Accessibility for Plurals in Continuation Semantics

Sai Qian, Maxime Amblard
\{sai.qian, maxime.amblard\}@loria.fr

Semagramme, LORIA \& INRIA Nancy Grand-Est
UFR Math-Info, Université de Lorraine
Logic and Engineering of Natural Language Semantics 9 (LENLS 9)

November 30, 2012

Outline

(1) Background

- Linguistic Preliminaries
- Two Plurality Formations
(2) Continuation Semantics
(3) Plurality in Continuation Semantics
- Summation
- Abstraction

4. Conclusion \& Future Work

Overview

Key Words

Plurality (Group, Individual), Dynamic Semantics, Continuation, DRT, Anaphoric Accessibility, Functional Programming

Overview

Key Words

Plurality (Group, Individual), Dynamic Semantics, Continuation, DRT, Anaphoric Accessibility, Functional Programming

Main goals of the presentation:
(1) Investigating two plurality formations (mostly based on [Kamp and Reyle, 1993])
(2) Compositionally obtaining the semantic representation for plurality under dynamic semantics

Cohesion \& Anaphora

- Anaphora
- Some Terminologies: cohesion, anaphor, antecedent
- Anaphora ties pieces of discourse into a "unified whole"

Cohesion \& Anaphora

- Anaphora
- Some Terminologies: cohesion, anaphor, antecedent
- Anaphora ties pieces of discourse into a "unified whole"

Example (Anaphora)

(1) a. $J o h n_{1}$ has a car 2 . He likes i_{2}.
b. John n_{1} has a car. His car is red.
c. John has a car. . The car is red.
d. John has a cool car ${ }_{1}$. Mary has a same one ${ }_{1}$.
e. John drives to work everyday ${ }_{1}$. It t_{1} takes him half an hour.

Cohesion \& Anaphora

- Anaphora
- Some Terminologies: cohesion, anaphor, antecedent
- Anaphora ties pieces of discourse into a "unified whole"

Example (Anaphora)

(1) a. John n_{1} has a car2. He likes it . $_{2}$.
b. John n_{1} has a car. His car is red.
c. John has a car. . The car is red.
d. John has a cool car ${ }_{1}$. Mary has a same one ${ }_{1}$.
e. John drives to work everyday ${ }_{1}$. It t_{1} takes him half an hour.

The Problem of Plurality

- The semantics of plurality is not a naïve quantitative extension of singularity

The Problem of Plurality

- The semantics of plurality is not a naïve quantitative extension of singularity

Example (Distributivity vs. Collectivity)

(2) a. John and Mary went to school.
b. John and Mary gathered in Paris.
c. John and Mary lifted a piano.

The Problem of Plurality

- The semantics of plurality is not a naïve quantitative extension of singularity

Example (Distributivity vs. Collectivity)

(2) a. John and Mary went to school.
b. John and Mary gathered in Paris.
c. John and Mary lifted a piano.

- Singular and Plural Pronouns
- he, she, I: individuals
- we, they, you: group of individuals

Summation Sketch

Definition (Summation) [Kamp and Reyle, 1993]

The process of constructing plural referents (groups of individuals) out of explicit individuals.

Summation Sketch

Definition (Summation) [Kamp and Reyle, 1993]

The process of constructing plural referents (groups of individuals) out of explicit individuals.

Example (Summation Sketch)

(3) a. John went to Bill's party with Mary. They had a nice time.
b. John loves Mary. Bill also loves Mary. They have to find a solution.

- Plural referents (groups of individuals) do not need necessarily be explicitly mentioned in the context, e.g.

Summation Sketch

Definition (Summation) [Kamp and Reyle, 1993]

The process of constructing plural referents (groups of individuals) out of explicit individuals.

Example (Summation Sketch)

(3) a. John went to Bill's party with Mary. They had a nice time.
b. John loves Mary. Bill also loves Mary. They have to find a solution.

- Plural referents (groups of individuals) do not need necessarily be explicitly mentioned in the context, e.g.,

Summation Sketch

Definition (Summation) [Kamp and Reyle, 1993]

The process of constructing plural referents (groups of individuals) out of explicit individuals.

Example (Summation Sketch)

(3) a. John went to Bill's party with Mary. They had a nice time.
b. John loves Mary. Bill also loves Mary. They have to find a solution.

- Plural referents (groups of individuals) do not need necessarily be explicitly mentioned in the context, e.g.,

$$
\begin{aligned}
& \text { In (3-a): John } \oplus \text { Bill } \oplus \text { Mary; } \\
& \text { in (3-b): John } \oplus \text { Bill, John } \oplus \text { Bill } \oplus \text { Mary }
\end{aligned}
$$

Summation Sketch Continued

Example (Summation Sketch Continued)

(4) John went to Paris. Bill and Mary gathered to Rome.
a. She enjoyed the historical monuments very much.
b. They planned the whole trip without telling her.

Summation Sketch Continued

Example (Summation Sketch Continued)

(4) John went to Paris. Bill and Mary gathered to Rome.
a. She enjoyed the historical monuments very much.
b. They planned the whole trip without telling her.

- Even plural referents are explicitly mentioned, the individual components can be broken down and re-form other plural referents, e.g.,

Summation Sketch Continued

Example (Summation Sketch Continued)

(4) John went to Paris. Bill and Mary gathered to Rome.
a. She enjoyed the historical monuments very much.
b. They planned the whole trip without telling her.

- Even plural referents are explicitly mentioned, the individual components can be broken down and re-form other plural referents, e.g.,

$$
\begin{aligned}
& \text { In (4-a): from Bill } \oplus \text { Mary } \Rightarrow \text { Mary; } \\
& \text { in (4-b): from John, Bill } \oplus \text { Mary } \Rightarrow \text { John } \oplus \text { Bill }
\end{aligned}
$$

Abstraction Sketch

Definition (Abstraction) [Kamp and Reyle, 1993]

The process of constructing plural referents (groups of individuals) out of quantified noun phrases.

Abstraction Sketch

Definition (Abstraction) [Kamp and Reyle, 1993]

The process of constructing plural referents (groups of individuals) out of quantified noun phrases.

- Quantified NP: quantifier + noun
- Generalized quantifier: every, all, none, most, few, etc.

Abstraction Sketch

Definition (Abstraction) [Kamp and Reyle, 1993]

The process of constructing plural referents (groups of individuals) out of quantified noun phrases.

- Quantified NP: quantifier + noun
- Generalized quantifier: every, all, none, most, few, etc.

Example (Abstraction Sketch)

(5) a. Every farmer owns a donkey. *He is / They are rich.
b. Few students came on time. They were too lazy.

Abstraction Sketch

Definition (Abstraction) [Kamp and Reyle, 1993]

The process of constructing plural referents (groups of individuals) out of quantified noun phrases.

- Quantified NP: quantifier + noun
- Generalized quantifier: every, all, none, most, few, etc.

Example (Abstraction Sketch)

(5) a. Every farmer owns a donkey. *He is / They are rich.
b. Few students came on time. They were too lazy.

A New Approach to Dynamics [de Groote, 2006]

- A pure Montagovian framework for discourse dynamics

A New Approach to Dynamics [de Groote, 2006]

- A pure Montagovian framework for discourse dynamics
- Basic Types
- ८(e): individuals/entities
- $o(t)$: propositions/truth values

A New Approach to Dynamics [de Groote, 2006]

- A pure Montagovian framework for discourse dynamics
- Basic Types
- $\iota(e)$: individuals/entities
- o (t): propositions/truth values
- γ : left context

A New Approach to Dynamics [de Groote, 2006]

- A pure Montagovian framework for discourse dynamics
- Basic Types
- $\iota(e)$: individuals/entities
- o (t): propositions/truth values
- γ : left context

A New Approach to Dynamics [de Groote, 2006]

- A pure Montagovian framework for discourse dynamics
- Basic Types
- $\iota(e)$: individuals/entities
- o (t) : propositions/truth values
- γ : left context
left context

A New Approach to Dynamics [de Groote, 2006]

- A pure Montagovian framework for discourse dynamics
- Basic Types
- $\iota(e)$: individuals/entities
- o (t) : propositions/truth values
- γ : left context
left context
right context

A New Approach to Dynamics [de Groote, 2006]

- A pure Montagovian framework for discourse dynamics
- Basic Types
- $\iota(e)$: individuals/entities
- o (t): propositions/truth values
- γ : left context

A New Approach to Dynamics [de Groote, 2006]

- A pure Montagovian framework for discourse dynamics
- Basic Types
- $\iota(e)$: individuals/entities
- o (t): propositions/truth values
- γ : left context

A New Approach to Dynamics [de Groote, 2006]

- A pure Montagovian framework for discourse dynamics
- Basic Types
- $\iota(e)$: individuals/entities
- o (t): propositions/truth values
- γ : left context

Type System \& Composition

Typing Rules

$$
\begin{array}{lll}
\llbracket s \rrbracket & \gamma \rightarrow(\gamma \rightarrow 0) \rightarrow 0 & 0 \\
\llbracket n \rrbracket & \iota \rightarrow \llbracket s \rrbracket & \iota \rightarrow 0 \\
\llbracket n p \rrbracket & (\iota \rightarrow \llbracket s \rrbracket) \rightarrow \llbracket s \rrbracket & (\iota \rightarrow 0) \rightarrow 0
\end{array}
$$

Discourse Composition

- A general DRS corresponds to:

Type System \& Composition

Typing Rules

$$
\begin{array}{lll}
\llbracket s \rrbracket & \gamma \rightarrow(\gamma \rightarrow 0) \rightarrow 0 & 0 \\
\llbracket n \rrbracket & \iota \rightarrow \llbracket s \rrbracket & \iota \rightarrow 0 \\
\llbracket n p \rrbracket & (\iota \rightarrow \llbracket s \rrbracket) \rightarrow \llbracket s \rrbracket & (\iota \rightarrow 0) \rightarrow 0
\end{array}
$$

Discourse Composition

$$
\llbracket D . S \rrbracket=\lambda e \phi \cdot \llbracket D \rrbracket e\left(\lambda e^{\prime} \cdot \llbracket S \rrbracket e^{\prime} \phi\right)
$$

- A general DRS corresponds to:

Type System \& Composition

Typing Rules

$$
\begin{array}{lll}
\llbracket s \rrbracket & \gamma \rightarrow(\gamma \rightarrow 0) \rightarrow 0 & 0 \\
\llbracket n \rrbracket & \iota \rightarrow \llbracket s \rrbracket & \iota \rightarrow 0 \\
\llbracket n p \rrbracket & (\iota \rightarrow \llbracket s \rrbracket) \rightarrow \llbracket s \rrbracket & (\iota \rightarrow 0) \rightarrow 0
\end{array}
$$

Discourse Composition

$$
\llbracket D . S \rrbracket=\lambda e \phi \cdot \llbracket D \rrbracket e\left(\lambda e^{\prime} \cdot \llbracket S \rrbracket e^{\prime} \phi\right)
$$

- A general DRS corresponds to:

$$
\lambda e \phi . \exists x_{1} \cdots x_{n} . C_{1} \wedge \cdots C_{m} \wedge \phi e^{\prime}
$$

Type System \& Composition

Typing Rules

$$
\begin{array}{lll}
\llbracket s \rrbracket & \gamma \rightarrow(\gamma \rightarrow 0) \rightarrow 0 & 0 \\
\llbracket n \rrbracket & \iota \rightarrow \llbracket s \rrbracket & \iota \rightarrow 0 \\
\llbracket n p \rrbracket & (\iota \rightarrow \llbracket s \rrbracket) \rightarrow \llbracket s \rrbracket & (\iota \rightarrow 0) \rightarrow 0
\end{array}
$$

Discourse Composition

$$
\llbracket D . S \rrbracket=\lambda e \phi \cdot \llbracket D \rrbracket e\left(\lambda e^{\prime} \cdot \llbracket S \rrbracket e^{\prime} \phi\right)
$$

- A general DRS corresponds to:

$$
\lambda e \phi . \exists x_{1} \cdots x_{n} . C_{1} \wedge \cdots C_{m} \wedge \phi e^{\prime}
$$

- e^{\prime} is a left context made of e and the variables $x_{1}, x_{2}, x_{3}, \ldots$

Lexical Entries

Lexicon	λ-Expression
John/Mary	$\lambda \psi e \phi . \psi \mathbf{j} / \mathbf{m}(\mathbf{j} / \mathbf{m}:: e) \phi$
she $/$ they	$\lambda \psi e \phi . \psi\left(\right.$ sel $I_{\text {she }} /$ they $\left.e\right) e \phi$
smiles	$\lambda s . s(\lambda x e \phi . \operatorname{Smile}(x) \wedge \phi e)$
kisses	$\lambda o s . s(\lambda x . o(\lambda y e \phi . \operatorname{Kiss}(x, y) \wedge \phi e))$

Lexical Entries

Lexicon	λ-Expression
John/Mary	$\lambda \psi e \phi \cdot \psi \mathbf{j} / \mathbf{m}(\mathbf{j} / \mathbf{m}:: e) \phi$
she $/$ they	$\lambda \psi e \phi . \psi\left(\operatorname{sel} I_{\text {she }} /\right.$ they $\left.e\right) e \phi$
smiles	$\lambda s . s(\lambda x e \phi . \operatorname{Smile}(x) \wedge \phi e)$
kisses	$\lambda o s . s(\lambda x . o(\lambda y e \phi . \operatorname{Kiss}(x, y) \wedge \phi e))$

- Remarks
- "::" adjoins accessible variables in the selection list

Lexical Entries

Lexicon	λ-Expression
John/Mary	$\lambda \psi e \phi \cdot \psi \mathbf{j} / \mathbf{m}(\mathbf{j} / \mathbf{m}:: e) \phi$
she $/$ they	$\lambda \psi e \phi \cdot \psi\left(\operatorname{sel} I_{\text {she }} /\right.$ they $\left.e\right) e \phi$
smiles	$\lambda \operatorname{s.s}(\lambda x e \phi . \operatorname{Smile}(x) \wedge \phi e)$
kisses	$\lambda o s . s(\lambda x . o(\lambda y e \phi . \operatorname{Kiss}(x, y) \wedge \phi e))$

- Remarks
- "::" adjoins accessible variables in the selection list

$$
\iota \rightarrow \gamma \rightarrow \gamma
$$

Lexical Entries

Lexicon	λ-Expression
John/Mary	$\lambda \psi e \phi . \psi \mathbf{j} / \mathbf{m}(\mathbf{j} / \mathbf{m}:: e) \phi$
she $/$ they	$\lambda \psi e \phi . \psi\left(\right.$ sel $l_{\text {she }} /$ they $\left.e\right) e \phi$
smiles	$\lambda \operatorname{s.s}(\lambda x e \phi . \operatorname{Smile}(x) \wedge \phi e)$
kisses	$\lambda o s . s(\lambda x . o(\lambda y e \phi . \operatorname{Kiss}(x, y) \wedge \phi e))$

- Remarks
- "::" adjoins accessible variables in the selection list

$$
\iota \rightarrow \gamma \rightarrow \gamma
$$

- "sel ${ }_{\text {she }}$ " selects the correct variable from the list

Lexical Entries

Lexicon	λ-Expression
John/Mary	$\lambda \psi e \phi \cdot \psi \mathbf{j} / \mathbf{m}(\mathbf{j} / \mathbf{m}:: e) \phi$
she $/$ they	$\lambda \psi e \phi . \psi\left(\operatorname{sel} I_{\text {she }} /\right.$ they $\left.e\right) e \phi$
smiles	$\lambda s . s(\lambda x e \phi . \operatorname{Smile}(x) \wedge \phi e)$
kisses	$\lambda o s . s(\lambda x . o(\lambda y e \phi . \operatorname{Kiss}(x, y) \wedge \phi e))$

- Remarks
- "::" adjoins accessible variables in the selection list

$$
\iota \rightarrow \gamma \rightarrow \gamma
$$

- "sel ${ }_{\text {she }}$ " selects the correct variable from the list

Compositional Example

(6) John kisses Mary. She smiles.
(1)

Compositional Example

(6) John kisses Mary. She smiles.
(1)

$\lambda \psi e \phi \cdot \psi \mathbf{j}(\mathbf{j}:: ~ e) \phi$
$\lambda \psi \cdot \psi \mathbf{j}$

Compositional Example

(6) John kisses Mary. She smiles.
(1)

Compositional Example Continued

(2)

Compositional Example Continued

(2)

Compositional Example Continued

(3)

Compositional Example Continued

(3)

Compositional Example Continued

(3) \square
$\left.\lambda e \phi .\left(\operatorname{Kiss}(\mathbf{j}, \mathbf{m}) \wedge \operatorname{Smile}^{\left(s e l_{\text {she }}(\mathbf{j}:: ~ \mathbf{m}:: ~ e)\right.}\right) \wedge \phi(\mathbf{j}:: \mathbf{m}:: ~ e)\right)$???

$$
\begin{gathered}
\llbracket S_{1} \cdot S_{2} \rrbracket=\lambda e \phi \cdot \llbracket S_{1} \rrbracket e\left(\lambda e^{\prime} \cdot \llbracket S_{2} \rrbracket e^{\prime} \phi\right) \\
\operatorname{Kiss}(\mathbf{j}, \mathbf{m})+\exists x \cdot(\operatorname{Smile}(x) \wedge x=?) ? ? ?
\end{gathered}
$$

$$
\begin{array}{cc}
\lambda e \phi \cdot(\operatorname{Kiss}(\mathbf{j}, \mathbf{m}) \wedge \phi(\mathbf{j}:: \mathbf{m}:: e)) & \lambda e \phi \cdot\left(\text { Smile }\left(\text { sel }_{\text {she }} e\right) \wedge \phi e\right) \\
\operatorname{Kiss}(\mathbf{j}, \mathbf{m}) & \exists x .(\operatorname{Smile}(x) \wedge x=?)
\end{array}
$$

Summation

More Observations

- Recall: explicit group could be broken down to form other valid referents (singular or plural) - Example (4)
can be potential antecedents

More Observations

- Recall: explicit group could be broken down to form other valid referents (singular or plural) - Example (4)
- Supposition: all sub-groups consisted of accessible referents can be potential antecedents

More Observations

- Recall: explicit group could be broken down to form other valid referents (singular or plural) - Example (4)
- Supposition: all sub-groups consisted of accessible referents can be potential antecedents

Example (Summation - More Observations)

(7) John was in Paris. Bill was in Rome. Mary was in Barcelona.
a. They would come back to work after the vacation.
b. They avoided the bad weather in France/Italy/Spain.

Summation

Generating All Sub-Groups

- Power Group
- The set of all possible groups made up of any number of current accessible referents
- A concept similar to power set in mathematics
-The summation function: Sum

Summation

Generating All Sub-Groups

- Power Group
- The set of all possible groups made up of any number of current accessible referents
- A concept similar to power set in mathematics
- The summation function: $\mathfrak{S u m}$

Example (Performance of Sum)

- $\mathfrak{S u m}(j:: e) \Rightarrow(j:: e)$

Summation

Generating All Sub-Groups

- Power Group
- The set of all possible groups made up of any number of current accessible referents
- A concept similar to power set in mathematics
- The summation function: $\mathfrak{S u m}$

Example (Performance of Sum)

- $\mathfrak{S u m}(j:: e) \Rightarrow(j:: e)$
- $\mathfrak{S u m}(m:: j:: e) \Rightarrow(m:: j:: j \oplus m:: e)$

Summation

Generating All Sub-Groups

- Power Group
- The set of all possible groups made up of any number of current accessible referents
- A concept similar to power set in mathematics
- The summation function: $\mathfrak{S u m}$

Example (Performance of Sum)

- $\mathfrak{S u m}(j:: e) \Rightarrow(j:: e)$
- $\mathfrak{S u m}(m:: j:: e) \Rightarrow(m:: j:: j \oplus m:: e)$
- $\mathfrak{S u m}(b:: m:: j:: e) \Rightarrow(b:: m:: j:: b \oplus m:: b \oplus j:: m \oplus j::$ $b \oplus m \oplus j:: e)$
- ...

Summation

Two Supporting Functions

Definition (The Append Function $\mathfrak{A p p}$)

$\mathfrak{A p p}$ takes two lists I_{1} and I_{2} as arguments, $\mathfrak{A p p}\left(I_{1}, I_{2}\right)$ will be:

- I_{2}, if $I_{1}=[]$ - the empty list;
- head $_{1}:: \mathfrak{A p p}\left(\right.$ tail $\left._{1}, l_{2}\right)$, in which head $_{1}$ and tail $_{1}$ denote the head and the tail of I_{1} respectively.
\square
Deffinition (The Add Function $\mathfrak{A 0 0})$
\square
\qquad
\qquad

Two Supporting Functions

Definition (The Append Function $\mathfrak{A p p}$)

$\mathfrak{A p p}$ takes two lists I_{1} and I_{2} as arguments, $\mathfrak{A p p}\left(I_{1}, I_{2}\right)$ will be:

- I_{2}, if $I_{1}=[]$ - the empty list;
- head $_{1}:: \mathfrak{A p p}\left(\right.$ tail $\left._{1}, l_{2}\right)$, in which head $_{1}$ and tail $_{1}$ denote the head and the tail of I_{1} respectively.

Definition (The Add Function $\mathfrak{A d d}$)

$\mathfrak{A d d}$ takes two arguments, an element a and a list $l, \mathfrak{A d d}(a, l)$ will be:

- [a] - list containing a single element a, if $I=[$];
- a \oplus head :: $\mathfrak{A l d}(a$, tail $)$, in which head and tail denote the head and tail of I respectively.

Formal Definition for \subseteq um

Definition (The Summation Function Sum)

$\mathfrak{S u m}$ takes a list / as argument, $\mathfrak{S u m}(/)$ will be:

- [] - the empty list, if $I=[$];
- $\mathfrak{A p p}(\mathfrak{A d d}$ (head, sum_tail), sum_tail), in which head denotes the head of I, sum_tail denotes the result of $\mathfrak{S u m}($ tail $)$ where tail denotes the tail of I.
- Remarks
- Sum differs from classical power set by replacing union
operation with group formation operation

Formal Definition for \subseteq um

Definition (The Summation Function Sum)

$\mathfrak{S u m}$ takes a list $/$ as argument, $\mathfrak{S u m}(I)$ will be:

- [] - the empty list, if $I=[$];
- $\mathfrak{A p p}(\mathfrak{A d d}$ (head, sum_tail), sum_tail), in which head denotes the head of I, sum_tail denotes the result of $\mathfrak{S u m}($ tail $)$ where tail denotes the tail of I.
- Remarks
- Sum differs from classical power set by replacing union operation with group formation operation " \oplus "

Summation

Sum Illustration Step-by-Step

$\mathfrak{S u m}([a, b, c])=\mathfrak{A p p}(\mathfrak{A d d}(a, \mathfrak{S u m}([b, c])), \mathfrak{S u m}([b, c])$

Summation

Sum Illustration Step-by-Step

$\mathfrak{S u m}([a, b, c])=\mathfrak{A p p p}(\mathfrak{A d o d}(a, \mathfrak{S u m}([b, c])), \mathfrak{S u m}([b, c])$

$$
\mathfrak{S u m}([b, c])=\mathfrak{A p p}(\mathfrak{A d d}(b, \mathfrak{S u m}([c])), \mathfrak{S u m}([c]))
$$

Summation

Sum Illustration Step-by-Step

Summation

Sum Illustration Step-by-Step

Summation

Sum Illustration Step-by-Step

Sum Illustration Step-by-Step

Sum Illustration Step-by-Step

Sum Illustration Step-by-Step

Sum Illustration Step-by-Step

$\mathfrak{S u m}([a, b, c])=\mathfrak{A l p p}(\mathfrak{A d d}(a, \mathfrak{S u m}([b, c])), \mathfrak{S u m}([b, c])$

$$
\begin{aligned}
& \mathfrak{S u m}([b, c])=\mathfrak{A p p}(\mathfrak{A d o}(b, \mathfrak{S u m}([c])), \mathfrak{S u m}([c])) \\
& =\mathfrak{A p p}(\mathfrak{A d o}(b,[c]),[c])=\mathfrak{A p p}([b \oplus c, b],[c])
\end{aligned}
$$

$$
\uparrow
$$

$$
\begin{aligned}
& \mathfrak{S u m}([c])=\mathfrak{A p p}(\mathfrak{A d d}(c, \mathfrak{S u m}([])), \mathfrak{S u m}([])) \\
& =\mathfrak{A p p}(\mathfrak{A d d}(c,[]),[])=\mathfrak{A x p p}([c],[]) \\
& =[c]
\end{aligned}
$$

$$
\mathfrak{S u m}([])=[]
$$

Summation

Sum Illustration Step-by-Step

Summation

Sum Illustration Step-by-Step

Summation

Sum Illustration Step-by-Step

$$
\begin{aligned}
& \mathfrak{S u m}([a, b, c])=\mathfrak{A p p}(\mathfrak{A d d}(a, \mathfrak{S u m}([b, c])), \mathfrak{S u m}([b, c]) \\
& =\mathfrak{A p p}(\mathfrak{A d d}(a,[b \oplus c, b, c]),[b \oplus c, b, c])
\end{aligned}
$$

$$
\begin{aligned}
& \mathfrak{S u m}([b, c])=\mathfrak{A p p}(\mathfrak{A d} \mathfrak{d}(b, \mathfrak{S u m}([c])), \mathfrak{S u m}([c])) \\
& =\mathfrak{A p p}(\mathfrak{A d d}(b,[c]),[c])=\mathfrak{A p p}([b \oplus c, b],[c]) \\
& =[b \oplus c, b, c]
\end{aligned}
$$

$$
\begin{aligned}
& \mathfrak{S u m}([c])=\mathfrak{A p p}(\mathfrak{A d d}(c, \mathfrak{S u m}([])), \mathfrak{S u m}([])) \\
& =\mathfrak{A p p}(\mathfrak{A d d}(c,[]),[])=\mathfrak{A x p p}([c],[]) \\
& =[c]
\end{aligned}
$$

$$
\frac{\uparrow}{\mathfrak{S u m}([])=[]}
$$

Sum Illustration Step-by-Step

```
\(\mathfrak{S u m}([a, b, c])=\mathfrak{A p p}(\mathfrak{A d d}(a, \mathfrak{S u m}([b, c])), \mathfrak{S u m}([b, c])\)
\(=\mathfrak{A p p}(\mathfrak{A d d}(a,[b \oplus c, b, c]),[b \oplus c, b, c])\)
\(=\mathfrak{A p p}(([a \oplus b \oplus c, a \oplus b, a \oplus c, a]),[b \oplus c, b, c])\)
```

\uparrow

$$
\begin{aligned}
& \mathfrak{S u m}([b, c])=\mathfrak{A p p}(\mathfrak{A d d}(b, \mathfrak{S u m}([c])), \mathfrak{S u m}([c])) \\
& =\mathfrak{A p p}(\mathfrak{A d} \mathfrak{d}(b,[c]),[c])=\mathfrak{A p p}([b \oplus c, b],[c]) \\
& =[b \oplus c, b, c]
\end{aligned}
$$

\uparrow

$$
\begin{aligned}
& \mathfrak{S u m}([c])=\mathfrak{A p p}(\mathfrak{A d d}(c, \mathfrak{S u m}([])), \mathfrak{S u m}([])) \\
& =\mathfrak{A p p}(\mathfrak{A d d}(c,[]),[])=\mathfrak{A x p p}([c],[]) \\
& =[c]
\end{aligned}
$$

$$
\begin{gathered}
\uparrow \\
\operatorname{sum}([])=[]
\end{gathered}
$$

Summation

Sum Illustration Step-by-Step

$$
\begin{aligned}
& \mathfrak{S u m}([a, b, c])=\mathfrak{A p p}(\mathfrak{A d d}(a, \mathfrak{S u m}([b, c])), \mathfrak{S u m}([b, c]) \\
& =\mathfrak{A p p}(\mathfrak{A d d}(a,[b \oplus c, b, c]),[b \oplus c, b, c]) \\
& =\mathfrak{A p p}(([a \oplus b \oplus c, a \oplus b, a \oplus c, a]),[b \oplus c, b, c]) \\
& =[a \oplus b \oplus c, a \oplus b, a \oplus c, a, b \oplus c, b, c]
\end{aligned}
$$

$$
\begin{aligned}
& \mathfrak{S u m}([b, c])=\mathfrak{A p p}(\mathfrak{A d d}(b, \mathfrak{S u m}([c])), \mathfrak{S u m}([c])) \\
& =\mathfrak{A p p}(\mathfrak{A d d}(b,[c]),[c])=\mathfrak{A p p}([b \oplus c, b],[c]) \\
& =[b \oplus c, b, c]
\end{aligned}
$$

$$
\uparrow
$$

$$
\begin{aligned}
& \mathfrak{S u m}([c])=\mathfrak{A p p}(\mathfrak{A d o}(c, \mathfrak{S u m}([])), \mathfrak{S u m}([])) \\
& =\mathfrak{A p p}(\mathfrak{A d d d}(c,[]),[])=\mathfrak{A p p}([c],[]) \\
& =[c]
\end{aligned}
$$

\uparrow

$$
\mathfrak{S u m}([])=[]
$$

Summation

Sum in Real Practice

Example (Natural Language Example for Sum)

(8) a. John and Mary went to Paris.
b. Bill and Lucy went to Rome.

Summation

Sum in Real Practice

Example (Natural Language Example for $\mathfrak{S u m}$)

(8) a. John and Mary went to Paris.
b. Bill and Lucy went to Rome.

- Necessary Lexical Entries
- Proper Names
- $\llbracket J o h n \rrbracket=\lambda \psi e \phi \cdot \psi \mathbf{j} \mathfrak{S u m}(\mathbf{j}:: e) \phi$

Summation

Sum in Real Practice

Example (Natural Language Example for $\mathfrak{S u m}$)

(8) a. John and Mary went to Paris.
b. Bill and Lucy went to Rome.

- Necessary Lexical Entries
- Proper Names
- $\llbracket J o h n \rrbracket=\lambda \psi e \phi . \psi \mathbf{j} \mathfrak{S u m}(\mathbf{j}:: ~ e) \phi$
- Conjunction "and"
(1) $\llbracket a n d \rrbracket_{d i s}=\lambda A B \psi e \phi . A \psi e\left(\lambda e^{\prime} . B \psi e^{\prime} \phi\right)$
(2) $\llbracket a n d \rrbracket_{\text {coll }}=\lambda A B \psi e \phi \cdot A(\lambda x \cdot B(\lambda y \cdot \psi(x \oplus y))) e \phi$

Summation

Distributive "and"

Summation

Collective "and"

Summation

Sum in Real Practice Continued

Similar for (8-b)

Summation

Sum in Real Practice Continued

(8)

```
\lambdae\phi.(Go_Paris}(j)\wedgeGo_Paris(m)\wedge Go_Rome(b) ^Go_Rome(I)\wedge
\phi(j::m:: b :: I :: j\oplusm::j\oplusb::j\oplusI::m\oplusb::m\oplusI::b\oplusI
    ::j\oplusm\oplusb::j\oplusm\oplusI::m\oplusb\oplusI::j\oplusm\oplusb\oplusI::e))
    \lambdae\phi.(Go_Paris}(j)\wedgeGo_Paris(m)\wedge Go_Rome(b)^
Go_Rome(I) ^\phi(Sum(j :: Sum(m :: Sum(b :: Sum(I :: e))))))
    \llbracket\mp@subsup{S}{1}{}\cdot\mp@subsup{S}{2}{}\rrbracket=\lambdae\phi\cdot\llbracket\mp@subsup{|}{1}{\prime}\rrbrackete(\lambda\mp@subsup{e}{}{\prime}.\llbracket\mp@subsup{S}{2}{}\rrbracket\mp@subsup{e}{}{\prime}\phi)
```


(8-a)
$\lambda e \phi \cdot\left(G o _P a r i s(j) \wedge\right.$ Go_Paris $(m) \quad \lambda e \phi \cdot\left(G o _R o m e(j) \wedge G o _R o m e(m)\right.$ $\wedge \phi(j:: m:: j \oplus m:: e)) \quad \wedge \phi(b:: l:: b \oplus I:: e))$

Summation

Sum in Real Practice Continued

(8)

```
\lambdae\phi.(Go_Paris (j) ^ Go_Paris (m) ^ Go_Rome(b) ^ Go_Rome(I)^
\phi(j::m::b :: I::j\oplusm::j\oplusb::j\oplusI::m\oplusb::m\oplusI::b\oplusI
    ::j\oplusm\oplusb::j\oplusm\oplusI:: m\oplusb\oplusI::j\oplusm\oplusb\oplusl::e))
            \lambdae\phi.(Go_Paris}(j)\wedgeGo_Paris(m)\wedge Go_Rome(b)^
```



```
        \llbracket\mp@subsup{S}{1}{}\cdot\mp@subsup{S}{2}{}\rrbracket=\lambdae\phi\cdot\llbracket\mp@subsup{S}{1}{\prime}\rrbrackete(\lambda\mp@subsup{e}{}{\prime}.\llbracket\mp@subsup{S}{2}{}\rrbracket\mp@subsup{e}{}{\prime}\phi)
```



```
\(\lambda e \phi .\left(G o \_P a r i s(j) \wedge G o \_P a r i s(m) \quad \lambda e \phi .\left(G o \_R o m e(j) \wedge G o \_R o m e(m)\right.\right.\) \(\wedge \phi(j:: m:: j \oplus m:: e)) \quad \wedge \phi(b:: l:: b \oplus I:: e))\)
```


Summation

Sum in Real Practice Continued

(8)
$\lambda e \phi .($ Go_Paris $(j) \wedge$ Go_Paris $(m) \wedge$ Go_Rome $(b) \wedge$ Go_Rome $(I) \wedge$ $\phi(j:: m:: b:: I:: j \oplus m:: j \oplus b:: j \oplus I:: m \oplus b:: m \oplus I:: b \oplus I$
$:: j \oplus m \oplus b:: j \oplus m \oplus I:: m \oplus b \oplus I:: j \oplus m \oplus b \oplus I:: e))$ $\lambda e \phi .\left(\operatorname{Go_ Paris}(j) \wedge \operatorname{Go} \operatorname{Paris}(m) \wedge\right.$ Go_Rome(b) \wedge
Go_Rome(I) $\wedge \phi(\mathfrak{S u m}(j:: \mathfrak{S u m}(m:: \mathfrak{S u m}(b:: \mathfrak{S u m}(I:: e))))))$

$$
\llbracket S_{1} \cdot S_{2} \rrbracket=\lambda e \phi \cdot \llbracket S_{1} \rrbracket e\left(\lambda e^{\prime} \cdot \llbracket S_{2} \rrbracket e^{\prime} \phi\right)
$$

$\begin{array}{cc}\lambda e \phi \cdot\left(G o _P a r i s(j) \wedge G o _P a r i s(m)\right. & \lambda e \phi \cdot\left(G o _R o m e(j) \wedge G o _R o m e(m)\right. \\ \wedge \phi(j:: m:: j \oplus m:: e)) & \wedge \phi(b:: I:: b \oplus I:: e))\end{array}$

Abstraction

More Observations

Example (Abstraction - More Observations)

(9) Two of five students went to school.
a. They worked hard.
b. They had to hand in the homework by tomorrow.

Abstraction

More Observations

Example (Abstraction - More Observations)

(9) Two of five students went to school.
a. They worked hard.
b. They had to hand in the homework by tomorrow.

- QNP: Generalized Quantifier + Noun
- More than one potential group referents are introduced by the same NP

Abstraction

Abstraction in DRT [Kamp and Reyle, 1993]

- Duplex Condition: the relation between two sets, which is constrained by the property of QNP

\square

Abstraction

Abstraction in DRT [Kamp and Reyle, 1993]

- Duplex Condition: the relation between two sets, which is constrained by the property of QNP

Example (Duplex Condition)

Abstraction

Abstraction in DRT [Kamp and Reyle, 1993]

- Duplex Condition: the relation between two sets, which is constrained by the property of QNP

Example (Duplex Condition)

Abstraction

Three Groups

- Maximum Group
- Reference Group / Refset Anaphora
- Complement Group / Compset Anaphora

Figure: Structure Denoted by Generalized Quantifiers

Abstraction

Three Groups

- Maximum Group
- Reference Group / Refset Anaphora
- Complement Group / Compset Anaphora

all/every

no/none

most/some

half

Figure: Structure Denoted by Generalized Quantifiers

Abstraction

Unveiling All Groups

- Proposition: to unveil all potential groups formed from abstraction
- Lexical Entry

Generalized Quantifier

Quan()" and " $\operatorname{Rel}()^{\prime}$ " are quantifier-sensitive

Abstraction

Unveiling All Groups

- Proposition: to unveil all potential groups formed from abstraction
- Lexical Entry

Generalized Quantifier

$\llbracket G Q \rrbracket=\lambda \psi A B e \phi . Q u a n(\psi) x \cdot((A x e \lambda e . \top) \operatorname{Rel}(\psi)(B x e \lambda e . \top)) \wedge$ $\phi((\mathfrak{A b s}(\psi, x):: e)$

Abstraction

Unveiling All Groups

- Proposition: to unveil all potential groups formed from abstraction
- Lexical Entry

Generalized Quantifier

```
\llbracketGQ\rrbracket = \lambda\psiABe\phi.Quan (\psi)x.((Axe\lambdae.T)Rel (\psi)(Bxe\lambdae.T))^
\phi((\mathfrak{Abs}(\psi,x) :: e)
```

- "Quan()" and "Rel()" are quantifier-sensitive
- Quan(every) $=\forall, \operatorname{Quan}(a)=\exists$
- $\operatorname{Rel}($ every $)=\rightarrow, \operatorname{Rel}(a)=\wedge$

Abstraction

Formal Definition for $\mathfrak{A b s}$

Definition (The Abstraction Function $\mathfrak{A b s}$)

$\mathfrak{A} \mathfrak{b s}$ takes two arguments: a generalized quantifier q and the related individual variable x. The output, namely $\mathfrak{A b s}(q, x)$ will be a left context consisting of two group referents R_{i} and C_{i} :

- R : the reference group of individuals denoted by the quantifier;
- C : the complement group of individuals denoted by the quantifier;
- i : the index that signifies the dependency of the two groups.

Abstraction

Formal Definition for $\mathfrak{A b s}$

Definition (The Abstraction Function $\mathfrak{A b s}$)

$\mathfrak{A b s}$ takes two arguments: a generalized quantifier q and the related individual variable x. The output, namely $\mathfrak{A b s}(q, x)$ will be a left context consisting of two group referents R_{i} and C_{i} :

- R : the reference group of individuals denoted by the quantifier;
- C : the complement group of individuals denoted by the quantifier;
- i : the index that signifies the dependency of the two groups.

Example (Entry for "every")

\llbracket every $\rrbracket=\llbracket G Q \rrbracket$ (every)
$\Rightarrow \lambda A B e \phi \cdot Q u a n($ every $) x .(A x e \lambda e . \top \operatorname{Rel}($ every $) B x e \lambda e . \top) \wedge$
$\phi(\mathfrak{A b s}($ every,$x):: ~ e)$
$\Rightarrow \lambda A B e \phi . \forall x .(A x e \lambda e . \top \rightarrow B x e \lambda e . \top) \wedge \phi(\mathfrak{A b s}($ every,$x):: ~ e)$

Abstraction

$\mathfrak{A b s}$ in Real Practice

(10) Every farmer owns a donkey.

Abstraction

$\mathfrak{A b s}$ in Real Practice

(10) Every farmer owns a donkey.

Abstraction

$\mathfrak{A b s}$ in Real Practice

(10) Every farmer owns a donkey.

Abstraction

$\mathfrak{A b s}$ in Real Practice

(10) Every farmer owns a donkey.

Summary

- Conclusion
- Investigating plural anaphora within a new dynamic semantic framework
- A potential list containing accessible plural referents is provided for summation and abstraction respectively
- The framework is sound on the aspect of compositionality
- The proposal is not responsible for the complete task of anaphora resolution
- More elaborate definition on $\mathfrak{S u m}$ and $\mathfrak{A b s}$
- Concern of over generation
- Taking rhetorical structure into consideration
- Combining with event semantics

Summary

- Conclusion
- Investigating plural anaphora within a new dynamic semantic framework
- A potential list containing accessible plural referents is provided for summation and abstraction respectively
- The framework is sound on the aspect of compositionality
- The proposal is not responsible for the complete task of anaphora resolution
- Future Work
- More elaborate definition on $\mathfrak{S u m}$ and $\mathfrak{A b s}$
- Concern of over generation
- Taking rhetorical structure into consideration
- Combining with event semantics

References

Asher, N. and Pogodalla, S. (2011).
Sdrt and continuation semantics.
New Frontiers in Artificial Intelligence, pages 3-15.
de Groote, P. (2006).
Towards a montagovian account of dynamics.
Proceedings of Semantics and Linguistic Theory XVI.

Gillon, B. (1996).
Collectivity and distributivity internal to english noun phrases.
Language Sciences, 18(1):443-468.

Kamp, H. and Reyle, U. (1993).
From discourse to logic: Introduction to model theoretic semantics of natural language, formal logic and discourse representation theory, volume 42.
Kluwer Academic Dordrecht, The Netherlands.
目
Schwertel, U., Hess, M., and Fuchs, N. (2003).
Plural Semantics for Natural Language Understanding.
PhD thesis, PhD thesis, Faculty of Arts-University of Zurich, 2005. Available at
http://www. ifi. unizh. ch/attempto/publications.

