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ABSTRACT

Image segmentation can be defined as the detection of
closed contours surrounding objects of interest. Given a fam-
ily of closed curves obtained by some means, a difficulty is to
extract the relevant ones. A classical approach is to define an
energy minimization framework, where interesting contours
correspond to local minima of this energy. Active contours,
graph cuts or minimum ratio cuts are instances of such ap-
proaches. In this article, we propose a novel efficient ratio-
cut estimator which is both context-based and can be inter-
preted as an active contour. As a first example of the effec-
tiveness of our formulation, we consider the tree of shapes,
which provides a family of level lines organized in a tree
hierarchy through an inclusion relationship. Thanks to the
tree structure, the estimator can be computed incrementally
in an efficient fashion. Experimental results on synthetic and
real images demonstrate the robustness and usefulness of our
method.

Index Terms— Ratio-cut, Tree of shapes, Level lines,
Active contours, Image segmentation.

1. INTRODUCTION

In natural images, significant contours are usually smooth
and have a good contrast. Following the seminal work of
Mumford and Shah [1], finding contours is often tackled
thanks to an energy-based approach, as a compromise be-
tween some internal force (regularity) and some image-driven
force (image contrast along the contours, data attachment,
etc.) Among the most notable methods in this class, the
snakes approach [2] finds a local optimum of the energy,
while Chan-Vese approach [3] finds a global optimum.

It can be observed in practice that local optima are usually
too local, in the sense that only information along the curve
are taken into account. Conversely, a global optimum takes
the whole image into account and some details can be found
difficult to be included in the final result. Let us also mention
that the search space for the optimal curve is quite large and
depends on many parameters.

The main contribution of this paper is the design of a
ratio-cut energy evaluator that takes into account some con-
text along the curve, by looking at a couple of regions around
it. This estimator aims at assessing the possibility that the
curve under scrutiny is the contour of some object. It thus can
be used to choose, in a set of closed curves, for the ones that
best represent the objects of the scene. If the curves are orga-
nized in a tree, as it is the case for example in any hierarchical
segmentation method [4], the search space is reduced, and it
is then easier to find the objects: they are the minima of the
estimator, when compared to their children and parent.

Recently, many authors (see for example [5]) claim that
meaningful contours coincide with segments of the level lines
of the image. The inclusion relationship of these level lines
gives birth to the tree of shapes [6], a complete representation
of the image that is invariant to changes of contrast. In this
paper, we illustrate the soundness of our estimator on this kind
of tree.

There exists several works that use the tree of shapes for
image simplification and segmentation. In [7], the authors
propose to remove any level lines that, when removed, de-
crease the Mumford-Shah energy. In [8], the authors remove
the level lines that enclose a region similar to its parent w.r.t.
an histogram-based distance. They then select interesting re-
gions by identifying parts of the tree having an homogeneous
histogram. Both methods require an information update af-
ter each removal of a non-relevant level line; such an update
mechanism is a major bottleneck of those methods. In [9],
the author proposes a segmentation algorithm that selects the
perceptible level lines matching some criteria: number of T-
junctions, compactness, and contrast.

Papers [10] and [11] are the closest ones to what we pro-
pose here. The authors define the meaningfulness of a given
level line using the a contrario model. Only the smallest gra-
dient along a level line and its length are used to estimate the
meaningfulness of this line, based on the computation of a
number of false alarms (we will call this method “NFA” in
the following). This makes their estimator sensitive to noise.
In [11], they improve the method by introducing a multi-scale
approach, less sensitive to noise. In this paper, our estima-



tor is scale-invariant and designed from snake-like principles.
We use the average of curvature along the curve as the inter-
nal force. A key contribution is the image force we propose,
which integrates some contextual information. Eventually,
we show that our estimator is robust both to noise and blur.
Another advantage of our method is its efficiency for it has a
quasi-linear time complexity.

The rest of this paper is organized as follows. Our pro-
posed estimator is described in Section 2. How to use it on
the tree of shapes is detailed in Section 3. In Section 4, we
show some experimental results on synthetic and real images,
and we conclude in Section 5.

2. CONTEXT-BASED ENERGY ESTIMATOR

The idea of snakes or active contours [2] is to evolve a curve
under the influence of internal forces coming from the curve
itself and of external forces computed from the input image or
added by the user to impose some constraints. Those forces
are mapped into the respective terms of an energy Elocal =
αEsnk

int +Esnk
ext +βEcon whose minimization drives the curve.

Given an input image u and a curve ∂τ (contour of a region
τ , composed of pixel edges e), those energy terms are:

Esnk
int =

∑
e∈∂τ

|curv(u)(e)| and Esnk
ext = −

∑
e∈∂τ

|∇u(e)|,

where curv and ∇ are respectively the curvature and the gra-
dient of u. This energy is thus local to the curve. Other ap-
proaches such as [3] show that, thanks to a variational ap-
proach, the curve can minimize a global energy that can be
for instance the cartoon segmentation model [1]. Given a re-
gionR, let us consider the segmentation error:

V (u,R) =
∑
p∈R

(u(p)− u(R))2

where u(R) is the mean value of u overR. When the image is
segmented into the set of regions {Ri}, the cartoon functional
is:

Eglobal(u, {Ri}) =
∑
i

V (u,Ri) + ν L(∂Ri),

with L denoting the length of a contour.
Suppose now that we have decomposed the input image

u into a set of regions {τ}. We need an energy that can be
computed for every regions. Such an energy can express two
kinds of information: a local one, associated with the region
contour ∂τ , such as the smoothness term Esnk

int , and a bound-
ary one such as the gradient term Esnk

ext of the snake energy.
We replace that boundary energy by a context one, inspired
by the error term of the cartoon functional. For that, given
a curve ∂τ , we define the regions Rεin(∂τ) and Rεout(∂τ) as
the sets of points of maximal distance ε from ∂τ , respectively
inside and outside of the curve. Those two regions are illus-
trated by Figure 3 (b). The proposed external energy is:

Eext(u, ∂τ) =
V (u, Rεin(∂τ)) + V (u, Rεout(∂τ))

V (u, Rεin(∂τ) ∪Rεout(∂τ))
. (1)
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Fig. 1. (a): Energy estimator on a set of curves of an image,
ordered by inclusion; snake energy is depicted in green, our
proposed energy is in blue, and NFA is in orange. (b) and (c):
the curves corresponding to significant energy minima.

This energy is low when the segmentation error is much lower
for two classes than for one class, meaning that the curve is an
object contour. Thanks to the numerator, it is also inversely
proportional to the object contrast. Note that this contextual
energy introduces some spatial information that is not natu-
rally present in curve-based representation of an image. On a
set of curves of an image, Figure 1 shows that replacing the
gradient energy Esnk

ext by this new formulation dramatically
improves the evidence of an object presence.

We also propose to modify the internal energy from the
snakes approach: it is normalized to make it invariant to scale:

Eint(u, ∂τ) =
∑
e∈∂τ

|curv(u)(e)| / L(∂τ).

Now, all the curves ∂τ are valued with the energy:

E = αEint + Eext + βEcon ,

where the constraint energy aims at penalizing too small ob-
jects:

Econ(u, ∂τ) = 1 / L(∂τ).

In our experiments we take α = 60, β = 2, and ε = 5.

3. APPLICATION ON THE TREE OF SHAPES

The method we propose is composed of three steps.

1. First the contents of the input image is described by a
tree. Many tree-based representations of an image do
exist (e.g. min/max tree, hierarchies, . . .). In this paper,
we use the tree of shapes [6], described in Section 3.1.

2. Second our context-based energy estimator is com-
puted for each node of this tree.

3. Last we identify the significant local minima of the en-
ergy. Each node corresponding to such a minimum is a
component whose contour is the one of an object.

We first describe the tree of shapes (Section 3.1), before
giving some hints aiming at an efficient implementation (Sec-
tion 3.2).
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Fig. 2. An image (left) and its tree of shapes (right).

3.1. The Tree of Shapes

For any λ ∈ N, the upper level sets Xλ and lower level sets
X λ of an image u : Z2 → N are defined by Xλ(u) = { p ∈
Z2 | u(p) ≥ λ } and X λ(u) = { p ∈ Z2 | u(p) ≤
λ }. Both upper and lower level sets have a natural inclusion
structure: ∀λ ≤ µ, Xλ ⊇ Xµ and X λ ⊆ X µ, which leads to
two distinct and dual representations of an image, respectively
the max-tree and the min-tree.

Another tree has been introduced in [6]. A shape is de-
fined as a connected component of an upper or lower level set
where its holes have been filled in. Thanks to the inclusion
relationship of both kinds of level sets, the set of shapes gives
a unique tree, called tree of shapes. This tree features an inter-
esting property: it is invariant to contrast changes; put differ-
ently, it is a self-dual, non-redundant, and complete represen-
tation of an image. Furthermore, such a tree inherently em-
beds a morphological scale-space (the parent of a node/shape
is a larger shape). An example on a simple image is depicted
in Figure 2.

3.2. Making the Method Efficient

For all three steps of the method, we need to deal not only
with image pixels but also with contours. We thus rely on
a representation that handle both pixels and pixel edges. In
other words, we materialize the elements what lie in-between
pixels, as depicted in Figure 3.

Tree Computation. To compute the tree of shapes, we use an
algorithm (unpublished yet) very similar to the one described
in [12]. A first pass sorts the pixels by a propagation process
starting from the image boundary. Then a second pass, in
reverse order, build the tree while performing the union-find
algorithm. This algorithm has a quasi-linear time complexity
when pixel values have a low quantization.

Contours Information Computation. During the union-find
pass, contour information can be efficiently updated. As de-
picted in Figure 3 (a), when performing a union of two com-
ponents (resp. yellow and blue) due to adding a pixel (gray),
it is easy to know how to update the contour.

Regions Information Computation. In order to calculate
the regions information efficiently, we approximate the inner

union  and update

(a) (b)
Fig. 3. (a): Updating contour information when a union be-
tween two components (yellow and blue) occurs thanks to a
pixel (gray). (b): Regional context of a level line (red) is the
inner (dark gray) and outer (light gray) regions.

(a) Input image (b) NFA (c) Chan-Vese

(d) Ballester, λ=2k (e) Ballester, λ=3k (f) Our method

Fig. 4. Comparison with three other methods.

region and the outer region of each level line by only taking
into account the pixels which are aligned perpendicularly to
each edge of the level line. Note that some pixels may be
counted several times. An example with ε = 2 is given in
Figure 3 (b).

Energy Computation. All energy terms can be computed
incrementally during the union-find pass since they can be
decomposed into linear (additive and subtractive) parts. The
curvature, as a linear filter, is computed for every pixel edges
in a preliminary step.

4. RESULTS AND COMPARISON

On Figure 1, one can see that the energy that we have defined
(the blue curve) is a function that evolves rather smoothly
upon the tree from a node to its parent (from left, a leaf, to
right, the root node). Yet there exists many local minima and
only a few of them effectively correspond to object contours.
We thus filter the energy function in order to get rid of spu-
rious minima [13]. The results obtained by our method on a
synthetic image are shown in Figure 4(f) and they are com-
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Fig. 5. Evolution of number of falsely segmented pixels (or-
dinate) w.r.t. increasing noise and blur (abscissa) for the syn-
thetic image in the Figure 4(a); NFA error evolution is de-
picted in orange and our method error in blue.

Fig. 6. Results on classical images.

pared to the ones of several related approaches.
The NFA approach [11] is sensitive to noise since the

method relies on the minimum value of contrast along bound-
aries. This defect can be observed in Figure 1 where the NFA
estimate (orange curve) does not evolve regularly enough. As
a consequence, selecting relevant minima is hazardous and
objects are not well located; see Figures 1 and 4(b). That
confirms the importance of taking into account some regional
information. A quantitative error comparison between NFA
and our method is given in Figure 5 to depict the robustness
to noise and blur of both methods.

Figure 4(c) is the result obtained by “active contour with-
out edges” [3], with many circles as initial contours; the bot-
tom object is missed since it is too similar to the background.
That problem comes from the use of a global energy: such an
object is not contrasted enough w.r.t. the rest of the image.

The approach of Ballester et al. [7] relying on Mumford-
Shah functional gives pretty good results; see Figure 4(d).
Unfortunately there is a false object, the triangle boundary,
that does not disappear when increasing the regularization
strength parameter λ; see Figure 4(e). Instead of that, an ac-
tual object disappears.

Figure 6 presents the results of our method on two natural
images. On the left image, the three vehicles are successfully
identified but the roof of one car is missed since it is very sim-
ilar to the background. On the satellite image, the buildings
and their shadows are well segmented.

We have implemented the proposed method 1 using our
C++ image processing library [14], available on the Internet
as free software. Processing a 512×512 pixels image takes
less than 0.5 second on a regular PC station.

1Demo available on http://olena.lrde.epita.fr/ICIP2012

5. CONCLUSION

This paper presented a segmentation approach based on the
set of level lines given by the tree of shapes. A major con-
tribution of this paper is a new energy functional, well-suited
to characterize object contours. We have shown that taking
into account a regional context, so that the energy is neither
too local nor global, improves both the relevance and robust-
ness of object detection, as compared to three state-of-the-art
approaches. Last, we end up with an efficient segmentation
scheme with quasi-linear time complexity. A major perspec-
tive of our work is to demonstrate its usefulness with other
tree-based representations, to extend it to color and, more
generally, multi-valued images.
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[13] Y. Xu, T. Géraud, and L. Najman, “Morphological filtering in
shape spaces: Applications using tree-based image representa-
tions,” 2012. http://arxiv.org/abs/1204.4758 .
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