
HAL Id: hal-00762255
https://hal.science/hal-00762255v1

Submitted on 7 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time-Ordering and a Generalized Magnus Expansion
Michel Bauer, Raphael Chetrite, Kurusch Ebrahimi-Fard, Frédéric Patras

To cite this version:
Michel Bauer, Raphael Chetrite, Kurusch Ebrahimi-Fard, Frédéric Patras. Time-Ordering and a
Generalized Magnus Expansion. Letters in Mathematical Physics, 2012, 103 (3), pp.Pas encore connu.
�10.1007/s11005-012-0596-z�. �hal-00762255�

https://hal.science/hal-00762255v1
https://hal.archives-ouvertes.fr


ar
X

iv
:1

20
6.

39
90

v1
  [

m
at

h-
ph

] 
 1

8 
Ju

n 
20

12

TIME-ORDERING AND A GENERALIZED MAGNUS EXPANSION

MICHEL BAUER, RAPHAEL CHETRITE, KURUSCH EBRAHIMI-FARD, AND FRÉDÉRIC PATRAS

Abstract. Both the classical time-ordering and the Magnus expansion are well-known in the context
of linear initial value problems. Motivated by the noncommutativity between time-ordering and time
derivation, and related problems raised recently in statistical physics, we introduce a generalization of the
Magnus expansion. Whereas the classical expansion computes the logarithm of the evolution operator of
a linear differential equation, our generalization addresses the same problem, including however directly a
non-trivial initial condition. As a by-product we recover a variant of the time ordering operation, known
as T

∗-ordering. Eventually, placing our results in the general context of Rota–Baxter algebras permits
us to present them in a more natural algebraic setting. It encompasses, for example, the case where one
considers linear difference equations instead of linear differential equations.
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Introduction

The time-ordered exponential Y (t) = Texp
(∫ t

0 A(s)ds
)
solves the first order linear differential equation:

Ẏ (t) = Y (t)A(t),

with initial value Y (0) = 1. It is complemented by the solution written as a proper exponential of
Magnus’ expansion, Y (t) = exp (Ω(A)(t)). Therefore time-ordering and Magnus’ expansion are naturally
related. Indeed, the function Ω(A)(t) is simply defined as the logarithm of the time-ordered exponential.
It is characterized as the solution of a particular non-linear differential equation:

Ω̇(A)(t) =
−adΩ(A)

e−adΩ(A) − 1
(A)(t),

and can be calculated recursively, which in turn is accompanied by formidable computational challenges
due to intricate algebraic and combinatorial structures.

Linear initial value problems are abundant in the mathematical sciences. And therefore the time- or
T-ordering operation plays an essential role in many fields, for instance in quantum theory and statistical
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physics. In concrete applications one often needs to calculate time derivations of time-ordered prod-
ucts. However, the noncommutativity of the T-ordering operation and time derivation causes obstacles.
Our work started out with the aim to understand a simple though surprising paradox caused by the
aforementioned noncommutativity. It turns out that physicists introduced a variant of the time-ordering
operation, denoted T

∗, which precisely encodes the lack of commutativity between the time-ordering
prescription and time derivations. As part of this work we explore the relation between this modified
time-ordering operation and the Magnus expansion (Theorem 1). This lead to a generalization of Magnus’
result, allowing to include the initial value into the Magnus expansion (Theorem 2).

One may consider the time-ordered exponential as the formal solution of the linear integral equation:

Y (t) = Y0 +

∫ t

0
Y (s)A(s)ds

corresponding to the initial value problem. It recently became clear [12] that such integral equations,
seen as linear fixpoint equations, are just a particular example of a more general class of abstract linear
fixpoint equations:

Y = 1+R(AY )

defined in associative Rota–Baxter algebras (Theorem 5). We therefore embedded the generalized Magnus
expansion into the context of such algebras, by showing in detail a theorem that specializes to the
particular case (Theorem 7).

Let us remark that both time-ordering and Magnus’ expansion have triggered much attention and
progress in applied mathematics and physics. See for instance [6, 17, 20, 26, 29]. Recently, however,
Magnus’ work has also been explored successfully from a more algebraic-combinatorial perspective using
operads, rooted trees, Hopf algebras, pre-Lie algebras, and the theory of noncommutative symmetric
functions [8, 11, 12, 16, 21].

Finally, as a word of warning, we should mention that we deliberately ignore any convergence issues.
This work addresses mainly formal algebraic and related combinatorial aspects.

The paper is organized as follows. In the first section we introduce the objects we are going to consider
in this work, i.e. the time-ordering map and the Magnus expansion. In section 2 we introduce a variant of
the time-ordering operation, which reflects the non-commutativity of time-ordering and time derivation.
The connection to the Magnus expansion is detailed. Section 3 recalls briefly the notion of Rota–Baxter
algebras, and we then embed the foregoing results into this context. We also show a mild generalization of
Atkinson’s factorization theorem for Rota–Baxter algebras. The notion of R-center is introduced, which
plays an important role. Finally, in section 4 we present finite differences as a simple example.

1. Time-ordering and the Magnus expansion

1.1. The T-ordering map. Linear initial value problems (IVP) play a major role in many parts of
applied mathematics and theoretical physics. They consist of an ordinary linear differential equation for
an unknown function Y (t):

d

dt
Y (t) = Y (t)A(t)(1)

together with a specified value of this function at a given point in time, e.g. say for t = 0, Y (0) = Y0, which
we call the initial value. The functions Y (t) and A(t) being for instance matrix valued and differentiable.

Further simplifying the problem, e.g. by restricting to scalar valued functions, the solution of (1) is
given straightforwardly in terms of the exponential map:

(2) Y (t) = Y0 exp

(∫ t

0
A(s)ds

)
.
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Returning to the more challenging case, when noncommutativity prevails, we see that the result is far
from simple. Recall that the formal solution of (1) is given by the series of iterated integrals:

(3) Y (t) = Y0

(
1+

∫ t

0
A(s1)ds1 +

∫ t

0

∫ s1

0
A(s2)ds2 A(s1)ds1 + · · ·

)
,

where 1 would be the identity matrix in the context of matrix valued differentiable functions. The right
hand side, known as Dyson–Chen or T(ime)-ordered series, follows forthrightly from the solution of the
integral equation:

Y (t) = Y0 +

∫ t

0
Y (s)A(s)ds(4)

corresponding to (1). Note that in the commutative case series (3) simply follows from expanding the
exponential map (2) and making use of the integration by parts rule:

∫ t

0
f(s)ds

∫ t

0
g(u)du =

∫ t

0

∫ s

0
f(s)g(u)du ds +

∫ t

0

∫ u

0
f(s)g(u)ds du.(5)

Let us recall the notion of time- or T-ordering. Time ordering is defined in terms of the T-map:

T[U(s1)V (s2)] =

{
U(s1)V (s2), s1 < s2

V (s2)U(s1), s2 < s1.

Written more concisely it involves Heaviside step functions [15]:

T[U(s1)V (s2)] := Θ(s2 − s1)U(s1)V (s2) + Θ(s1 − s2)V (s2)U(s1),

with a generalization to higher products of operators:

T[U1(s1) · · ·Un(sn)] :=
∑

σ∈Sn

Θσ
nUσ(1)(sσ(1)) · · ·Uσ(n)(sσ(n)),

where Θσ
n :=

∏n
i=1 Θ(sσ(1) − sσ(2)) · · ·Θ(sσ(n−1) − sσ(n)). Observe that for any permutation σ ∈ Sn,

T[U1(s1) · · ·Un(sn)] = T[Uσ(1)(sσ(1)) · · ·Uσ(n)(sσ(n))]. Following the convention that the T-map operates
before integration, the solution of the IVP (1) writes:

Y (t) = Y0Texp

(∫ t

0
A(s)ds

)
:= Y0

∑

n≥0

1

n!

∫ t

0
· · ·

∫ t

0
T[A(s1) · · ·A(sn)]ds1 · · · dsn.

Each n-fold T-product inside the integral produces n! strictly iterated integrals, and therefore the series
coincides with (3).

As a remark we would like to mention that our work started out with the aim to understand a
simple though surprising paradox caused by the noncommutativity of the T-ordering operation and time
derivation. See [4] for an interesting example where this plays a decisive role, and [27] for a case where this
paradox caused some confusion. We assume nonnegative t, and At := A(t) may be a finite-dimensional
matrix valued function, or more generally a linear operator valued map. The following identity:

exp (At −A0) = exp

(∫ t

0
du

dAu

du

)

may be considered as evident. However, its T-ordering cousin, which would result from a naive action of
the T-ordering operation on both sides of the foregoing equation:

(6) Texp (At −A0) = Texp

(∫ t

0
du

dAu

du

)
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does not hold. Indeed, let us look at the second order term of each side separately:

T
[
(At −A0)

2
]
= A0A0 − 2A0At +AtAt,

whereas:

T

[
(

∫ t

0
du

dAu

du
)2
]

=

∫ t

0
du

∫ t

u
dv

dAu

du

dAv

dv
+

∫ t

0
du

∫ u

0
dv

dAv

dv

dAu

du

= 2

∫ t

0
du

∫ t

u
dv

dAu

du

dAv

dv
= 2

∫ t

0
du

dAu

du
(At −Au)

= 2(At −A0)At − 2

∫ t

0
du

dAu

du
Au.

Hence, we have verified that:

T
[
(At −A0)

2
]
6= T

[(∫ t

0
du

dAu

du

)2
]
.

In fact, it is clear that (6) does not hold due to the lack of commutativity of the T-ordering with time
derivation, which, on the other hand, is caused by the Heaviside step functions involved in the definition
of the T-ordering map. However, observe that the difference reads:

T
[
(At −A0)

2]− T

[(∫ t

0
du

dAu

du

)2
]
= −AtAt +A0A0 + 2

∫ t

0
du

dAu

du
Au

= −AtAt +A0A0 +

∫ t

0
du

(
dAu

du
Au +Au

dAu

du

)
+

∫ t

0
du

(
dAu

du
Au −Au

dAu

du

)

= −AtAt +A0A0 +AtAt −A0A0 +

∫ t

0
du

(
dAu

du
Au −Au

dAu

du

)

=

∫ t

0
du

[
dAu

du
,Au

]
.

In the sequel we will further remark on this observation, and explore in more detail the object, denoted
Φ
(
dAu

du

)
, such that the following equality holds:

(7) Texp (At −A0) = Texp

(∫ t

0
du Φ

(dAu

du

))
.

1.2. The Magnus expansion. It is clear that the proper exponential solution of (1) changes drastically
in the light of the noncommutative character of the problem. Wilhelm Magnus proposed in his seminal
1954 paper [19] a particular differential equation for the logarithm of the series (3) of iterated integrals
(with initial value Y0 = 1), which we denote by the function Ω(A)(t):

Ω̇(A)(t) = A(t) +
∑

n>0

(−1)n
Bn

n!
ad

(n)
∫
t

0 Ω̇(A)(s)ds
(A(s)) =

−adΩ(A)

e−adΩ(A) − 1
(A)(t),

with Ω(A)(0) = 0. The Bn are the Bernoulli numbers B0 = 1, B1 = −1
2 , B2 = 1

6 , . . . and B2k+1 =
0 for k ≥ 1, such that the solution of the IVP (1) (with Y0 = 1) is given by:

(8) Y (t) = exp

(∫ t

0
Ω̇(A)(s)ds

)
.

Here, as usual, the n-fold iterated Lie bracket is denoted by ad
(n)
a (b) := [a, [a, · · · [a, b]] · · · ]. Recall that:

−z

exp(−z)− 1
=
∑

n≥0

(−1)n
Bn

n!
zn and

exp(−z)− 1

−z
=

∫ 1

0
exp(−sz)ds.



T-ORDERING AND THE MAGNUS EXPANSION 5

The reader is encouraged to consult [6] for an authoritative review on the Magnus expansion and its
ramifications. References [20, 26, 29] are classical sources regarding Magnus’ work. Let us write down
the first few terms of what is called Magnus’ series, Ω(λA)(s) =

∑
n≥1 λ

nΩn(A)(s), following from Picard
iteration to solve the above recursion:

d

dt
Ω(λA)(t) = λA(t) + λ2 1

2

[∫ t

0
A(s)ds,A(t)

]

+λ3 1

4

[∫ t

0

[∫ s

0
A(u)du,A(s)

]
ds,A(t)

]
+ λ3 1

12

[∫ t

0
A(s)ds,

[∫ t

0
A(u)du,A(t)

]]
+ · · · ,

where we introduced a parameter λ for later convenience. In the light of the IVP (1) and its two
solutions, i.e. the proper exponential solution using Magnus’ expansion, and the T-ordered exponential,
we find the identity (for Y0 = 1):

(9) Texp

(∫ t

0
A(s)ds

)
= exp

(∫ t

0
Ω̇(A)(s)ds

)
.

The terms beyond order one in Ω(λA)(s) = λ
∫ t
0 A(s)ds+

∑
n≥2 λ

nΩn(A)(s) consist of iterated Lie brackets

and integrals. For each n > 1 they solely serve to rewrite higher powers (
∫ t
0 A(s)ds)

n as strictly iterated
integral of order n, modulo a factor n!. For instance, verify that:

1

2

(∫ t

0
A(s)ds

)2

+
1

2

∫ t

0

[∫ s

0
A(u)du,A(s)

]
ds =

∫ t

0

∫ s

0
A(u)du A(s)ds

We remark that recently, Magnus’ work has been successfully explored from a more algebraic-combinatorial
perspective using the theory of operads, rooted trees, pre-Lie algebras, Rota–Baxter algebras, and the
theory of noncommutative symmetric functions [8, 11, 12, 16, 17, 21].

2. T-ordering, T∗-ordering and time derivations

2.1. T-ordering and time derivations. Let us return to the erroneous identity (6). Recall that to
simplify the presentation, we sometimes write At for A(t).

Theorem 1. The solution Φ to the equation:

Texp (At −A0) = Texp

(∫ t

0
du Φ

(dAu

du

))

is explicitly given by:

(10) Φ
(dAu

du

)
:=

∞∑

n=1

1

n!

n−1∑

m=0

(−1)mCm
n−1 (Au)

m dAu

du
(Au)

n−1−m =
e−adAu − 1

−adAu

(
dAu

du

)

Observe that if Au commutes with its derivation,
[
dAu

du , Au

]
= 0, then, as expected equation (10)

reduces to Φ
(
dAu

du

)
= dAu

du .
In fact, equation (10) follows from exploring briefly what went wrong in the first place with identity

(6). Indeed, recall that Xt = Texp
(∫ t

0 duBu

)
for a family of operator valued maps Bt is the solution to

the simple IVP d
dtXt = XtBt, X0 = 1. Hence:

d

dt
Texp

(∫ t

0
du

dAu

du

)
= Texp

(∫ t

0
du

dAu

du

)
dAt

dt
.

On the other hand it is clear from its definition, that:

Texp (At −A0) = exp (−A0) exp (At) .
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Therefore:

d

dt
Texp (At −A0) = exp (−A0)

d

dt
exp (At) = exp (−A0) exp (At) exp (−At)

d

dt
exp (At)(11)

= (Texp (At −A0)) exp (−At)
d

dt
exp (At) ,

which again shows that (6) can not be correct.
However, the last equality may be used to derive (10). Indeed (11) implies:

Texp (At −A0) = Texp

(∫ t

0
du exp (−Au)

d

du
exp (Au)

)
.

Using Duhamel’s formula:

(12) exp (−Au)
d

du
exp (Au) =

∫ 1

0
dν exp (−νAu)

dAu

du
exp (νAu) ,

and recalling that:
∫ 1

0
dν exp(−νa)b exp(νa) =

∑

i≥1

(−1)i−1

i!
ad(i−1)

a (b) =
e−ada − 1

−ada
(b),

yields:

(13) exp (−A0) exp (At) = T exp (At −A0) = Texp

(∫ t

0
du

e−adAu − 1

−adAu

(dAu

du

))
.

This implies (10) because ad
(m)
a (b) =

∑m−n
n=0 (−1)n Cn

manbam−n. Conversely, if we set Bt := Φ
(
dAu

du

)
and

Xt := exp(At), we arrive at the following first generalization of the classical result of Magnus (8).

Theorem 2. The IVP: Ẋt = XtBt, X0 = exp(α) is solved by:

Xt = exp

(
α+

∫ t

0
Ω̇α(B)(s)ds

)
,

with:

Ω̇α(B)(u) :=
−adα+

∫
u

0
Ω̇α(B)(s)ds

e
−ad

α+
∫
u
0 Ω̇α(B)(s)ds − 1

(B(u)).

2.2. T
∗-ordering and the Magnus formula. Recall that the modified time- or T∗-ordering is defined

precisely so as to encode appropriately the lack of commutativity between the T-ordering and time
derivations. In [4] the interested reader can find motivations for the introduction of this particular
variant of the time ordering operator coming from statistical physics, as well as further bibliographical
references on the subject.

For I(t) := dQ(t)
dt , we define:

T
∗[I(t1) · · · I(tn)] :=

∂

∂tn
· · ·

∂

∂t1
T[Q(t1) · · ·Q(tn)].

For any permutation σ ∈ Sn:

T
∗[I(t1) · · · I(tn)] = T

∗[I(tσ(1)) · · · I(tσ(n))],

or, equivalently, we have an invariance under the right action of the symmetric group, Sn, in n elements,
T
∗ = T

∗ ◦ σ. In particular, because of this property, T
∗ is entirely characterized by its action on
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time-ordered products I(t1) · · · I(tn), t1 ≤ ... ≤ tn, or, equivalently on products I(t1)
m1 · · · I(tn)

mn ,
t1 < · · · < tn.

Therefore we get, by setting I(t) = Ȧ(t) and Q(t) = A(t)−A(0):

T
∗exp

(∫ t

0
duȦu

)
=

∑

n

1

n!

t∫

0

· · ·

t∫

0

n∏

i=1

dti
∂

∂tn
· · ·

∂

∂t1
T
[
(A(t1)−A(0)) · · · (A(tn)−A(0))

]

=
∑

n

1

n!
T
[
(A(t)−A(0)) · · · (A(t) −A(0))

]

=
∑

n

∑

k≤n

1

n!

(
n

k

)
(−1)kA(0)kA(t)n−k = exp(−A(0)) exp(A(t)).

Equation (13) yields:

(14) T
∗exp

(∫ t

0
duȦu

)
= Texp

(∫ t

0
du

e−adAu − 1

−adAu

(
Ȧu

))
.

Let us look at the degree two terms in A and Ȧ on both sides of this equality. We find:

1

2!

∫ t

0

∫ t

0
T ∗[Ȧu1Ȧu2 ]du1du2 =

1

2!

∫ t

0

∫ t

0
T [Ȧu1Ȧu2 ]du1du2 +

1

2!

∫ t

0
adAu1

(Ȧu1)du1.

Simply rewriting the last term on the right hand side:

1

2!

∫ t

0
adAu1

(Ȧu1)du1 =
1

2!

∫ t

0

∫ t

0
adAu1

(Ȧu2)δ(u1 − u2)du1du2

we get finally, for u1 different from u2:

T ∗[Ȧu1Ȧu2 ] = T [Ȧu1Ȧu2 ].

On the diagonal, i.e. for u1 = u2 we obtain:

T ∗[Ȧu1Ȧu2 ] = adAu1
(Ȧu2)δ(u1 − u2).

In general, by identifying homogeneous components on each side of the foregoing equation, and taking
into account the permutational invariance of T∗ (so that e.g. T ∗[Ȧu1Ȧu2Ȧu1 ] = T ∗[Ȧ2

u1
Ȧu2 ]), we finally

arrive at:

1

n!

(
n

n1, . . . , nk

)
T
∗
[
Ȧu1 · · · Ȧun

]
= T


(−1)n1

ad
(n1−1)
Ac1

n1!
(Ȧc1) · · · (−1)nk

ad
(nk−1)
Ack

nk!
(Ȧck)


 δ1 · · · δk,

for arbitrary 0 ≤ c1 < · · · < ck ≤ t, and n1, . . . , nk, such that n = n1 + · · · + nk, u1 = · · · = un1 =
c1, . . . , un1+···+nk−1+1 = · · · = un1+···+nk−1+nk

= ck. Recall that the multinomial coefficient on the left

hand side stands for n!(n1! · · · nk!)
−1. Here we wrote δi for the product of delta functions δ(un1+···+ni−1+1−

un1+···+ni−1+2) · · · δ(un1+···+ni−1+ni−1−un1+···+ni−1+ni
) encoding the change from a n-dimensional integral

to a k-dimensional integral from the left to the right hand side of equation (14). Note that we have
recovered [4, eq. 2.11] (up to signs, due to different conventions regarding time-orderings):

Corollary 3. We have, with our previous notation:

(15) T
∗[Ȧu1 · · · Ȧun

] = (−1)nT[ad
(n1−1)
Ac1

(Ȧc1) · · · ad
(nk−1)
Ack

(Ȧck)]δ1 · · · δk
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3. Linear recursions in Rota–Baxter algebras

We take now a broader perspective on linear IVP by replacing (4) in terms of general linear operator
fixpoint equations. A natural setting to do so is provided by associative Rota–Baxter k-algebra, which we
briefly recall in this section. For more details we refer the reader to [3, 5, 10, 14, 24] and references therein.
See also [1, 2] for interesting aspects. We assume the underlying base field k to be of characteristic zero,
e.g. k = R or C.

Motivated by Frank Spitzer’s seminal work [25] in probability theory, the mathematician G. Baxter [5],
soon after followed by J. F. C. Kingman, W. Vogel, F. Atkinson, P. Cartier, Gian-Carlo Rota and
others [3, 7, 18, 28, 22, 23, 24], explored a more general approach to the above linear IVP (1) and the
corresponding linear integral equation (4) – in the case of Y0 = 1 –, by suggesting to work with the linear
fixpoint equation:

(16) Y = 1+ λR(Y a),

in a commutative unital k-algebra A, a ∈ A, respectively the filtered and complete algebra A[[λ]]. The
linear map R on A is supposed to satisfy the Rota–Baxter relation of scalar weight θ ∈ k:

(17) R(x)R(y) = R(R(x)y + xR(y)) + θR(xy).

We call A a commutative Rota–Baxter k-algebra of weight θ ∈ k with unit 1. Observe that the map
R̃ := −θid− R is also a Rota–Baxter map of weight θ. Moreover, from identity (17) it follows that the

images of R and R̃ are subalgebras in A.
Baxter gave a solution for (16) by proving Spitzer’s classical identity in a commutative unital Rota–

Baxter k-algebra of weight θ ∈ k, that is, he showed that the formal solution of (16) is given by:

(18) Y = 1+

∞∑

n=1

R
(
R(· · ·R(R︸ ︷︷ ︸
n-times

(a)a)a · · · )a
)
= exp

(
−R
( log(1− θa)

θ

))
.

Remark 4. Note that besides (16), Baxter, Atkinson and Vogel considered more general linear fixpoint
equations and their solutions in a commutative Rota–Baxter k-algebra A. In [3, 5] the equations E =

a+λR(bE), F = R(a)+λR(bF ), with analog equations for R̃, and G = a+λR(bG)+λR̃(cG) are solved

for a, b, c ∈ A. In [28] Vogel considered the equation H = a+ λbR(H) + cλR̃(H), and gave a solution for
a, b, c ∈ A. The generalization of these equations and their solutions to non-commutative Rota–Baxter
algebra was given in [12, 13].

Let us return to (17), which one may think of as a generalized integration by parts identity. Indeed, the
Riemann integral, which satisfies the usual integration by parts rule (5), corresponds to a Rota–Baxter
operator of weight zero. Observe that in the limit θ → 0 we obtain:

1

θ
log(1− θa) = −

∑

n>0

θn−1a
n

n

θ→0
−−−−−−→ −a.

The right hand side of the last equality in (18) reduces to the simple exponential solution Y = exp(R(a)).
In the context of the Riemann integral, this corresponds to the classical case (2) of the IVP (1), with
Y0 = 1.

The extra term on the right hand side of (17) becomes necessary, for instance, when we replace the
Riemann integral by a Riemann-type summation operator:

(19) S(f)(x) :=
∑

n>0

f(x+ n)
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on a suitable class of functions. Indeed, one verifies that the map S satisfies the weight θ = 1 Rota–Baxter
relation:

S(f)S(g) = S
(
S(f) g

)
+ S

(
f S(g)

)
+ S

(
fg
)
.

More generally for finite Riemann sums:

Rθ(f)(x) :=

[x/θ]−1∑

n=0

θf(nθ).(20)

we find that Rθ satisfies the weight θ Rota–Baxter relation:

Rθ(f)Rθ(g)(x) = Rθ

(
Rθ(f)g

)
(x) +Rθ

(
fRθ(g)

)
(x) + θRθ(fg)(x).

Beside fluctuation theory in probability the Rota–Baxter relation recently played a crucial role in Connes–
Kreimer’s Hopf algebraic approach to perturbative renormalization [9]. Here, Rota–Baxter algebras enter
through projectors, which satisfy (17) for θ = −1. A paradigm is provided by the algebra A = C[ε−1, ε]] =
ε−1

C[ε−1] ⊕ C[[ε]] of Laurent series
∑∞

n=−k anε
n (with finite pole part). The projector, called minimal

subtraction scheme map, used in renormalization is defined by keeping the pole part:

Rms

( ∞∑

n=−k

anε
n
)
= Rms

( −1∑

n=−k

anε
n +

∞∑

n=0

anε
n
)
:=

−1∑

n=−k

anε
n.

It is a Rota–Baxter map of weight θ = −1. In general, assume the k-algebra A decomposes, A = A1⊕A2,
and let R : A → A be defined by R(a1, a2) = a1, then R2 = R. Hence:

R(a)b+ aR(b)− ab = R(a)R(b)− (id−R)(a)(id −R)(b)

such that applying R yields R
(
R(a)b + aR(b) − ab

)
= R(a)R(b). We refer the reader to [14] for more

details including examples and applications.
In [12, 13] the Spitzer identity has been generalized to non-commutative Rota–Baxter algebras:

Theorem 5. [12] Let (A, R) be a unital Rota–Baxter k-algebra of weight θ ∈ k. Let Ω′ := Ω′(λa), a ∈ A,
be the element of λA[[λ]] such that:

Y = exp
(
R(Ω′)

)
,

where Y = Y (a) is the solution of the linear fixpoint equation Y = 1+ λR(Y a). This element obeys the
following recursive equation:

(21) Ω′(λa) =
−adR(Ω′) + rθΩ′

e−ad
R(Ω′)+r

θΩ′ − 1
(λa) =

∑

m≥0

(−1)m
Bm

m!
ãd

(m)

Ω′ (λa)

with Bl the Bernoulli numbers, rθa(b) := θba, and ãda(b) := adR(a)(b)− rθa(b).

Remark 6. Observe that the right multiplication rθΩ′ map accounts for the extra term in (17). Let
us emphasize that in [12] we formulated this theorem using the generic pre-Lie algebra structure under-

lying any associative Rota–Baxter algebra. Indeed, the above generalized adjoint operation, ãda(b) =
adR(a)(b) − rθa(b) = [R(a), b] − θba, defines a pre-Lie product on A. However, we refrain from using the
pre-Lie picture for reasons to become clear in the sequel.

We introduce now the notion of the R-center in a Rota–Baxter algebra A of weight θ, defined as the
following subset of elements in A:

ZR(A) := {x ∈ A | xR(a) = R(xa) and R(a)x = R(ax), ∀a ∈ A}.

Observe that the R-center forms a subalgebra of A. Indeed, for u, v ∈ ZR(A), we have uvR(a) =
uR(va) = R(uva), and [R(a), x] = R([a, x]). Notice the identity R(x) = xR(1), for any x ∈ ZR(A). In
the context of matrix valued differentiable function with the Riemann integral as weight zero Rota–Baxter
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map, the R-center includes amongst others the constant matrices. Another useful example are upper
(or lower) triangular matrices, say, with unit diagonal, and entries in an arbitrary Rota–Baxter algebra
A of weight θ. They form a noncommutative Rota–Baxter algebra MA of weight θ with the natural
Rota–Baxter map. In this case the triangular matrices with entries strictly in k are in the R-center.

Now we would like to prove that the combinatorial structure underlying the T
∗-operation, that is the

solution of the IVP provided by Theorem 2, extends to Rota–Baxter algebras.

Theorem 7. Let (A, R) be a unital Rota–Baxter k-algebra of weight θ ∈ k. Let α be an element in its
R-center, and Ω′

α := Ω′
α(λa), a ∈ A, be the element of A[[λ]] such that:

X = exp
(
α+R(Ω′

α)
)
,

where X is the solution of the linear fixpoint equation:

X = exp(α) + λR(Xa).

The element Ω′
α obeys the following recursive equation:

(22) Ω′
α(λa) =

−adα+R(Ω′

α)
+ rθΩ′

α

e
−ad

α+R(Ω′
α)+r

θΩ′
α − 1

(λa) =
∑

m≥0

(−1)m
Bm

m!
ãd

(m)

α,Ω′

α
(λa),

where ãdα,Ω′

α
(b) := adα+R(Ω′

α)
− rθΩ′

α
.

Observe that this theorem is a generalization of Theorems 2 and 5. Returning to Remark 6, we see

here that this generalization involves the operation ãda,b := ada+R(b)−rθb, which does not define a pre-Lie
algebra product on the Rota–Baxter k-algebra A.

Proof. We follow partly [12]. First, note that we can decompose adα+R(Ω′

α)
= ℓα+R(Ω′

α)
−rα+R(Ω′

α)
, where

ℓa(b) := ab. It is clear that both operations commute, that is, ℓarb(c) = acb = rbℓa(c). Now, let:

λa =
e
−ad

α+R(Ω′
α)+r

θΩ′
α − 1

−adα+R(Ω′

α)
+ rθΩ′

α

(Ω′
α) =

∫ 1

0
dse

−s(ad
α+R(Ω′

α)−r
θΩ′

α
)
(Ω′

α)

=

∫ 1

0
dse

−s(ℓ
α+R(Ω′

α)−r
α+R(Ω′

α)−r
θΩ′

α
)
(Ω′

α) =

∫ 1

0
dse

−sℓ
α+R(Ω′

α)e
sr

α+R(Ω′
α)+sr

θΩ′
α (Ω′

α).

Now, we multiply by X = exp
(
α+R(Ω′

α)
)
from the left:

Xa =

∫ 1

0
dse

(1−s)ℓ
α+R(Ω′

α)e
s(r

α+R(Ω′
α)+r

θΩ′
α
)
(Ω′

α)

=

∫ 1

0
ds
∑

p,q≥0

(1− s)psq

q!p!
(ℓα+R(Ω′

α)
)p(rα+R(Ω′

α)
+ rθΩ′

α
)q(Ω′

α)

=

∫ 1

0
ds
∑

p,q≥0

(1− s)psq

q!p!
(ℓα+R(Ω′

α)
)p(rα+R(Ω′

α)+θΩ′

α
)q(Ω′

α)

=
∑

n>0

1

n!

∑

p+q=n−1

(α+R(Ω′
α))

p(Ω′
α)(α− R̃(Ω′

α))
q,

where we used that −R̃ = θid+R. Hence, we would like to show that X−exp(α) = λR(Xa). Expanding:

X − exp(α) =
∑

n≥0

1

n!

(
(α+R(Ω′

α))
n − αn

)
,
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lefts us with the goal to prove order by order the general identity:

∑

n>0

1

n!

(
(α+R(β))n − αn

)
=
∑

n>0

1

n!

∑

p+q=n−1

R
(
(α+R(β))p(β)(α − R̃(β))q

)
,

where α ∈ ZR(A) and β is an arbitary element in A.
The case n = 1 is obviously true. Let us look at n = 2. Then we have on the left hand side:

(α+R(β))2 − α2 = αR(β) +R(β)α+R(β)R(β)

= R(αβ) +R(βα) +R(β)R(β).

In the last line we used that α is in the R-center ZR(A). On the right hand side we find:

R
(
(α+R(β))β + β(α− R̃(β))

)
= R

(
αβ +R(β)β + βα+ βR(β) + θββ

)

= R(αβ + βα) +R(β)R(β).

In the last line we used the Rota–Baxter relation (17). We show now the case n + 1, assuming the
identity holds up to order n. This yields:

(α+R(β))n+1 − αn+1 = (α+R(β))n(α+R(β))− αnα

= (α +R(β))nR(β) + ((α +R(β))n − αn)α

=
∑

p+q=n−1

R
(
(α+R(β))p(β)(α − R̃(β))q

)
R(β) + αnR(β)

+
∑

p+q=n−1

R
(
(α+R(β))p(β)(α− R̃(β))qα

)

=
∑

p+q=n−1

R
(
(α+R(β))p(β)(α − R̃(β))qR(β)

)

+
∑

p+q=n−1

R
(
R((α+R(β))p(β)(α − R̃(β))qβ)

)

+
∑

p+q=n−1

R
(
(α+R(β))p(β)(α − R̃(β))qθβ

)

+R(αnβ) +
∑

p+q=n−1

R
(
(α+R(β))p(β)(α − R̃(β))qα

)

=
∑

p+q=n−1

R
(
(α+R(β))p(β)(α − R̃(β))q+1

)

+
∑

p+q=n−1

R
(
R((α+R(β))p(β)(α − R̃(β))q)β

)
+R(αnβ)

=
∑

p+q=n−1

R
(
(α+R(β))p(β)(α − R̃(β))q+1

)

+R
(
(α+R(β))nβ − αnβ

)
+R(αnβ)

=
∑

p+q=n−1

R
(
(α+R(β))p(β)(α − R̃(β))q+1

)
+R

(
(α+R(β))nβ

)

=
∑

p+q=n

R
(
(α+R(β))p(β)(α − R̃(β))q

)

where we recall that α− R̃(β) = α+ θβ +R(β). �
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Note that in the context of the weight zero RB algebra defined in terms of the Riemann integral,
the generalization following from the theorem allows to absorb the initial value in (1) directly into the
Magnus’ expansion.

Remark 8. Recall Remark 4 and the fact that any Rota–Baxter algebra has two Rota–Baxter operators,
R and R̃. In [3, 5] Baxter and Atkinson showed that the solution to the recursions:

E = a+ λR(bE) and F = R(a) + λR(bF )

are given by F = R(aX)Y and E = a+R(abX)Y , respectively, where X,Y are solutions to:

X = 1+ λR(Xb) resp. Y = 1+ λR̃(bY ).

Together with the solutions X and Y for the last two fixpoint equations comes the so-called Atkinson
factorization, which generalizes straightforwardly in the context of the above theorem.

Proposition 9. Let (A, R) be a unital Rota–Baxter k-algebra of weight θ ∈ k. Let α, β be in its R-center
ZR(A). Then we have a factorization:

1− λa = X−1 exp(γ)Y −1,

where:
X = exp(α) + λR(Xa) Y = exp(β) + λR̃(aY ),

and exp(γ) = exp(α) exp(β), γ ∈ ZR(A).

Proof. The proof reduces to a simple verification.

XY = exp(γ) + λR(Xa) exp(β) + λ exp(α)R̃(aY ) + λ2R(Xa)R̃(aY )

= exp(γ) + λR(Xa exp(β)) + λR̃(exp(α)aY ) + λ2R(Xa)R̃(aY )

= exp(γ) + λR
(
Xa(exp(β) + λR̃(aY ))

)
+ λR̃

(
(exp(α) + λR(Xa))aY

)

= exp(γ) + λXaY,

from which the result follows. �

4. Example: Finite differences

As an example of an interesting fixpoint equation involving a non-zero weight Rota–Baxter structure,
we will now approach the particular case of a linear finite difference initial value problem. For this, we
define the finite time-difference operator ∆ such that for all functions f defined on N:

∆(f)(n) := f(n+ 1)− f(n).

Observe that this map satisfies a generalized Leibniz rule:

∆(fg)(n) = (fg)(n+ 1)− (fg)(n) = f(n+ 1)g(n + 1)− f(n)g(n)

= f(n)∆(g)(n) + ∆(f)(n)g(n) + ∆(f)(n)∆(g)(n)

Recall the finite Riemann sum map (20), R(X)n :=
n−1∑
k=0

Xk. The latter satisfies the Rota–Baxter relation

of weight θ. We put the weight equal to one, R := R1. Then:

R(∆(f))(m) =

m−1∑

n=0

∆(f)(n) =

m−1∑

n=1

(f(n+ 1)− f(n))

=
m∑

n=1

f(n)−
m−1∑

n=0

f(n)
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= f(m)− f(0).

We are interested in the finite difference initial value problem:

(23)
∆Xn = XnBn

X0 = exp (A0)

where Xn := X(n) and Bn 6= −1. Applying R leads to a generalized Atkinson equation:

X = exp (A0) +R(XB),

which yields:

Xn = exp (A0) +
n−1∑

k=0

XkBk.

Observe that the solution can be written as a finite product, as well as, using Theorem 5, as an exponential:

Xn = exp (A0)

−→
n−1∏

k=0

(1 +Bk) = exp
(
R(Ω′(n))

)
.

Now, by applying Theorem 7, with α = A(0) and Ω′
α = ∆A (recall that X = exp(A) and R(∆A) =

A−A(0)), we get:

Theorem 10. With our previous notation, for the finite difference IVP (23) we get:

Bk =

(
exp

(
−ℓAk

+ rAk+1

)
− Id

−ℓAk
+ rAk+1

)
[∆Ak] .

where as before ℓX is the left multiplication by X and rX is the right multiplication by X.

In particular:

(24) exp (−A0) exp (AN ) =

−−→
N−1∏

k=0

(
1 +

(
exp

(
−ℓAk

+ rAk+1

)
− 1

−ℓAk
+ rAk+1

)
[∆Ak]

)

Note that these formulas can also be obtained from a straightforward calculation. We include a direct
proof for the sake of transparency. The starting point is a discrete analog of Duhamel’s formula (12):

Lemma 11. We have:

(25) exp (−Ak)∆ [exp (Ak)] =

∫ 1

0
dν exp (−νAk) (∆Ak) exp (νAk+1) .

The proof follows by taking the integral from 0 to 1 of the following equality:

d

dν
[exp (−νAk)∆ [exp (νAk)]] = − exp (−νAk)Ak∆ [exp (νAk)] + exp (−νAk)∆ [Ak exp (νAk)]

= − exp (−νAk)Ak∆ [exp (νAk)] + exp (−νAk)Ak∆ [exp (νAk)]

+ exp (−νAk)∆ [Ak] exp (νAk) + exp (−νAk)∆ [Ak] ∆ [exp (νAk)]

= exp (−νAk)∆ [Ak] exp (νAk+1) .

Now we verify identity (24). The first thing to remark is that:

exp (−A0) exp (AN ) =

−−→
N−1∏

k=0

(1 + exp (−Ak)∆ [exp (Ak)])
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follows when we note that 1 + exp (−Ak)∆ [exp (Ak)] = exp (−Ak) exp (Ak+1) . Then, we first apply
Duhamel’s formula (25), and second expand exp (−νAk) and exp (νAk+1) , and eventually we do the
explicit integration of ν. This yields:

(26) exp (−A0) exp (AN ) =

−−→
N−1∏

k=0

(
1 +

∞∑

N=1

1

N !

N−1∑

n=0

(−1)nCn
N−1 (Ak)

n ∆ [Ak] (Ak+1)
N−1−n

)
.

Finally, we note that:

N−1∑

n=0

(−1)N−1−n Cn
N−1 (Ak)

n∆ [Ak] (Ak+1)
N−1−n =

(
lAk

− rAk+1

)N−1
∆ [Ak] ,

such that:
∞∑

N=1

1

N !

N−1∑

n=0

(−1)nCn
N−1 (Ak)

n∆ [Ak] (Ak+1)
N−1−n =

∞∑

N=1

(−1)N−1

N !

(
lAk

− rAk+1

)N−1
∆ [Ak]

=

(
exp

(
−lAk

+ rAk+1

)
− Id

−lAk
+ rAk+1

)
∆ [Ak] .

This relation, together with (26) concludes the proof of (24).
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Laboratoire J.-A. Dieudonné UMR 6621, CNRS, Parc Valrose, 06108 Nice Cedex 02, France.
E-mail address: patras@math.unice.fr
URL: www-math.unice.fr/∼patras


	Introduction
	1. Time-ordering and the Magnus expansion
	1.1. The T-ordering map
	1.2. The Magnus expansion

	2. T-ordering, T-ordering and time derivations
	2.1. T-ordering and time derivations
	2.2. T-ordering and the Magnus formula

	3. Linear recursions in Rota–Baxter algebras
	4. Example: Finite differences
	References

