Background

Plurality in Continuation Semantics

Conclusion & Future Work

1/32

Accessibility for Plurals in Continuation Semantics

Sai Qian, Maxime Amblard

{sai.qian,maxime.amblard}@loria.fr

Semagramme, LORIA & INRIA Nancy Grand-Est UFR Math-Info, Université de Lorraine

Logic and Engineering of Natural Language Semantics 9 (LENLS 9)

November 30, 2012

Background	

Plurality in Continuation Semantics

Conclusion & Future Work $\circ\circ$

Outline

- Linguistic Preliminaries
- Two Plurality Formations

2 Continuation Semantics

3 Plurality in Continuation Semantics

- Summation
- Abstraction

Background
00000

Plurality in Continuation Semantics

Conclusion & Future Work

Overview

Key Words

Plurality (Group, Individual), Dynamic Semantics, Continuation, DRT, Anaphoric Accessibility, Functional Programming

Main goals of the presentation:

- Investigating two plurality formations (mostly based on [Kamp and Reyle, 1993])
- ② Compositionally obtaining the semantic representation for plurality under dynamic semantics

Background
00000

Plurality in Continuation Semantics

Conclusion & Future Work

Overview

Key Words

Plurality (Group, Individual), Dynamic Semantics, Continuation, DRT, Anaphoric Accessibility, Functional Programming

Main goals of the presentation:

- Investigating two plurality formations (mostly based on [Kamp and Reyle, 1993])
- Compositionally obtaining the semantic representation for plurality under dynamic semantics

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $\circ\circ$

Linguistic Preliminaries

Cohesion & Anaphora

- Anaphora
 - Some Terminologies: cohesion, anaphor, antecedent
 - Anaphora ties pieces of discourse into a "unified whole"

Example (Anaphora)

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $\circ\circ$

Linguistic Preliminaries

Cohesion & Anaphora

Anaphora

- Some Terminologies: cohesion, anaphor, antecedent
- Anaphora ties pieces of discourse into a "unified whole"

Example (Anaphora)

- (1) a. John₁ has a car₂. He_1 likes it_2 .
 - b. $John_1$ has a car. His_1 car is red.
 - c. John has a car_1 . The car_1 is red.
 - d. John has a *cool car*₁. Mary has a *same one*₁.
 - e. John drives to work everyday₁. It_1 takes him half an hour.

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $\circ\circ$

Linguistic Preliminaries

Cohesion & Anaphora

Anaphora

- Some Terminologies: cohesion, anaphor, antecedent
- Anaphora ties pieces of discourse into a "unified whole"

Example (Anaphora)

- (1) a. John₁ has a car_2 . He_1 likes it_2 .
 - b. $John_1$ has a car. His_1 car is red.
 - c. John has a car_1 . The car_1 is red.
 - d. John has a *cool car*₁. Mary has a *same one*₁.
 - e. John drives to work everyday₁. It_1 takes him half an hour.

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $\circ\circ$

Linguistic Preliminaries

The Problem of Plurality

• The semantics of plurality is not a naïve quantitative extension of singularity

Example (Distributivity vs. Collectivity)

- 2) a. John and Mary went to school.
 - b. John and Mary gathered in Paris.
 - c. John and Mary lifted a piano.

Singular and Plural Pronouns

- he, she, 1: individuals
- we, they, you: group of individuals

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $\circ\circ$

Linguistic Preliminaries

The Problem of Plurality

 The semantics of plurality is not a naïve quantitative extension of singularity

Example (Distributivity vs. Collectivity)

- (2) a. John and Mary went to school.
 - b. John and Mary gathered in Paris.
 - c. John and Mary lifted a piano.

Singular and Plural Pronouns

- he, she, 1: individuals
- we, they, you: group of individuals

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $\circ\circ$

Linguistic Preliminaries

The Problem of Plurality

• The semantics of plurality is not a naïve quantitative extension of singularity

Example (Distributivity vs. Collectivity)

- (2) a. John and Mary went to school.
 - b. John and Mary gathered in Paris.
 - c. John and Mary lifted a piano.

• Singular and Plural Pronouns

- he, she, I: individuals
- we, they, you: group of individuals

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Two Plurality Formations

Summation Sketch

Definition (Summation) [Kamp and Reyle, 1993]

The process of constructing plural referents (groups of individuals) out of explicit individuals.

Example (Summation Sketch)

- (3) a. John went to Bill's party with Mary. They had a nice time.
 b. John loves Mary. Bill also loves Mary. They have to find a solution.
 - Plural referents (groups of individuals) do not need necessarily be explicitly mentioned in the context, e.g.,

In (3-a): John ⊕ Bill ⊕ Mary; in (3-b): John ⊕ Bill, John ⊕ Bill ⊕ Mary

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Two Plurality Formations

Summation Sketch

Definition (Summation) [Kamp and Reyle, 1993]

The process of constructing plural referents (groups of individuals) out of explicit individuals.

Example (Summation Sketch)

- (3) a. John went to Bill's party with Mary. They had a nice time.
 - b. John loves Mary. Bill also loves Mary. They have to find a solution.
 - Plural referents (groups of individuals) do not need necessarily be explicitly mentioned in the context, e.g.,

In (3-a): John \oplus Bill \oplus Mary; in (3-b): John \oplus Bill, John \oplus Bill \oplus Mary

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $\circ\circ$

Two Plurality Formations

Summation Sketch

Definition (Summation) [Kamp and Reyle, 1993]

The process of constructing plural referents (groups of individuals) out of explicit individuals.

Example (Summation Sketch)

- (3) a. John went to Bill's party with Mary. They had a nice time.
 - b. John loves Mary. Bill also loves Mary. They have to find a solution.
 - Plural referents (groups of individuals) do not need necessarily be explicitly mentioned in the context, e.g.,

In (3-a): John \oplus Bill \oplus Mary; in (3-b): John \oplus Bill, John \oplus Bill \oplus Mary

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Two Plurality Formations

Summation Sketch

Definition (Summation) [Kamp and Reyle, 1993]

The process of constructing plural referents (groups of individuals) out of explicit individuals.

Example (Summation Sketch)

- (3) a. John went to Bill's party with Mary. They had a nice time.
 - b. John loves Mary. Bill also loves Mary. They have to find a solution.
 - Plural referents (groups of individuals) do not need necessarily be explicitly mentioned in the context, e.g.,

In (3-a): John \oplus Bill \oplus Mary; in (3-b): John \oplus Bill, John \oplus Bill \oplus Mary

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Two Plurality Formations

Summation Sketch Continued

Example (Summation Sketch Continued)

- (4) John went to Paris. Bill and Mary gathered to Rome.
 - a. She enjoyed the historical monuments very much.
 - b. They planned the whole trip without telling her.
 - Even plural referents are explicitly mentioned, the individual components can **be broken down** and **re-form** other plural referents, e.g.,

In (4-a): from Bill \oplus Mary \Rightarrow Mary; in (4-b): from John, Bill \oplus Mary \Rightarrow John \oplus Bill

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Two Plurality Formations

Summation Sketch Continued

Example (Summation Sketch Continued)

- (4) John went to Paris. Bill and Mary gathered to Rome.
 - a. She enjoyed the historical monuments very much.
 - b. They planned the whole trip without telling her.
 - Even plural referents are explicitly mentioned, the individual components can **be broken down** and **re-form** other plural referents, e.g.,

In (4-a): from Bill \oplus Mary \Rightarrow Mary; in (4-b): from John, Bill \oplus Mary \Rightarrow John \oplus Bill

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $_{\circ\circ}$

Two Plurality Formations

Summation Sketch Continued

Example (Summation Sketch Continued)

- (4) John went to Paris. Bill and Mary gathered to Rome.
 - a. She enjoyed the historical monuments very much.
 - b. They planned the whole trip without telling her.
 - Even plural referents are explicitly mentioned, the individual components can **be broken down** and **re-form** other plural referents, e.g.,

In (4-a): from Bill \oplus Mary \Rightarrow Mary; in (4-b): from John, Bill \oplus Mary \Rightarrow John \oplus Bill

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Two Plurality Formations

Abstraction Sketch

Definition (Abstraction) [Kamp and Reyle, 1993]

The process of constructing plural referents (groups of individuals) out of quantified noun phrases.

- Quantified NP: *quantifier* + *noun*
- Generalized quantifier: every, all, none, most, few, etc.

Example (Abstraction Sketch)

- (5) a. Every farmer owns a donkey. *He is /They are rich.
 - b. Few students came on time. They were too lazy.

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

イロン イヨン イヨン イヨン 三日

8/32

Two Plurality Formations

Abstraction Sketch

Definition (Abstraction) [Kamp and Reyle, 1993]

The process of constructing plural referents (groups of individuals) out of quantified noun phrases.

- Quantified NP: quantifier + noun
- Generalized quantifier: every, all, none, most, few, etc.

Example (Abstraction Sketch)

5) a. Every farmer owns a donkey. *He is /They are rich.

b. Few students came on time. They were too lazy.

every
$$\Rightarrow$$
 ; few \Rightarrow

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Two Plurality Formations

Abstraction Sketch

Definition (Abstraction) [Kamp and Reyle, 1993]

The process of constructing plural referents (groups of individuals) out of quantified noun phrases.

- Quantified NP: *quantifier* + *noun*
- Generalized quantifier: every, all, none, most, few, etc.

Example (Abstraction Sketch)

- (5) a. Every farmer owns a donkey. *He is /They are rich.
 - b. Few students came on time. They were too lazy.

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Two Plurality Formations

Abstraction Sketch

Definition (Abstraction) [Kamp and Reyle, 1993]

The process of constructing plural referents (groups of individuals) out of quantified noun phrases.

- Quantified NP: quantifier + noun
- Generalized quantifier: every, all, none, most, few, etc.

Example (Abstraction Sketch)

(5) a. Every farmer owns a donkey. *He is /They are rich.

b. Few students came on time. They were too lazy.

every
$$\Rightarrow$$
; few \Rightarrow

8/32

A New Approach to Dynamics [de Groote, 2006]

• A pure Montagovian framework for discourse dynamics

• Basic Types

- ι (e): individuals/entities
- o (t): propositions/truth values
- γ : left context

A New Approach to Dynamics [de Groote, 2006]

- A pure Montagovian framework for discourse dynamics
- Basic Types
 - ι (e): individuals/entities
 - o (t): propositions/truth values
 - γ : left context

A New Approach to Dynamics [de Groote, 2006]

- A pure Montagovian framework for discourse dynamics
- Basic Types
 - ι (e): individuals/entities
 - o (t): propositions/truth values
 - γ : left context

A New Approach to Dynamics [de Groote, 2006]

- A pure Montagovian framework for discourse dynamics
- Basic Types
 - ι (e): individuals/entities
 - o (t): propositions/truth values
 - γ : left context

A New Approach to Dynamics [de Groote, 2006]

- A pure Montagovian framework for discourse dynamics
- Basic Types
 - ι (e): individuals/entities
 - o (t): propositions/truth values
 - γ : left context

A New Approach to Dynamics [de Groote, 2006]

- A pure Montagovian framework for discourse dynamics
- Basic Types
 - ι (e): individuals/entities
 - o (t): propositions/truth values
 - γ : left context

イロト 不同下 イヨト イヨト

A New Approach to Dynamics [de Groote, 2006]

- A pure Montagovian framework for discourse dynamics
- Basic Types
 - ι (e): individuals/entities
 - o (t): propositions/truth values
 - γ : left context

A New Approach to Dynamics [de Groote, 2006]

- A pure Montagovian framework for discourse dynamics
- Basic Types
 - ι (e): individuals/entities
 - o (t): propositions/truth values
 - γ : left context

A New Approach to Dynamics [de Groote, 2006]

- A pure Montagovian framework for discourse dynamics
- Basic Types
 - ι (e): individuals/entities
 - o (t): propositions/truth values
 - γ : left context

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Type System & Composition

Typing Rules

$$\begin{bmatrix} s \end{bmatrix} \quad \gamma \to (\gamma \to o) \to o \quad o \\ \llbracket n \end{bmatrix} \quad \begin{matrix} \iota \to \llbracket s \end{bmatrix} \quad \begin{matrix} \iota \to o \\ \iota \to o \\ \llbracket o \end{bmatrix} \quad (\iota \to \llbracket s \rrbracket) \to \llbracket s \rrbracket \quad (\iota \to o) \to o$$

Discourse Composition

$$\llbracket D.S \rrbracket = \lambda e \phi. \llbracket D \rrbracket e(\lambda e'. \llbracket S \rrbracket e' \phi)$$

• A general DRS corresponds to:

$$\lambda e \phi. \exists x_1 \cdots x_n. C_1 \wedge \cdots \wedge C_m \wedge \phi e'$$

• e' is a left context made of e and the variables $x_1, x_2, x_3, ...$

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Type System & Composition

Typing Rules

$$\begin{bmatrix} s \end{bmatrix} \quad \gamma \to (\gamma \to o) \to o \quad o \\ \begin{bmatrix} n \end{bmatrix} \quad \iota \to \begin{bmatrix} s \end{bmatrix} \quad \iota \to o \\ \llbracket np \end{bmatrix} \quad (\iota \to \llbracket s \rrbracket) \to \llbracket s \rrbracket \quad (\iota \to o) \to o$$

Discourse Composition

$$\llbracket D.S \rrbracket = \lambda e \phi. \llbracket D \rrbracket e(\lambda e'. \llbracket S \rrbracket e' \phi)$$

• A general DRS corresponds to:

$$\lambda e \phi. \exists x_1 \cdots x_n. C_1 \wedge \cdots \wedge C_m \wedge \phi e'$$

• e' is a left context made of e and the variables x_1, x_2, x_3, \dots

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Type System & Composition

Typing Rules

$$\begin{bmatrix} s \end{bmatrix} \quad \gamma \to (\gamma \to o) \to o \quad o \\ \llbracket n \rrbracket \quad \iota \to \llbracket s \rrbracket \quad \iota \to o \\ \llbracket np \rrbracket \quad (\iota \to \llbracket s \rrbracket) \to \llbracket s \rrbracket \quad (\iota \to o) \to o$$

Discourse Composition

$$\llbracket D.S \rrbracket = \lambda e \phi. \llbracket D \rrbracket e(\lambda e'. \llbracket S \rrbracket e' \phi)$$

• A general DRS corresponds to:

$$\lambda e \phi. \exists x_1 \cdots x_n. C_1 \wedge \cdots \wedge C_m \wedge \phi e'$$

• e' is a left context made of e and the variables $x_1, x_2, x_3, ...$

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Type System & Composition

Typing Rules

$$\begin{bmatrix} s \end{bmatrix} \quad \gamma \to (\gamma \to o) \to o \quad o \\ \llbracket n \rrbracket \quad \iota \to \llbracket s \rrbracket \quad \iota \to o \\ \llbracket np \rrbracket \quad (\iota \to \llbracket s \rrbracket) \to \llbracket s \rrbracket \quad (\iota \to o) \to o$$

Discourse Composition

$$\llbracket D.S \rrbracket = \lambda e \phi. \llbracket D \rrbracket e(\lambda e'. \llbracket S \rrbracket e' \phi)$$

• A general DRS corresponds to:

$$\lambda e \phi. \exists x_1 \cdots x_n. C_1 \wedge \cdots \wedge C_m \wedge \phi e'$$

• e' is a left context made of e and the variables $x_1, x_2, x_3, ...$

Background

Plurality in Continuation Semantics

Conclusion & Future Work $\circ\circ$

Lexical Entries

Lexicon	λ -Expression
John/Mary	$\lambda\psi e\phi.\psi \mathbf{j}/\mathbf{m}(\mathbf{j}/\mathbf{m}::e)\phi$
she/they	$\lambda\psi e\phi.\psi(extsf{sel_{she/they}}e)e\phi$
smiles	$\lambda s.s(\lambda xe\phi.Smile(x) \wedge \phi e)$
kisses	$\lambda os.s(\lambda x.o(\lambda ye\phi.Kiss(x,y) \land \phi e))$

Remarks

- "::" adjoins accessible variables in the selection list
- "sel_{she}" selects the correct variable from the list

Background

Plurality in Continuation Semantics

Conclusion & Future Work

Lexical Entries

Lexicon	λ -Expression
John/Mary	$\lambda\psi e\phi.\psi \mathbf{j}/\mathbf{m}(\mathbf{j}/\mathbf{m}::e)\phi$
she/they	$\lambda\psi e\phi.\psi(extsf{sel_{she/they}}e)e\phi$
smiles	$\lambda s.s(\lambda xe\phi.Smile(x) \wedge \phi e)$
kisses	$\lambda os.s(\lambda x.o(\lambda ye\phi.Kiss(x,y) \land \phi e))$

Remarks

- "::" adjoins accessible variables in the selection list
- "sel_{she}" selects the correct variable from the list
| Background |
|------------|
| |

Plurality in Continuation Semantics

Conclusion & Future Work $\circ\circ$

Lexical Entries

Lexicon	λ -Expression
John/Mary	$\lambda\psi e\phi.\psi \mathbf{j}/\mathbf{m}(\mathbf{j}/\mathbf{m}::e)\phi$
she/they	$\lambda\psi e\phi.\psi(extsf{sel_{she/they}}e)e\phi$
smiles	$\lambda s.s(\lambda xe\phi.Smile(x) \wedge \phi e)$
kisses	$\lambda os.s(\lambda x.o(\lambda ye\phi.Kiss(x,y) \land \phi e))$

Remarks

- "::" adjoins accessible variables in the selection list
- "sel_{she}" selects the correct variable from the list

 $\iota \to \gamma \to \gamma$

Background

Plurality in Continuation Semantics

Conclusion & Future Work $\circ\circ$

Lexical Entries

Lexicon	λ -Expression
John/Mary	$\lambda\psi e\phi.\psi \mathbf{j}/\mathbf{m}(\mathbf{j}/\mathbf{m}::e)\phi$
she/they	$\lambda\psi e\phi.\psi(extsf{sel_{she/they}}e)e\phi$
smiles	$\lambda s.s(\lambda xe\phi.Smile(x) \wedge \phi e)$
kisses	$\lambda os.s(\lambda x.o(\lambda ye\phi.Kiss(x,y) \land \phi e))$

Remarks

- "::" adjoins accessible variables in the selection list
- "*sel_{she}*" selects the **correct variable** from the list

 $\iota \to \gamma \to \gamma$

Background

Plurality in Continuation Semantics

Conclusion & Future Work

Lexical Entries

Lexicon	λ -Expression
John/Mary	$\lambda\psi e\phi.\psi \mathbf{j}/\mathbf{m}(\mathbf{j}/\mathbf{m}::e)\phi$
she/they	$\lambda\psi e\phi.\psi(extsf{sel_{she/they}}e)e\phi$
smiles	$\lambda s.s(\lambda xe\phi.Smile(x) \wedge \phi e)$
kisses	$\lambda os.s(\lambda x.o(\lambda ye\phi.Kiss(x,y) \land \phi e))$

Remarks

• "::" adjoins accessible variables in the selection list

 $\iota \to \gamma \to \gamma$

• "*sel_{she}*" selects the **correct variable** from the list

 $\gamma \rightarrow \iota$

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $\circ\circ$

Compositional Example

(6) John kisses Mary. She smiles.

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $\circ\circ$

Compositional Example

(6) John kisses Mary. She smiles.

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $\circ\circ$

Compositional Example

(6) John kisses Mary. She smiles.

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $_{\circ\circ}$

Compositional Example Continued

2

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $_{\circ\circ}$

Compositional Example Continued

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Compositional Example Continued

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Compositional Example Continued

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Compositional Example Continued

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Background
00000

Plurality in Continuation Semantics

Conclusion & Future Work $\circ\circ$

Summation

More Observations

- Recall: explicit group could be broken down to form other valid referents (singular or plural) Example (4)
- Supposition: all sub-groups consisted of accessible referents can be potential antecedents

Example (Summation - More Observations)

- 7) John was in Paris. Bill was in Rome. Mary was in Barcelona.
 - a. They would come back to work after the vacation.
 - b. They avoided the bad weather in France/Italy/Spain.

Background
00000

Plurality in Continuation Semantics

Conclusion & Future Work $\circ\circ$

Summation

More Observations

- Recall: explicit group could be broken down to form other valid referents (singular or plural) Example (4)
- Supposition: all sub-groups consisted of accessible referents can be potential antecedents

Example (Summation - More Observations)

- 7) John was in Paris. Bill was in Rome. Mary was in Barcelona.
 - a. They would come back to work after the vacation.
 - b. They avoided the bad weather in France/Italy/Spain.

Background
00000

Plurality in Continuation Semantics

Conclusion & Future Work $\circ\circ$

Summation

More Observations

- Recall: explicit group could be broken down to form other valid referents (singular or plural) Example (4)
- Supposition: all sub-groups consisted of accessible referents can be potential antecedents

Example (Summation - More Observations)

- (7) John was in Paris. Bill was in Rome. Mary was in Barcelona.
 - a. They would come back to work after the vacation.
 - b. They avoided the bad weather in France/Italy/Spain.

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Summation

Generating All Sub-Groups

- Power Group
 - The set of all possible groups made up of any number of current accessible referents
 - A concept similar to power set in mathematics
- The summation function: Sum

Example (Performance of Gum)

- $\operatorname{Sum}(j :: e) \Rightarrow (j :: e)$
- $\operatorname{Sum}(m::j::e) \Rightarrow (m::j::j \oplus m::e)$
- $\operatorname{Sum}(b :: m :: j :: e) \Rightarrow (b :: m :: j :: b \oplus m :: b \oplus j :: m \oplus j :: b \oplus m \oplus j :: e)$

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Summation

Generating All Sub-Groups

- Power Group
 - The set of all possible groups made up of any number of current accessible referents
 - A concept similar to power set in mathematics
- The summation function: Sum

Example (Performance of Sum)

- $\mathfrak{Sum}(j :: e) \Rightarrow (j :: e)$
- $\operatorname{\mathfrak{Sum}}(m::j::e) \Rightarrow (m::j::j \oplus m::e)$
- $\mathfrak{Sum}(b :: m :: j :: e) \Rightarrow (b :: m :: j :: b \oplus m :: b \oplus j :: m \oplus j :: b \oplus m \oplus j :: e)$

• ...

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Summation

Generating All Sub-Groups

- Power Group
 - The set of all possible groups made up of any number of current accessible referents
 - A concept similar to power set in mathematics
- The summation function: Sum

Example (Performance of Sum)

- $\mathfrak{Sum}(j :: e) \Rightarrow (j :: e)$
- $\operatorname{\mathfrak{Sum}}(m::j::e) \Rightarrow (m::j::j \oplus m::e)$
- $\mathfrak{Sum}(b :: m :: j :: e) \Rightarrow (b :: m :: j :: b \oplus m :: b \oplus j :: m \oplus j :: b \oplus m \oplus j :: e)$
- ...

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Summation

Generating All Sub-Groups

- Power Group
 - The set of all possible groups made up of any number of current accessible referents
 - A concept similar to power set in mathematics
- The summation function: Sum

Example (Performance of Sum)

- $\mathfrak{Sum}(j :: e) \Rightarrow (j :: e)$
- $\operatorname{\mathfrak{Sum}}(m::j::e) \Rightarrow (m::j::j \oplus m::e)$
- $\mathfrak{Sum}(b :: m :: j :: e) \Rightarrow (b :: m :: j :: b \oplus m :: b \oplus j :: m \oplus j :: b \oplus m \oplus j :: e)$

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $\circ\circ$

Summation

Two Supporting Functions

Definition (The Append Function \mathfrak{App} **)**

 \mathfrak{App} takes two lists l_1 and l_2 as arguments, $\mathfrak{App}(l_1, l_2)$ will be:

- I_2 , if $I_1 = []$ the empty list;
- head₁ :: App(tail₁, l₂), in which head₁ and tail₁ denote the head and the tail of l₁ respectively.

Definition (The Add Function \mathfrak{Add})

 $\mathfrak{A}\mathfrak{d}\mathfrak{d}$ takes two arguments, an element *a* and a list *I*, $\mathfrak{A}\mathfrak{d}\mathfrak{d}(a, I)$ will be:

- [a] list containing a single element a, if l = [];
- *a* ⊕ *head* :: 𝔅𝑀(*a*, *tail*), in which *head* and *tail* denote the head and tail of *l* respectively.

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Summation

Two Supporting Functions

Definition (The Append Function App)

 \mathfrak{App} takes two lists l_1 and l_2 as arguments, $\mathfrak{App}(l_1, l_2)$ will be:

- I_2 , if $I_1 = []$ the empty list;
- head₁ :: App(tail₁, l₂), in which head₁ and tail₁ denote the head and the tail of l₁ respectively.

Definition (The Add Function 200)

 \mathfrak{Add} takes two arguments, an element a and a list I, $\mathfrak{Add}(a, I)$ will be:

- [a] list containing a single element a, if I = [];
- a ⊕ head :: 𝔅ϑ𝑌(a, tail), in which head and tail denote the head and tail of l respectively.

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $\circ\circ$

Formal Definition for Sum

Definition (The Summation Function Sum)

Sum takes a list l as argument, Sum(l) will be:

- [] the empty list, if *I* = [];
- $\mathfrak{App}(\mathfrak{Add}(head, sum_tail), sum_tail)$, in which head denotes the head of *I*, sum_tail denotes the result of $\mathfrak{Sum}(tail)$ where tail denotes the tail of *I*.
- Remarks
 - Sum differs from classical power set by replacing union operation with group formation operation "⊕"

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $_{\circ\circ}$

Formal Definition for Sum

Definition (The Summation Function Sum)

Sum takes a list l as argument, Sum(l) will be:

- [] the empty list, if *I* = [];
- $\mathfrak{App}(\mathfrak{Add}(head, sum_tail), sum_tail)$, in which head denotes the head of *I*, sum_tail denotes the result of $\mathfrak{Sum}(tail)$ where tail denotes the tail of *I*.
- Remarks
 - Gum differs from classical power set by replacing union operation with group formation operation "⊕"

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $_{\circ\circ}$

Summation

Sum Illustration Step-by-Step

 $\mathfrak{Sum}([a, b, c]) = \mathfrak{App}(\mathfrak{Add}(a, \mathfrak{Sum}([b, c])), \mathfrak{Sum}([b, c]))$

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $_{\circ\circ}$

Summation

Sum Illustration Step-by-Step

$$\mathfrak{Sum}([a, b, c]) = \mathfrak{App}(\mathfrak{Add}(a, \mathfrak{Sum}([b, c])), \mathfrak{Sum}([b, c]))$$

 $\mathfrak{Sum}([b, c]) = \mathfrak{App}(\mathfrak{Add}(b, \mathfrak{Sum}([c])), \mathfrak{Sum}([c]))$

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $_{\circ\circ}$

Summation

Sum Illustration Step-by-Step

<ロ><一><一><一><一><一><一><一</td>19/32

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $_{\circ\circ}$

19/32

Summation

Sum Illustration Step-by-Step

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $_{\circ\circ}$

Summation

Sum Illustration Step-by-Step

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $_{\circ\circ}$

Summation

Sum Illustration Step-by-Step

$$\mathfrak{Sum}([a, b, c]) = \mathfrak{App}(\mathfrak{Add}(a, \mathfrak{Sum}([b, c])), \mathfrak{Sum}([b, c]))$$

$$\downarrow$$

$$\mathfrak{Sum}([b, c]) = \mathfrak{App}(\mathfrak{Add}(b, \mathfrak{Sum}([c])), \mathfrak{Sum}([c]))$$

$$\downarrow$$

$$\mathfrak{Sum}([c]) = \mathfrak{App}(\mathfrak{Add}(c, \mathfrak{Sum}([])), \mathfrak{Sum}([]))$$

$$= \mathfrak{App}(\mathfrak{Add}(c, []), []) = \mathfrak{App}([c], [])$$

$$\uparrow$$

$$\mathfrak{Sum}([]) = []$$

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $_{\circ\circ}$

Summation

Sum Illustration Step-by-Step

(ロ) (部) (言) (言) (言) (で) (19/32)

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $_{\circ\circ}$

Summation

Sum Illustration Step-by-Step

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Summation

Sum Illustration Step-by-Step

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Summation

Sum Illustration Step-by-Step

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Summation

Sum Illustration Step-by-Step

<ロ> < 部 > < 書 > < 書 > 目 の < で 19/32

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Summation

Sum Illustration Step-by-Step

 $\operatorname{\mathfrak{Sum}}([a, b, c]) = \operatorname{\mathfrak{App}}(\operatorname{\mathfrak{Add}}(a, \operatorname{\mathfrak{Sum}}([b, c])), \operatorname{\mathfrak{Sum}}([b, c]))$ $= \mathfrak{App}(\mathfrak{Add}(a, [b \oplus c, b, c]), [b \oplus c, b, c])$ $\mathfrak{Sum}([b, c]) = \mathfrak{App}(\mathfrak{Add}(b, \mathfrak{Sum}([c])), \mathfrak{Sum}([c]))$ $= \mathfrak{App}(\mathfrak{Add}(b, [c]), [c]) = \mathfrak{App}([b \oplus c, b], [c])$ $= [b \oplus c, b, c]$ $\mathfrak{Sum}([c]) = \mathfrak{App}(\mathfrak{Add}(c, \mathfrak{Sum}([])), \mathfrak{Sum}([]))$ $= \mathfrak{App}(\mathfrak{Add}(c, []), []) = \mathfrak{App}([c], [])$ = [c]Sum([]) = []

19/32

ヘロト 人間 とうほう 人口 とう

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Summation

Sum Illustration Step-by-Step

19/32

(□) (@) (E) (E) [E

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Summation

Sum Illustration Step-by-Step

19/32

э

・ロン ・四 と ・ ヨ と ・ ヨ と
Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Summation

Sum in Real Practice

Example (Natural Language Example for Sum)

- (8) a. John and Mary went to Paris.
 - b. Bill and Lucy went to Rome.
 - Necessary Lexical Entries
 - Proper Names
 - $\llbracket John \rrbracket = \lambda \psi e \phi. \psi j \mathfrak{Sum}(\mathbf{j} :: e) \phi$
 - Conjunction "and"
 - $Imletic{lambda}_{dis} = \lambda AB\psi e\phi.A\psi e(\lambda e'.B\psi e'\phi)$
 - 2 $\llbracket and \rrbracket_{coll} = \lambda AB\psi e\phi. A(\lambda x. B(\lambda y. \psi(x \oplus y)))e\phi$

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Summation

Sum in Real Practice

Example (Natural Language Example for Sum)

- (8) a. John and Mary went to Paris.
 - b. Bill and Lucy went to Rome.

Necessary Lexical Entries

- Proper Names
 - $\llbracket John \rrbracket = \lambda \psi e \phi. \psi j \mathfrak{Sum}(j :: e) \phi$
- Conjunction "and"

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Summation

Sum in Real Practice

Example (Natural Language Example for Sum)

- (8) a. John and Mary went to Paris.
 - b. Bill and Lucy went to Rome.
 - Necessary Lexical Entries
 - Proper Names
 - $\llbracket John \rrbracket = \lambda \psi e \phi. \psi j \mathfrak{Sum}(j :: e) \phi$
 - Conjunction "and"

 - 2 $\llbracket and \rrbracket_{coll} = \lambda AB\psi e\phi.A(\lambda x.B(\lambda y.\psi(x \oplus y)))e\phi$

Background
00000

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Summation

Distributive "and"

Background	Continuation Semantics	Plurality in Continuation Semantics	Conclusion & Future Work
Summation			
Collect	ive "and"	ition Semantics Plurality in Continuation Semantics Conclusion & Future Work 0000000€0000000 00 00	

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $_{\circ\circ}$

Summation

Sum in Real Practice Continued

・ロ ・ ・ 日 ・ ・ 三 ・ ・ 三 ・ ク へ (* 23 / 32

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $_{\circ\circ}$

Summation

Sum in Real Practice Continued

・ロ ・ ・ 日 ・ ・ 三 ・ ・ 三 ・ ・ 三 ・ ク へ (* 23/32

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $_{\circ\circ}$

Summation

Sum in Real Practice Continued

◆□ → < 団 → < 三 → < 三 → < 三 → < 三 → ○ Q (* 23/32

Background
00000

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $_{\circ\circ}$

Summation

Sum in Real Practice Continued

Similar for (8-b)

◆□ → < 団 → < 亘 → < 亘 → < 亘 → < 亘 → < 亘 → < 亘 </p>
23/32

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $\circ\circ$

Summation

Sum in Real Practice Continued

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Summation

Sum in Real Practice Continued

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $_{\circ\circ}$

Summation

Sum in Real Practice Continued

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $\circ\circ$

Abstraction

More Observations

Example (Abstraction - More Observations)

(9) Two of five students went to school.

- a. They worked hard.
- b. They had to hand in the homework by tomorrow.

• QNP: Generalized Quantifier + Noun

More than one potential group referents are introduced by the same NP

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $\circ\circ$

Abstraction

More Observations

Example (Abstraction - More Observations)

(9) Two of five students went to school.

- a. They worked hard.
- b. They had to hand in the homework by tomorrow.
- QNP: Generalized Quantifier + Noun
- More than one potential group referents are introduced by the same NP

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Abstraction

Abstraction in DRT [Kamp and Reyle, 1993]

• Duplex Condition: the relation between two sets, which is constrained by the property of QNP

Example (Duplex Condition)

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Abstraction

Abstraction in DRT [Kamp and Reyle, 1993]

• Duplex Condition: the relation between two sets, which is constrained by the property of QNP

•
$$K_1$$
 \mathfrak{Q} K_2

Example (Duplex Condition)

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $_{\circ\circ}$

Abstraction

Abstraction in DRT [Kamp and Reyle, 1993]

• Duplex Condition: the relation between two sets, which is constrained by the property of QNP

•
$$K_1$$
 \mathfrak{Q} K_2

Example (Duplex Condition)

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $\circ\circ$

Abstraction

Three Groups

- Maximum Group
- Reference Group / Refset Anaphora
- Complement Group / Compset Anaphora

Figure: Structure Denoted by Generalized Quantifiers

Background
00000

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work $\circ\circ$

Abstraction

Three Groups

- Maximum Group
- Reference Group / Refset Anaphora
- Complement Group / Compset Anaphora

Figure: Structure Denoted by Generalized Quantifiers

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Abstraction

Unveiling All Groups

- Proposition: to unveil all potential groups formed from abstraction
- Lexical Entry

Generalized Quantifier

 $\llbracket GQ \rrbracket = \lambda \psi ABe\phi. Quan(\psi) x. ((Axe\lambda e. \top) Rel(\psi)(Bxe\lambda e. \top)) \land \phi((\mathfrak{Abs}(\psi, x) :: e))$

- "Quan()" and "Rel()" are quantifier-sensitive
 - $Quan(every) = \forall, Quan(a) = \exists$
 - $Rel(every) = \rightarrow, Rel(a) = \land$

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Abstraction

Unveiling All Groups

- Proposition: to unveil all potential groups formed from abstraction
- Lexical Entry

Generalized Quantifier

 $\llbracket GQ \rrbracket = \lambda \psi ABe\phi. Quan(\psi) x. ((Axe\lambda e. \top)Rel(\psi)(Bxe\lambda e. \top)) \land \phi((\mathfrak{Abs}(\psi, x) :: e))$

- "Quan()" and "Rel()" are quantifier-sensitive
 - $Quan(every) = \forall, Quan(a) = \exists$
 - $Rel(every) = \rightarrow, Rel(a) = \land$

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Abstraction

Unveiling All Groups

- Proposition: to unveil all potential groups formed from abstraction
- Lexical Entry

Generalized Quantifier

 $\llbracket GQ \rrbracket = \lambda \psi ABe\phi. Quan(\psi) x. ((Axe\lambda e. \top) Rel(\psi) (Bxe\lambda e. \top)) \land \phi((\mathfrak{Abs}(\psi, x) :: e))$

- "Quan()" and "Rel()" are quantifier-sensitive
 - $Quan(every) = \forall, Quan(a) = \exists$
 - $Rel(every) = \rightarrow, Rel(a) = \land$

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Abstraction

Formal Definition for **Abs**

Definition (The Abstraction Function \mathfrak{Abs} **)**

Abs takes two arguments: a generalized quantifier q and the related individual variable x. The output, namely $\mathfrak{Abs}(q, x)$ will be a left context consisting of two group referents R_i and C_i :

- R: the reference group of individuals denoted by the quantifier;
- C: the complement group of individuals denoted by the quantifier;
- *i*: the index that signifies the dependency of the two groups.

Example (Entry for "every")

 $\begin{bmatrix} every \end{bmatrix} = \llbracket GQ \rrbracket (every) \\ \Rightarrow \lambda ABe\phi.Quan(every) \times (Axe\lambda e. \top Rel(every) Bxe\lambda e. \top) \land \\ \phi(\mathfrak{Abs}(every, x) :: e) \\ \Rightarrow \lambda ABe\phi.\forall x.(Axe\lambda e. \top \to Bxe\lambda e. \top) \land \phi(\mathfrak{Abs}(every, x) :: e) \end{bmatrix}$

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Abstraction

Formal Definition for **Abs**

Definition (The Abstraction Function \mathfrak{Abs} **)**

Abs takes two arguments: a generalized quantifier q and the related individual variable x. The output, namely $\mathfrak{Abs}(q, x)$ will be a left context consisting of two group referents R_i and C_i :

- R: the reference group of individuals denoted by the quantifier;
- C: the complement group of individuals denoted by the quantifier;
- *i*: the index that signifies the dependency of the two groups.

Example (Entry for "every")

 $\begin{bmatrix} every \end{bmatrix} = \llbracket GQ \rrbracket (every) \\ \Rightarrow \lambda ABe\phi. Quan(every) x. (Axe\lambda e. \top Rel(every) Bxe\lambda e. \top) \land \\ \phi(\mathfrak{ABs}(every, x) :: e) \\ \Rightarrow \lambda ABe\phi. \forall x. (Axe\lambda e. \top \rightarrow Bxe\lambda e. \top) \land \phi(\mathfrak{Abs}(every, x) :: e) \end{bmatrix}$

Background	

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Abstraction

Abs in Real Practice

(10) Every farmer owns a donkey.

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Abstraction

Abs in Real Practice

(10) Every farmer owns a donkey.

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Abstraction

Abs in Real Practice

(10) Every farmer owns a donkey.

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work

Abstraction

Abs in Real Practice

(10) Every farmer owns a donkey.

Background
00000

Summary

Conclusion

- Investigating plural anaphora within a new dynamic semantic framework
- A potential list containing accessible plural referents is provided for summation and abstraction respectively
- The framework is sound on the aspect of compositionality
- The proposal is not responsible for the complete task of anaphora resolution

• Future Work

- More elaborate definition on Gum and Abs
- Concern of over generation
- Taking rhetorical structure into consideration
- Combining with event semantics

Background	

Summary

Conclusion

- Investigating plural anaphora within a new dynamic semantic framework
- A potential list containing accessible plural referents is provided for summation and abstraction respectively
- The framework is sound on the aspect of compositionality
- The proposal is not responsible for the complete task of anaphora resolution
- Future Work
 - $\bullet\,$ More elaborate definition on \mathfrak{Sum} and \mathfrak{Abs}
 - Concern of over generation
 - Taking rhetorical structure into consideration
 - Combining with event semantics

Continuation Semantics

Plurality in Continuation Semantics

Conclusion & Future Work ○●

References

Asher, N. and Pogodalla, S. (2011). Sdrt and continuation semantics. New Frontiers in Artificial Intelligence, pages 3–15.

de Groote, P. (2006).

Towards a montagovian account of dynamics. Proceedings of Semantics and Linguistic Theory XVI.

Gillon, B. (1996).

Collectivity and distributivity internal to english noun phrases. *Language Sciences*, 18(1):443–468.

Kamp, H. and Reyle, U. (1993).

From discourse to logic: Introduction to model theoretic semantics of natural language, formal logic and discourse representation theory, volume 42. Kluwer Academic Dordrecht, The Netherlands.

Schwertel, U., Hess, M., and Fuchs, N. (2003). *Plural Semantics for Natural Language Understanding.* PhD thesis, PhD thesis, Faculty of Arts–University of Zurich, 2005. Available at http://www.ifi. unizh. ch/attempto/publications.