bayes formula is in-
tractable for all but trivial nonlinear cases. The MCMC methods provide a tool to handle
this problem. They generate a sequence of parameter values θ1, θ2, ...θN , whose empirical
distribution approximates the true posterior distribution for large enough sample size N .

The trick here is that the distribution from which to sample is not known, but it is
still possible to generate samples form it. Instead of sampling from the true distribution,
one samples from an artificial proposal distribution. Combining the sampling with a sim-
ple accept/reject procedure, the posterior can be correctly approximated. The simplest
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MCMC method is the Metropolis algorithm introduced by Metropolis et al. (1953):

(1) Initialize by choosing a starting point θ1.

(2) Choose a new candidate θ̂ from a suitable proposal distribution q(.|θn) that may
depend on the previous point of the chain.

(3) Accept the candidate with probability

α(θn, θ̂) = min

(
1,
π(θ̂)

π(θn)

)
.

If rejected, repeat the previous point in the chain. Go back to item 2.

So, points with π(θ̂) > π(θn), i.e., steps ’uphill’, are always accepted. But also points

with π(θ̂) < π(θn), i.e., steps ’downhill’, may be accepted, with probability that is given
by the ratio of the π values. In practice, this is done by generating a uniformly distributed
random number u ∈ [0, 1] and accepting θ̂ if u ≤ π(θ̂)/π(θi). Note that only the ratios
of π at consequtive points are needed, so the main difficulty is omitted: the calculation
of the normalizing constant is not needed since the constant cancels out!

However, the choice of the proposal distribution may still pose a problem. It should
be chosen so that the ’sizes’ of the proposal q and target distributions suitably match.
This may be difficult to achieve. An unsuitable proposal leads to inefficient sampling,
typically due to

• the proposal being too large. Then the new candidates mostly miss the essential region
of π; they are chosen at points where π ' 0 and only rarely accepted.

• the proposal being too small. The new candidates mostly are accepted, but from a
small neighborhood of the previous point. So, the chain moves only slowly, and may
not cover the target π in finite number of steps.

For simple cases, the proposal might be relatively easy to find by some hand-tuning.
However, the ’size’ of the proposal distribution is not a sufficient specification. In higher
dimensions, especially, the shape and orientation of the proposal are crucial. The most
typical proposal is a multi–dimensional Gaussian (Normal) distribution. In the random
walk version, the center point of the Gaussian proposal is chosen to be the current point
of the chain. The task then is to find a covariance matrix that produces efficient sampling.

Several efficient adaptive methods have been recently proposed, see, e.g., the Adaptive
Metropolis (AM) and the Delayed Rejection Adaptive Metropolis (DRAM) algorithms
(Haario et al. 2001, 2006). In adaptive MCMC, one uses the sample history to auto-
matically tune the proposal distribution ’on-line’ as the sampling proceeds. In AM, the
empirical covariance from the samples obtained so far is used that as the covariance of a
Gaussian proposal. The simplicity of AM adaptation allows for its use in more advanced
adaptation schemes. The DRAM algorithm combines the delayed rejection (DR) method
by Mira (2001) with AM. This DRAM method has been shown to be efficient in many
applications, see e.g. (Villagran et al. 2008, Smith and Marshall 2008). In DR, when
a proposed candidate point in a Metropolis chain is rejected, a second stage move is
proposed around the current point. For example, one can use downscaled versions of the
proposals given by AM adaptation as second stage proposals in DR. This is especially
helpful to get the sampler moving (to get accepted points) in the beginning of the MCMC
run.

In this paper, the DRAM method was used for all sampling tasks. The DRAM
calculations were performed by using the Matlab adaptive MCMC Toolbox, that may
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be downloaded from the Internet, see (Laine 2008).

Example: MCMC vs. Classical Methods

In this section, the difference between classical nonlinear regression analysis and
Bayesian model fitting is illustrated using a simple toy example. The model y =
θ1(1 − exp(−θ2x)), used to model e.g. the biological oxygen demand, is fitted to data
x = (1, 3, 5, 7, 9), y = (0.076, 0.258, 0.369, 0.492, 0.559). First, the parameters are esti-
mated using the classical least squares approach, and the covariance of the parameters
is approximated using a linearization around the least squares estimate θ̂. In practice
the covariance is estimated as Cov(θ̂) ≈ σ2(JTJ)−1, where J is the Jacobian of the

parameters evaluated at θ̂ and σ2 is the measurement error variance (assumed here to
be i.i.d. Gaussian). The measurement error variance was estimated from the residuals,
giving σ = 0.014.

Then, the DRAM sampler is run for 10000 steps to get samples from the posterior distri-
bution. In figure 11, the parameter distributions obtained with the classical linearization-
based way and with the MCMC approach are presented. One can see how the classical
approach can go wrong, if the parameter distribution is not Gaussian. In the figure, the
predictive distribution calculated from the MCMC output is also given, illustrating that
extending the uncertainty analysis to predictions (and other functions of the parameters)
can be easily achieved simply by simulating the model with different parameter values
given by MCMC.
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Figure 11. Top: parameter posterior with MCMC (blue) and linearization around the LSQ esti-
mate (red). Bottom: predictive distributions with MCMC and the single prediction produced by
the LSQ estimate. Gray colors correspond to 50%, 80%, 95% and 99% confidence envelopes.
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