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Clustering analysis of railway
driving missions with niching

Amine Jaafar, Bruno Sareni and Xavier Roboam
LAPLACE UMR CNRS-INPT-UPS, Université de Toulouse, Toulouse, France

Abstract

Purpose – A wide number of applications requires classifying or grouping data into a set of
categories or clusters. The most popular clustering techniques to achieve this objective are K-means
clustering and hierarchical clustering. However, both of these methods necessitate the a priori setting
of the cluster number. The purpose of this paper is to present a clustering method based on the use of a
niching genetic algorithm to overcome this problem.

Design/methodology/approach – The proposed approach aims at finding the best compromise
between the inter-cluster distance maximization and the intra-cluster distance minimization through
the silhouette index optimization. It is capable of investigating in parallel multiple cluster
configurations without requiring any assumption about the cluster number.

Findings – The effectiveness of the proposed approach is demonstrated on 2D benchmarks with
non-overlapping and overlapping clusters.

Originality/value – The proposed approach is also applied to the clustering analysis of railway
driving profiles in the context of hybrid supply design. Such a method can help designers to identify
different system configurations in compliance with the corresponding clusters: it may guide suppliers
towards “market segmentation”, not only fulfilling economic constraints but also technical design
objectives.

Keywords Genetic algorithms, Cluster analysis, Data management, Clustering, K-means,
Silhouette index, Niching genetic algorithms, Railway locomotive, Driving missions

Paper type Research paper

1. Introduction
Generally, system design methods are strongly coupled with “environmental variables”
as wind or solar irradiation, respectively, for wind and photovoltaic systems and with
driving mission parameters for embedded and transportation applications. More
particularly, the design of a hybrid electrical locomotive requires taking into account at a
system level couplings between architecture, sizing, energy management strategy and
environment (Akli et al., 2009). For such devices, the system environment is associated
with specific power driving profiles that have to be provided by all energy sources.
These profiles contain a wide number of features related to the system sizing, efficiency
and lifetime which can be represented by specific indicators (e.g. maximal and average
mission powers, statistical indices associated with the mission power distribution . . .).
Integrating these indicators in the design process is not straightforward because of the
important number of driving missions than can be imposed to the locomotive. Note that
the same issue applies for other transportation applications, especially for electric and
hybrid vehicles. For this purpose, cluster analysis methods can be useful in order to find
the most “representative” driving missions among the set of accessible data. Such
methods can help designers to identify different system configurations in compliance
with the corresponding clusters: it may guide suppliers towards “market segmentation”
not only fulfilling economic constraints but also technical design objectives. In this



paper, a clustering method based on a niching genetic algorithm (GA) is presented for
data partitioning. Instead of K-means clustering methods (Xu andWunsch, 2005) which
require the a priori setting of the number of clusters for minimizing a similarity metrics
(typically the sum of the distance of the points from their cluster centroids), the proposed
algorithm aims at simultaneously finding the appropriate number of clusters and the
correct classification of the dataset. It consists in optimizing a partition criterion (e.g. the
silhouette index) which emphasizes the compactness of intra-cluster and the isolation of
inter-cluster. Because of the multimodality feature of data clustering, the use of niching
GAs (Sareni and Krähenbühl, 1998) is recommended to avoid premature convergence.
The remainder of the paper is organized as follows. Section 2 describes in more details
the niching GA used for data clustering problems. This algorithm is then applied in
Section 3 to datasetswith non-overlapping or overlapping clusters and in Section 4 to the
analysis of railway driving profiles. Conclusions are finally presented in the last section.

2. Clustering with niching GAs
2.1 Individual representation
Most of genetic-based clustering methods use binary string or real parameters
encoding, representing the membership or permutation between data objects ( Jain et al.,
1999). Nevertheless, this representation is not suitable for large datasets due to the
excessive length of the chromosomes. A most effective solution consists in directly
encoding the cluster centroids into the chromosome (Maulik and Bandyopadhyay,
2000). The dataset partitioning is carried out according to the encoded clusters.
Moreover, in order to investigate configurations with varying clusters, the number of
clusters should also be added as a gene to the chromosome. Then, two different
encoding strategies can be adopted for integrating the cluster centroid positions
(Figure 1):

(1) Variable-length chromosome encoding. After the initialization of the gene
associated with the number of clusters, the chromosome can be constructed by
adding random variables representing the corresponding cluster positions. This
encoding leads to individuals with variable-length chromosomes (according to
the cluster number) and requires implementing specific crossover operators
capable of recombining such chromosome configurations.

(2) Fixed-length chromosome encoding. The other alternative consists in using the
same chromosome size for all individuals in the population. The chromosome
length is set according to the maximum number of clusters. The upper bound of
the number of clusters is generally

ffiffiffi

n
p

(Pal and Bezdek, 1995) where n denotes
the number of elements in the dataset. With this strategy when the number of
clusters determined by the first gene is lower than the maximum number of
clusters, some genes can be considered as “recessive”. They are not used in the
individual decoding but participate to crossover and mutation operations.
It should be noted that all genes including the number of clusters undergo these
genetic operations. Because of its simplicity, this strategy has been preferred to
the variable-length chromosome encoding. Moreover, the use of recessive genes
in association with niching operators increases population diversity,
particularly the exploration of clustering configurations with variable
number of clusters.



2.2 Data partitioning
Considering a particular individual obtained from the initialization step or resulting
from genetic operators, each element of the dataset is assigned to the nearest cluster
centroid located in the corresponding chromosome. After this step, some clusters
represented by their centroids in the individual chromosome may be empty (i.e. no
element in the dataset has been assigned to those clusters). In this case, the current
number of clusters in the dataset is lower than the value of the associated gene in the
individual chromosome. A repairing operator can be applied in order to modify the
chromosome features according to the dataset assignment. This operator consists in
replacing the gene value associated with the cluster number in the chromosome with
the current cluster number in the dataset. Moreover, centroid positions related to empty
clusters are shifted at the end of the chromosome.

2.3 Fitness computation: silhouette width calculation
The individual fitness is then obtained using a partition criterion which aims at
emphasizing the compactness of intra-cluster and the isolation of inter-cluster. Such
optimization criterion leads to an optimal tradeoff between the inter-cluster distance
maximization and the intra-cluster distance minimization and consequently the correct
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classification of the dataset. Many partition criteria measuring the quality of the
clusters can be found in Bolshakova and Azuaje (2003), Milligan and Cooper (1985) and
Sheng et al. (2005). Most popular are the Davies-Bouldin index, the Calinski and
Harabasz criterion and Dunn’s functions. In this study, the use of the silhouette
measure (Rousseeuw, 1987) has been chosen for quantifying the individual fitness. The
silhouette method assigns to each element i of the dataset a quality index s(i ) known as
the silhouette width and defined as:

sði Þ ¼ bi 2 ai

maxðbi; aiÞ
ð1Þ

where ai is the average distance between i and all other elements in the cluster to which
i belongs and bi denotes the minimum average distance between i and the elements
belonging to another cluster (Figure 2).

When a s(i ) is close to 1, it indicates that the element i is well clustered (i.e. assigned to
the appropriate cluster). If s(i ) is about 0, it suggests that the elements i could also be
assigned to a neighboring cluster. Finally, when s(i ) is close to21, we can conclude that
this element has been misclassified. The overall average silhouette width SIL used for
representing the individual fitness, is the average of s(i ) over all elements i of the dataset:

SIL ¼ 1

n

X

n

i¼1

sði Þ ð2Þ

where n denotes the size of the dataset.

Figure 2.
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2.4 Restricted tournament selection with self-adaptive recombination
Because of the multimodality feature of data clustering, the use of a niching GA (Sareni
and Krähenbühl, 1998) is recommended to avoid premature convergence. In this work,
we employ the restricted tournament selection (RTS) (Harik, 1995). RTS adapts
standard tournament selection for multimodal optimization. It initially selects two
elements from the population to undergo crossover and mutation. After recombination,
a random sample of individuals is taken from the population as in standard crowding.
Each offspring competes with the closest sample element. The winners are inserted in
the population. This procedure is repeated N/2 times, N denoting the population size.
Our RTS-based clustering algorithm uses a self-adaptive recombination scheme
(Nguyen-Huu et al., 2008) based on vSBX, PNX and BLX crossovers.

2.5 K-means hybridization
K-means (MacQueen, 1967) is the best known squared error-based clustering
algorithm. It aims at minimizing mean square error (MSE) defined as the sum of
squared Euclidean distances between the dataset elements and the cluster centroids.
Let xi bet the set of n elements, nc the number of clusters and mk the centroid of cluster
Ck, the MSE can be expressed as:

MSE ¼ 1

n

X

nc

k¼1xi[Ck

X

xi 2mkk k2 ð3Þ

K-means randomly initializes nc cluster centroids inside the hypervolume containing
the dataset. After this initialization step each element of the dataset is assigned to the
nearest cluster centroid. Then, cluster centroids are recomputed according to the
current partition. The procedure is repeated until convergence.

In order to accelerate the convergence speed of the RTS-based clustering algorithm,
it is recommended to use one K-means iteration for all individuals created from genetic
operators (Sheng et al., 2005). This can be done by assigning each data elements to the
nearest cluster centroid in the corresponding chromosome. After this partition step,
cluster centroids are recomputed and updated in the chromosome. It should be noted
that the repairing operator is eventually applied at this step to remove empty clusters.

3. Experiments on benchmark datasets
Three 2D-clustering benchmarks are used in order to assess the effectiveness of the
proposed algorithm. The characteristics of the corresponding datasets are summarized
in Table I. The first benchmark S0 is composed of 200 elements distributed in 12
unequally spaced and non-overlapping clusters (Figure 3(a)). The density of these
clusters is non-uniform varying from 4 in the smallest cluster to 36 in the biggest. The
two following benchmarks (S1 and S2) are taken from Fränti and Virmajoki (2006).
They consist in datasets containing 5,000 elements and 15 clusters with different
degrees of overlapping (Figures 4(a) and 5(a)). The density and the space distribution of
these clusters are quasi-uniform.

The niching GA with a population size of 100 is applied for maximizing the
silhouette index relative to each benchmark datasets. Results obtained from a typical
run on the S0 dataset are shown in Figure 3. The silhouette index (Figure 3(b)) and the
number of clusters (Figure 3(c)) are shown according to the number of generations.



It can be seen from this figure that the RTS-based clustering quickly indentifies the
right number of clusters and the correct data partitioning. Figures 4 and 5 show the
RTS results on S1 and S2 datasets, using the same population size and 300 generations.
For each figure, we compare the initial dataset and the corresponding partitioning with
that obtained from the RTS run. Cluster centroids are indicated by full circles. In both

Dataset
No. of
data

No. of
clusters Cluster sizes

Type of
data

Overall average
silhouette width

S0 200 12 Non-uniform, varying from 4 to 36
{4, 4, 7, 10, 11, 13, 14, 15, 23, 29, 34,
36}

Non-
overlapping

0.9488

S1 5,000 15 Quasi-uniform, varying from 300
to 350 {350, 350, 350, 349, 347, 342,
341, 338, 334, 326, 325, 318, 316,
314, 300}

Overlapping 0.8750

S2 5,000 15 Quasi-uniform, varying from 300
to 350 {350, 350, 350, 350, 346, 345,
340 334, 333, 329, 321, 320, 317,
315, 300}

Overlapping 0.7747 Table I.
2D benchmark datasets

for clustering
applications
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cases, a good solution is found by the RTS. It should be noted that the exact
partitioning of the datasets cannot be determined by the algorithm due to the cluster
assignment strategy which does not allow overlapping cluster configurations.
Nevertheless, cluster centroids are accurately identified and the number of
misclassified only equals 0.9 percent for the S1 dataset and 3 percent for the
S2 dataset. It should be noted that the computation time essentially depends on the
problem complexity (i.e. the number of elements in the dataset) and on the number of
clusters in the dataset. The global CPU time for solving each problem on a standard PC
(Core Duo 2GHz) with the chosen set of control parameters (i.e. 100 individuals and
300 generations) is about 10min for the S0 dataset and 75 h for S1 and S2 datasets.

Figure 5.
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4. Clustering analysis of railway driving profiles
4.1 Design of hybrid supplies for electrical locomotives
The design of hybrid power sources for electrical locomotives requires the knowledge
of driving “missions” (e.g. load power demand during driving cycles) for sizing the
system elements (Akli et al., 2009). For these particular electrical architectures,
a possible energy management strategy consists in providing the average part of the
load power by a primary energy source (Ehsani et al., 1999; Akli et al., 2007) (Figure 6).
The rest of the power (i.e. the fluctuant part) is devoted to a storage system (i.e. the
auxiliary source). With this particular power dispatching, the size of the main supply
essentially depends on the average load power Pav defined as:

Pav ¼
1

DT

Z

DT

0

P loadðtÞ dt ð4Þ

where DT denotes the mission duration and Pload represents the load power required
by the mission.

On the other hand, the size of the storage device can be characterized in terms of
power, according to the maximal power imposed to this auxiliary supply, i.e. Pmax –
Pav where Pmax represents the maximal load power during the mission. It also depends
on the maximum energy quantity Eu transferred to the storage device. This energy can
be computed as:

Eu ¼
t[½0;DT�
max ðEsðtÞÞ2

t[½0;DT�
min ðEsðtÞÞ ð5Þ

Figure 6.
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where the storage energy level Es is defined as follows:

EsðtÞ ¼ 2

Z t

0

ðP loadðtÞ2 PavÞ dt ð6Þ

It can be seen from the previous equations that the global sizing of the hybrid electrical
architecture is related to the three following factors: Pmax, Pav and Eu computed with
regard to the driving mission. Nevertheless, integrating these factors in the sizing
process of the hybrid supply is not straightforward because of the important number of
heterogeneous driving missions that can be imposed to the locomotive. Therefore, both
sources (main supply and storage) are generally sized considering the most critical
values of these indicators extracted from a set of driving missions. However, this
approach may lead to the oversizing of the sources, especially when a “critical” mission
significantly differs from the others. The use of clustering analysis can be interesting
in order to identify the most representative missions (i.e. the cluster centroids). This
can help designers in the investigation of tradeoffs between the mission fulfillment and
the power source sizing.

4.2 Clustering analysis of a set of railway driving profiles
A second benchmark consisting of a set of 105 railway driving missions is used for
illustrating the interest of clustering analysis in the context of hybrid system design.
This set is composed of three subsets of missions devoted to three different railway
systems: the BB 63000 locomotive, the BB 460000 locomotive and the auxiliary supply
for TGV. All missions, represented by the load power demand as a function of time, are
characterized according to the triplet of sizing indicators mentioned in the previous
section. The size and the centroid of each subset are given in Table II.

All missions are represented versus the sizing indicators in Figure 7(a). The centroid
of each subset is also indicated with a blackmark. In Figure 7(b), the classification of the
missions obtained from the RTS run after 500 generations is plotted. The characteristics
of the clusters found by the niching GA are also given in Table III for comparison.

It can be seen that the niching GA is capable of finding the correct partitioning of
data by identifying three distinct clusters. The difference between both partitioning is
only of 12 percent (i.e. 13 missions over 105). Note that the set of 105 missions based on
three different subsets of application (BB 63000, BB 460000 and TGV Aux) may
present some similarities in terms of power/energy sizing indicators so that clustering
missions issued from different subsets may be energetically coherent: thus obtaining
some differences between reference and RTS-based clustering is not necessarily due
the niching GA convergence. All data are globally well classified except elements
located in the region covered by the three subsets. In this particular region of low
power and energy, all missions can be performed by the three hybrid supplies.

Number of railway
driving missions

Cluster centroids
(Pmax [kW], Pav [kW], Eu [kWh])

BB 63000 15 (455, 91, 24)
BB 460000 27 (711, 35, 50)
TGV Aux 63 (189, 80, 13)

Table II.
Set of 105 railway driving
missions composed of
three subsets associated
with three different
hybrid supplies



Therefore, the assignment by the RTS of elements to the closest and most densely
populated cluster (i.e. the cluster corresponding to Aux TGV driving missions) is not
surprising. This also explains the greater deviation of the cluster centroid relative to
BB 63000 data. This cluster is more sensitive to partitioning errors because of its small
size. On the other hand, both other cluster centroid positions are relatively unchanged
by the RTS partitioning due to their bigger size. These results also show the relevance
of the proposed triplet for clustering analysis in the context of hybrid supply design.

5. Conclusions
In this paper a niching GA based on RTS has been presented for clustering of system
environmental variables. It uses a particular chromosome encoding allowing the variation
of the number and positions of the cluster centroids related to the dataset. With this
representation and the use of the silhouette partition criterion as objective function, the
algorithm aims at finding a good tradeoff between the inter-cluster distancemaximization
and the intra-cluster distance minimization. Such strategy simultaneously allows the
determination of the correct number of clusters as well as the good partitioning of the
elements in the dataset. The effectiveness of the proposedRTS-based clustering algorithm
hasbeendemonstratedon2Dbenchmarkswithdifferent levels of difficulty.Finally, on the
basis of the proposedmethod, the interest of clustering analysis of drivingmissions in the
context of hybrid supply design has been illustrated. For that purpose, a set of 105 railway
drivingmissions composed of three subsets associatedwith three distinct supply systems
has been chosen as benchmark. Each drivingmission has been characterized in the design
variable space by a triplet of sizing indicators. Results have shown that the RTS-based
clustering is capable of identifying the three distinct supply systems (i.e. the initial
clusters). Such approach based on clustering analysis can guide designers to identifymost
representative missions and help them to understand whether it is better to design one
system devoted to a whole set of driving missions or multiple systems related to different
subsets. Even if it has been presented in the particular case of railway driving missions,
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Cluster size Cluster centroids (Pmax [kW], Pav [kW], Eu [kWh])

First cluster 6 (553, 141, 53)
Second cluster 23 (762, 37, 56)
Third cluster 76 (225, 75, 13)

Table III.
Characteristics of the

clusters found by RTS



it can be applicable for any embedded systems as for electric or hybrid vehicle driving
missions. More generally, clustering analysis should be useful for classifying any system
environmental variables as wind or solar irradiation for renewable energy systems.
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