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1 Introduction

In Nature most processes are not in thermodynamic equilibrium. For example, whenever a system
is exposed to a flux of matter or energy in the stationary state, then it is generally not possible to
describe it with standard methods of equilibrium statistical mechanics. For systems out of equilibrium
the probability distribution of configurations is normally not known and a theory which allows one to
calculate macroscopic quantities is not available. Therefore, general results valid for nonequilibrium
processes are of great theoretical interest. This applies in particular to fluctuation relations [1–10],
which are fairly general statements valid for any system out of equilibrium.

A large variety of nonequilibrium systems can be modelled as continuous-time Markov jump pro-
cesses, meaning that the system jumps spontaneously from one classical configuration to the other
with certain rates. If these rates obey detailed balance, the system relaxes into a equilibrium state.
However, if detailed balance is broken, the system will relax into a nonequilibrium stationary state
where the probability current between microstates is non-zero [11]. Maintaining these non-vanishing
probability currents requires an external drive which continuously produces entropy in the environ-
ment. Remarkably, this entropy production can be quantified without knowing the explicit structure
of the environment [12]. It turns out that the average entropy production is zero if and only if detailed
balance is fulfilled, meaning that entropy production can be used as an indicator of nonequilibrium.

Since the entropy production depends on the specific sequence of microscopic transitions (the
so-called stochastic path), it is a fluctuating quantity with a certain probability distribution [13].
A fluctuation relation is an equation that restricts the functional form of this distribution. There
are two different kinds of fluctuation relations, namely, finite time fluctuation relations and infinite
time fluctuation relations (see [9]). Finite time fluctuation relations describe the distribution of the
total entropy (system + environment) and hold exactly for any time interval [13]. Relations of this
kind include the Jarzynski equality [14] and Crooks relation [15]. On the other hand, infinite time
fluctuation relations are asymptotically valid for the entropy produced in the environment (which is
also known as action functional) [5]. Here we will deal with this infinite time relation, and we refer to
it as the fluctuation theorem or the Gallavotti-Cohen-Evans-Morriss (GCEM) symmetry.

Large deviation theory [16–19] is the appropriate mathematical framework to investigate the fluc-
tuation theorem. Using these methods the GCEM symmetry can be recast as a symmetry of the large
deviation function for the probability distribution of the entropy. This symmetry does not yet allow
us to calculate macroscopic observables, but at present it is the most general result for systems out of
equilibrium.

Even though the fluctuation theorem is very general, one might argue that it is also very specific
in the sense that it is valid only for one particular functional of the stochastic path, namely, the
entropy produced in the environment. It is therefore interesting to find out if there are other physically
relevant functionals with a similar symmetry. As a first step in this direction, we recently demonstrated
that the height of an interface in a certain growth model defines a physically relevant time-integrated
current different from the entropy with a symmetric large deviation function [20]. Interestingly, this
symmetry can only be observed for a particular system size of the model because only then the network
of microscopic transitions acquires a particular form.

The objective of the present paper is to generalize the new symmetry found in [20]. We prove that
for a class of jump processes with a particular network of states we can find time-integrated currents
different from entropy displaying a symmetric large deviation function. This symmetry is similar to the
GCEM symmetry because it restricts the form of a large deviation function related to a time-integrated
current. However, it is important to note that our symmetry is different from the GCEM symmetry
because it refers to a different time-integrated current and has a slightly different physical origin.

It is known that the GCEM symmetry is a direct consequence of the fact that the entropy is given
by the weight of a stochastic path divided by the weight of the time-reversed path. In this sense, the
origin of the GCEM symmetry is related to time-reversal. An interesting question, which we address
here for a particular case, would be to explain the origin of the symmetry. We show that it is also
associated with time-reversal, but in a more hidden way: it comes to light only when we perform an
appropriate grouping of stochastic trajectories.
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The organization of the paper is as follows. In Sec. 2 we define time-integrated currents and briefly
review the fluctuation theorem. In Sec. 3 we prove the new symmetry relation. Some physical examples
where our symmetry appears in physically meaningful time-integrated currents are presented in Sec. 4.
Before concluding we discuss the origin of the symmetry for a simple four states system in Sec. 5.

2 Time-integrated currents and the fluctuation theorem

Continuous-time Markov jump processes are defined by a space of microscopic configurations c ∈ Ω in
which the system evolves by spontaneous transitions c → c′ at rate wc→c′ . The probability P (c, t) of
finding such a system at time t in the configuration c evolves according to the master equation

d

dt
P (c, t) =

∑

c′ 6=c

(

P (c′, t)wc′→c − P (c, t)wc→c′

)

. (1)

For simplicity we assume that stationary probability distribution exists P (c) = limt→∞ P (c, t). If this
distribution obeys the condition of detailed balance P (c)wc→c′ = P (c′)wc′→c the stationary state is an
equilibrium state, otherwise the system is out of equilibrium.

A stochastic trajectory during the time interval [t0, tf ] is a sequence of M jumps

−→
CM,t : c(t0)→ c(t1)→ c(t2)→ . . .→ c(tM ) (2)

taking place at times t1, t2, . . . , tM ∈ [t0, tf ]. Note that, the length of the time interval T = tf − t0
is given while the number of jumps M is a random variable that may assume different values for
different trajectories. In what follows we assume that all microscopic transitions are such that, i.e.
wc→c′ 6= 0 ⇔ wc′→c 6= 0, meaning that any stochastic path can be reversed.

Time-integrated currents

A time-integrated current is a functional of the stochastic trajectory

J [
−→
CM,t] =

M−1
∑

i=0

θc(ti)→c(ti+1) , (3)

which changes its value by θc→c′ whenever a jump from c→ c′ occurs. The increments are assumed to
be antisymmetric, i.e. θc→c′ = −θc′→c. Using the master equation the expectation value is

〈J〉 =

∫ tf

t0

dt
∑

c,c′

θc→c′P (c, t)wc→c′ . (4)

In the stationary state this expression reduces to 〈J〉 = T
∑

c,c′ θc→c′P (c)wc→c′ , i.e. the current in-
creases on average linearly with T . Since the system relaxes towards a stationary state, in the limit of
T →∞ the quotient J/T tend to a constant, which is

lim
T→∞

J

T
→
∑

c,c′

θc→c′P (c)wc→c′ . (5)

More specifically, one expects that the corresponding probability distribution P
(

J
T = x

)

becomes more
and more peaked around this value as T →∞. Assuming that the large deviation principle holds, the
large deviation function of this probability distribution is defined by [16–18],

lim
T→∞

P

(

J

T
= x

)

= exp[−TI(x)]. (6)

The function I(x) measures the rate at which the current deviates from its average value.
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Entropy production and fluctuation theorem

A very prominent time-integrated current is the entropy. If we have a jump process describing a physical
system in contact with external reservoirs, this quantity describes the amount of entropy which is
generated by the external driving in a fictitious external environment [12, 13, 21]. More specifically,
each transition c→ c′ changes the entropy in the environment by ln wc→c′

wc′→c
. Therefore, the accumulated

entropy production along a stochastic path
−→
CM,t is a time-integrated current of the form

Js[
−→
CM,t] =

M−1
∑

i=0

ln
wc(ti)→c(ti+1)

wc(ti+1)→c(ti)
. (7)

The fluctuation theorem reads [5]
Is(x)− Is(−x) = −x, (8)

where Is(x) is the large deviation function associated with limT→∞ P (Js

T = x). This property of the
entropic current is also referred to as the GCEM symmetry.

Determining the large deviation function

The master equation (1) can be rewritten in the form

d

dt
P (c, t) = −

∑

c′

L̂cc′P (c′, t), (9)

where L̂ is the Markov generator with elements

L̂cc′ =

{

−wc′→c if c 6= c′

λ(c) if c = c′
. (10)

Here
λ(c) =

∑

c′ 6=c

wc→c′ (11)

denotes the escape rate from configuration c. For each time-integrated current of the form (3), one can

now define a modified generator L̂(z) by

L̂(z)cc′ =

{

−wc′→c exp(−z θc′→c) if c 6= c′

λ(c) if c = c′
. (12)

The scaled cumulant generating function Î(z), of the respective time-integrated current J , is defined
by

lim
T→∞

〈exp(−zJ)〉 = exp(−T Î(z)). (13)

It can be shown that Î(z) is given by the minimum eigenvalue of the modified generator (12) [5].
Moreover, the Grätner-Ellis theorem [16–18] states that I(x) is given by the Legendre-Fenchel transform

of Î(z), i.e.,

I(x) = maxz

(

Î(z)− xz
)

, (14)

with z real. Note that Î(0) = 0 because in this case L(z) reduces to the Markov generator L with the
minimum eigenvalue 0. The GCEM symmetry (8) in terms of the scaled cumulant generating function

of the entropy Îs(z) is

Îs(z) = Îs(1− z). (15)

The advantage of dealing with the scaled cumulant generating function is that it is easier to calculate
in several situations. In the present case it corresponds to determine the minimum eigenvalue of the
Perron-Frobenius matrix (12). Note that, the curve Îs(z) has a convex shape, vanishes at z = 0 and
z = 1, and reaches its minimum at z = 1/2.
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Fig. 1 Artificial network of configurations cik with periodic boundary conditions. The process can jump between
configurations that are connected by a line.

Non-entropic time-integrated currents

Is it possible to find other time-integrated currents with a GCEM-like symmetry? Previous works (see
e.g. [9, 22]) have shown that such currents do exist. However, these examples are unsatisfactory in so
far as the proposed currents differ from the entropy only initially while they become proportional to

the entropy in the long time limit. If we call such a current Jr, this means that Îr(z) = Îr(E − z).

Moreover, since the current Jr becomes proportional to entropy in the long time limit, Îr(zE) = Îs(z),
i.e., the rescaled scaled cumulant generating functions of Jr and Js have the same functional form.

The main objective of the present paper is to show that it is possible to find symmetric currents
which differ from the entropy even in the limit T →∞ so that their rescaled scaled cumulant generating
functions differ from Îs(z), even tough they are both symmetric and touch the horizontal axis at the
same points (see below in Figs. 4, 6, and 8).

Counting the degrees of freedom

Before proceeding let us point out that there are certain restrictions that reduce the degrees of freedom
in the space of time-integrated currents. As such currents are specified by an antisymmetric matrix
θcc′ = −θc′c there are in principle N(N − 1)/2 degrees of freedom, where N is the number of states.
However, not all of them are independent. To see this let us consider the elementary time-integrated
currents

Jc→c′ [
−→
CM,t] =

M−1
∑

i=0

(

δc,c(ti)δc′,c(ti+1) − δc′,c(ti)δc,c(ti+1)

)

(16)

from which all other currents can be constructed by linear combination. The current Jc→c′ [
−→
CM,t] is

simply the number of transitions c → c′ minus the number of reverse transitions c′ → c along the
stochastic path

−→
CM,t. The sum over all destinations

Nc =
∑

c′

Jc→c′ (17)

is just the number how often the system reaches the configuration c minus the number how often this
configuration is left, hence Nc can only take the values 0 and ±1. This implies that

∑

c′

Jc→c′

T
→ 0. (18)

in the limit T → ∞, meaning that these particular linear combinations of elementary currents do
not contribute to the large-deviation function. This reduces the degrees of freedom by the number of
independent relations (18), which is maximally N .
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3 A symmetric time-integrated current different from entropy

In this section we prove that for jump processes with a particular network of states and suitably chosen
transition rates one can define a current with a symmetric large deviation function which differs from
the one for the entropy. The structure of this network is shown in Fig. 1. It consist of configurations
cik organized in columns labeled by a lower index k = 0, . . . , Q− 1, each of them including nk different
configurations labeled by an upper index i = 1 . . . nk. Spontaneous jumps are allowed only between
configurations in neighboring columns with periodic boundary conditions, as indicated by straight
lines in the figure. Moreover, we assume that the number of columns Q is even and that even columns
carry only a single configuration, i.e. n0 = n2 = n4 = . . . = 1. This forces the system to go through
periodically arranged bottlenecks of single configurations.

On this network of configurations we consider the current

Jr =

Q−1
∑

k=0

θk

nk
∑

ik=1

nk+1
∑

ik+1=1

J
c
ik
k

→c
ik+1

k+1

, (19)

where θk are numbers and Jc→c′ are the elementary currents defined in Eq. (16). This current increases
by θk if the process process jumps from column k to k + 1 and decreases by the same amount if the
system jumps in the opposite direction, no matter which of the configurations within a column is
selected.

Counting cycles

Assume that the process starts at a particular configuration, say c0. Depending on the yet unspecified
transition rates, the process will perform a random walk from column to column. Whenever it returns
to its starting point c0, it is easy to see that the current defined above will take the value Jr = mΘ,

where Θ =
∑Q−1

k=0 θk and m ∈ Z. The number m tells us how often the system completed a cycle
through all columns 0 → 1 → 2 → . . . → Q − 1 → 0. Therefore, if the rates are chosen in such a way
that the random walk through the columns is biased to the right, m will be on average positive. With
this picture in mind it is intuitively clear that the expectation value of m in the long-time limit is
related to the average current through each of the bottlenecks.

To prove this intuitive argument, we apply the restriction (18) to each of the configurations in the
network. For single but multiply connected configurations at even columns this restriction tells us that
the incoming current is equal to the outgoing current in the long time limit, i.e. for even k we have

nk−1
∑

i=1

Jci
k−1

→ck

T
=

nk+1
∑

i=1

Jck→ci
k+1

T
. (20)

For the simply connected configurations in columns with odd k, we have instead

Jci
k
→ck+1

T
=

Jck−1→ci
k

T
, (21)

where i = 1, . . . , nk. From the above relations it is easy to show that the current in the large deviation
regime is given by

Jr
T

= Θ

n1
∑

i=1

Jc0→ci
1

T
. (22)

This result proves that the large deviation properties of the current do not depend individually on
the contributions θk but only on their sum Θ =

∑

k θk. This means that all currents of the form (19)
are proportional in the long-time limit and therefore characterized (up to rescaling) by the same large
deviation function.
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Fig. 2 Local transition cycle (left) and complete transition cycle through all columns (right).

Structure of the characteristic polynomial

We now prove that for suitably chosen transition rates the scaled cumulant generating function of Jr
exhibits the symmetry (15). Following Ref. [8] we first consider the characteristic polynomial

P (z, x) = det
(

xI − L̂(z)
)

=
∑

π

sgn(π)
∏

c

(

xδc,πc
− L̂(z)c,πc

)

(23)

where the sum runs over all permutations π of the available configurations. Here L̂(z) denotes the
modified generator (12) with the matrix elements

L̂(z)c′,c = −wc→c′ exp(−z θc→c′) + δc,c′λ(c) (24)

where λ(c) is again the escape rate (11). Since the off-diagonal entries represent the possible microscopic
transitions only those permutations will contribute to the determinant which correspond to a set of non-
intersecting transition cycles. In the network of configurations shown in Fig. 1 there are three types of
closed transition cycles, namely local cycles which do not change the current Jr, and cycles extending
over the whole system in positive or negative direction, changing the current by ±Θ (see Fig. 2).
In the determinant this means that permutations corresponding to local cycles are z-independent
since the exponential factors drop out. Conversely, complete cycles extending over the whole system
contribute to the sum with terms which are proportional to e±zΘ, respectively. We can therefore split
the characteristic polynomial (23) into three parts

P (z, x) = f(x)e−zΘ + f(x)ezΘ + g(x) . (25)

Labelling each complete cycle c0 → ci11 → c2 → ci33 . . .→ c
iQ−1

Q−1 → c0 by a multiindex i := (i1, i3, . . . , iQ−1)
the first two functions can be expressed as

f(x) =
∑

i

TiRi(x) , f(x) =
∑

i

T iRi(x) (26)

where Ti and T i are the products of all rates along the cycle in forward and backward direction,
respectively. Explicitly,

Ti = w
c0→c

i1
1

w
c
i1
1

→c2
. . . w

cQ−2→c
iQ−1

Q−1

w
c
iQ−1

Q−1
→c0

, T i = w
c0→c

iQ−1

Q−1

w
c
iQ−1

Q−1
→cQ−2

. . . w
c2→c

i1
1

w
c
i1
1

→c0
.

(27)
Moreover, R comprises all diagonal entries coming from the configurations that are not involved in the
cycle:

Ri(x) =

Q/2
∏

k=1

n2k−1
∏

j2k−1=1,j2k−1 6=i2k−1

(

−λ(c
j2k−1

2k−1 ) + x
)

(28)

There is also a complicated expression for g(x) but, as we will see below, this function is not needed
for finding the symmetry.

7



Symmetry condition and derivation of the constraints

Clearly, a symmetry of the characteristic polynomial P (z, x) = P (E− z, x) is a sufficient condition for

the symmetry Îr(z) = Îr(E − z) of the minimal eigenvalue. Because of Eq. (25) this means that the
condition

f(x) = exp(EΘ)f (x) (29)

implies a GCEM symmetry of the current defined in (19). Since f(x) and f(x) are polynomials in x of
order N −Q, where N =

∑

k nk is the total number of configurations, we can compare the coefficients

on both sides. Equating the leading order xN−Q we obtain

exp(EΘ) =

∑

i
Ti

∑

i
T i

. (30)

The above formula says that exp(EΘ) is given by the sum of the product of the transition rates of
each possible forward cycle that goes trough all the columns (increasing the current by Θ) divided by
the sum of the product of the transition rates of each possible backward cycle.

The comparison of the N −Q remaining orders yields a set of constraints for the transition rates.
To this end we rewrite Eq. (28) as a power series

Ri(x) =

N−Q
∑

n=0

(−1)nxN−Q−n σn(Λi) , (31)

where σn(Y1, Y2, . . . , YN−Q) =
∑

1≤l1<l2<...<ln≤N−Q Yl1Yl2 . . . Yln is the elementary symmetric polyno-
mial and where

Λi =
{

λ(cjkk )
∣

∣

∣
k = 1, 3 . . . , Q− 1; jk = 1, . . . , nk; jk 6= ik

}

(32)

is a set of N −Q arguments, consisting of all escape rates which are not part of the cycle labeled by i.
Inserting this power series into Eq. (26) and comparing the coefficients in Eq. (29) one is led to N −Q
constraints for the transition rates of the form

∑

i
Ti

∑

i
T i

=

∑

i
Ti σn(Λi)

∑

i
T i σn(Λi)

n = 1, 2, . . . , N −Q (33)

Simple solutions of the constraints

Even though these constraints appear to be complicated, they are fulfilled trivially by setting

λ(cik) := λk (34)

for all k = 0, . . . , Q− 1 and i = 1, . . . , nk, meaning that all configurations in the same column have the
same escape rate. In this case the function Ri(x) = R(x) does no longer depend on the specific choice

of the cycle labeled by the multiindex i, meaning that the polynomials f(x) and f(x) reduce to

f(x) = R(x)
∑

i

Ti , f(x) = R(x)
∑

i

T i . (35)

Clearly these functions satisfy equation (29), which implies in a symmetric characteristic polynomial
and therewith a GCEM-like symmetry of the current (19).

Another trivial solution that fulfills the constraints is the following. Let us take a column k that
has more than one state and define the quantity

F ik
k =

w
ck−1→c

ik
k

w
c
ik
k

→ck+1

w
ck+1→c

ik
k

w
c
ik
k

→ck−1

, (36)
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where ik = 1, 2, . . . , nk. If this quantity is constant in all columns with more than one site, i.e.

Fk = F ik
k for ik = 1, . . . , nk, (37)

then the ratio

Ti

T i

=

Q/2
∏

k=1

F2k−1 (38)

is independent on the cycle labeled by the multiindex i because the reversal any complete cycle changes
the product of the rates always by the same factor, hence we arrive at the symmetry condition

f(x) =





Q/2
∏

k=1

F2k−1



 f(x) . (39)

Finally, we get a larger class of solutions by mixing the conditions (34) and (37), i.e., some of the
Q columns with more than one state have constant escape rates while the remaining columns have
constant Fk. Using similar arguments one can again show that the ratio f/f is constant and, therefore,
the constraints (33) are fulfilled. Nevertheless, we note that not all the solutions of the constraints
equations are of this type.

The relation between Jr and Js

Depending on the transition rates the current Jr may be proportional to entropy. If this is the case,
then Jr displays the GCEM symmetry. However, when Jr is not proportional to entropy in the large
deviation regime and still with a symmetric large deviation function, then we have a symmetry different
from the GCEM symmetry. In the following we derive the condition on the transition rates such that
Js is proportional to Jr.

For the network of states shown in Fig. 1 the entropy current is given by

Js
T

=
1

T

Q−1
∑

k=1,3,5,...

(

nk
∑

i=1

Jck−1→ci
k
ln

wck−1→ci
k

wci
k
→ck−1

+

nk
∑

i=1

Jci
k
→ck+1

ln
wci

k
→ck+1

wck+1→ci
k

)

. (40)

Using relation (21), in the long time limit the above term divided by T becomes

Js
T

=
1

T

Q−1
∑

k=1,3,5,...

nk
∑

i=1

Jck−1→ci
k
ln

wck−1→ci
k
wci

k
→ck+1

wck+1→ci
k
wci

k
→ck−1

. (41)

Let us first consider the second solution of the constraints (37). In this case the quotient of rates
appearing in the logarithm does not depend on i, therefore, using relation (20) we obtain

Js
T

=
1

T





Q−1
∑

k=1,3,5,...

lnFk





(

n1
∑

i1=1

J
c0→c

i1
1

)

. (42)

In this case Jr is proportional to the entropy and thus exhibits a GCEM symmetry. However, we can
also conclude in opposite direction that for systems obeying the constraint equations (33) in such a
way that (37) is not satisfied for all k, then the current Jr is not proportional to Js. In this case we
expect to have a new type of symmetry different from the GCEM symmetry.

We point out that there is also a multi-dimensional version of the fluctuation theorem [5, 8, 23],
where the joint probability distribution of a set of currents (which when summed give the entropy)
displays a symmetric large deviation function. It is important to note that our symmetry is also different
from this multi-dimensional case. This becomes clear if the fluctuation theorem obtained in [8] using
the cycle decomposition approach [12] is considered. Following [8], the fact that the product of the
transition rates associated with a fundamental cycle in a given direction divided by the product of the
transition rates in the opposite direction is independent of the states within the cycle, is analogous to
our condition (37) holding for all columns.
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Fig. 3 Configuration network of a molecular motor with two possible transition cycles A and B (see text).

Transitions network with odd Q

So far we have considered transition networks shown in Fig. 1 with an even number of columns Q. The
above results can be easily generalized to the case where Q is odd. In this case there are at least two
adjacent columns with only one configuration.

In order to do this generalization we can consider an index k̃ that runs only over columns with
more than one state. Note that we might also have odd columns with one state. Moreover we take Q̃
as the number of columns with more than one state, such that k̃ = 1, . . . , Q̃. For the case where we
have an even number of columns and all odd columns have more than one state we have Q̃ = Q/2 and

k = 2k̃ − 1.

Note that the number of possible complete forward (and backward) cycles is given by
∏Q̃

k̃=1
nk̃ and

only the columns with more than one state are relevant in determining a complete cycle. Now if we
consider the multiindex i = {ik̃} and change definition (32) to

Λi =
{

λ(c
jk̃
k̃
)
∣

∣

∣ k̃ = 1, 2 . . . , Q̃; jk̃ = 1, . . . , nk̃; jk̃ 6= ik̃

}

(43)

the formulas (30), (31) and (33) take the same form if Q is odd. Therefore, the proof also works for
the Q odd case.

4 Examples

In order to illustrate how this new symmetry can be established we consider some examples of physical
systems described by jump processes with a network of states of the type shown in Fig. 1, where
the current Jr has a clear physical meaning. The examples include a molecular motor in a particular
network of states, the so-called restricted solid-on-solid (RSOS) model with four sites, and a growth
model where the nucleation of the first particle and the completion of the layer take place in the
time-scales of the same order.

Molecular motor with four different states

A molecular motor is a biological protein that converts chemical energy into mechanical work by
hydrolysis of adenosinetriphosphate (ATP) to adenosinediphosphate (ADP) and phosphate (P) [24]
(see also [25] for a review in fluctuation relation for molecular motors). Unlike macroscopic motors,
which move unidirectionally in a well-defined cycle, a molecular motor performs a random walk driven
by the chemical potential difference ∆µ = µATP − µADP − µP, moving preferentially forward if ATP
is in excess. This allows one to model molecular motors by stochastic jump processes [26]. Assuming
that the motor is thermally equilibrated with its local environment the jump rate is proportional to
exp(β(∆µ−W )), where W = Fl is the mechanical work to transport the cargo with force F over the
distance l.

The simplest model of a molecular motor would require a cycle of two states. In such a model
the consumption of ATP would be proportional to the mechanical work. However, realistic molecular
motors are often characterized by several possible transition cycles, i.e. the motor protein can advance
by one step through different paths of intermediate configurations with different energy consumption.
In what follows we consider a hypothetical network of four configurations with two transition paths
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denoted by A and B, as shown in Fig. 3. One interesting question is whether such nano-machine leads
to a better efficiency at maximum power than a simple linear chain [27]. Here we are interested in
providing a simple example where our theory can be applied. Clearly, this network belongs to the class
of networks studied in the previous section with Q = 3 columns.

If both paths are characterized by different chemical potential differences ∆µA and ∆µB, the jump
rates in positive direction will be proportional toXA = exp [β (∆µA − Fl)] andXB = exp [β (∆µB − Fl)],
respectively, while the rates for jump in opposite direction do not depend on the chemical potential.
Moreover, we included a constant factor Y in path B, accounting for a possibly different attempt
frequency. Finally we assume that the transition rates between c0 and c2 are symmetric and equal to
1, as shown in Fig. 3. The corresponding time evolution operator in a canonical basis {c0, cA, cB, c2}
reads

L =







(1 +XA + Y XB) −1 −Y −1
−XA (1 +XA) 0 −1
−Y XB 0 Y (1 +XB) −Y
−1 −XA −Y XB 2 + Y






. (44)

We are now going to show that the propagation of the molecular motor defines a time-integrated
current with a clear physical meaning that exhibits a symmetry in the large deviation regime that
differs from the one for the entropy. To this end, we note that there are two possible complete cycles
one going trough cA and the other trough cB. The product of the rates along these cycles in forward
and backward direction are given by

TA = wc0→cAwcA→c2wc2→c0 = X2
A

TA = wc0→c2wc2→cAwcA→c0 = 1

TB = wc0→cBwcB→c2wc2→c0 = Y 2X2
B

TB = wc0→c2wc2→cBwcB→c0 = Y 2 (45)

Following the procedure described in the previous section we consider the time-integrated current (19).
Note that the polynomials (26) are of order one for the present model. Comparing the leading order
terms in Eq. (29) we obtain the condition

exp(EΘ) =
TA + TB

TA + TB

. (46)

Comparing the terms of order x0 we obtain a constraint on the transition rates of the form

TA + TB

TA + TB

=
TAλB + TBλA

TAλB + TBλA

, (47)

where λA = XA + 1 and λB = Y (XB + 1) are the escape rate in the configurations CA and CB ,
respectively. This equation has two solutions, namely TA/TA = TB/TB, for which (37) holds so that
the current is proportional to entropy in the large deviation regime, and λA = λB , which is the one
that gives symmetry different from GCEM. Therefore, we need λA = λB , which implies

Y = (1 +XA)/(1 +XB). (48)

Without loss of generality we choose∆µA > ∆µB, which gives Y > 1. In this case, the above restriction
on Y means that the cycles that go trough configurations with higher chemical potential evolve at a
slower time-scale.

Assuming this condition to hold, we consider a time-integrated current of the form (19), namely
the mechanical work

Jm = Fl
(

JcA→c2 + Jc0→cA + JcB→c2 + Jc0→cB

)

(49)

for which the factor (30) is given by

E =
1

2Fl
ln

TA + TB

TA + TB

=
1

2Fl
ln

[

(

X2
A +X2

B

)

(1 +XB)
2

(1 +XA)
2
+ (1 +XB)

2

]

. (50)
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Fig. 4 Scaled cumulant generating functions for F = β = l = 1, ∆µA = 3, and ∆µB = 2. The black line
corresponds to the entropy and the red line corresponds to mechanical work (with z → z/E). They are obtained
from the minimum eigenvalue of (51) and (52), respectively. They are both symmetric and not proportional.

In order to demonstrate that this quantity exhibits a non-GCEM symmetry, we compute the smallest
eigenvalues Îs(z) and Îm(z) of the modified time evolution operators (12) for both the entropy

L̂s(z) =









(1 +XA + Y XB) −Xz
A −Y Xz

B −1

−X
(1−z)
A (1 +XA) 0 −Xz

A

−Y X
(1−z)
B 0 Y (1 +XB) −Y Xz

B

−1 −X
(1−z)
A −Y X

(1−z)
B 2 + Y









(51)

and for the mechanical work

L̂m(z) =







(1 +XA + Y XB) −1 exp(Flz) −Y exp(Flz) −1
−XA exp(−Flz) (1 +XA) 0 −1 exp(Flz)
−Y XB exp(−Flz) 0 Y (1 +XB) −Y exp(Flz)

−1 −XA exp(−Flz) −Y XB exp(−Flz) 2 + Y






. (52)

As expected, the large deviation function for the entropy obeys the GCEM symmetry Îs(z) = Îs(1−z)

while the mechanical work fulfills the symmetry Îm(z) = Îm(E − z) with E given in (50). Moreover,
plotting Is(z) with Im(Ez) in Fig. 4 we see that the rescaled Legendre transforms of the large deviation
functions are different. Therefore, the mechanical work is a time-integrated current with a clear physical
meaning that exhibits a new type of symmetry that differs from the GCEM symmetry of the entropy.

Restricted solid on solid growth model in a four sites lattice

The second example is a restricted solid-on-solid (RSOS) model for interface growth [20]. In this
model the interface configuration is described by height variables hi ∈ Z residing on the sites i of a
one-dimensional lattice. Particles are deposited everywhere with rate q while they evaporate with rate 1
from the edges and with rate p from the interior of plateaus, provided that the restriction hi − hi±1 is
not violated (see left panel of Fig. 5). On an infinite lattice one observes that the interface roughens
according to the predictions of the Kardar-Parisi-Zhang universality class [28].

Let us now consider a small system with L = 4 sites with periodic boundary conditions. Moreover,
let us identify all configurations which differ only by translation either in space or in height direction
so that the interface can be in six possible configurations. By doing that, it can be demonstrated that
the network of states takes the from shown in the right panel Fig. 5 (see [20] for details). This network
belongs to the class of networks studied in the previous section. Moreover, one can easily show that

12



c

c

c

c

c

c

0

1

1
A

B

A
3

3
B

2

q

q q q

1

q
q

p
p 1

(a)

(b)

2

4q

4p

2q2q

2q

p2p

1 2

Fig. 5 Restricted solid on solid model. Left: Dynamic rules for (a) deposition and (b) evaporation. Right:
Transition network of the model with four sites and periodic boundary conditions (see text).

the escape rates λ(c3B) = λ(c3A) = 2q + 2 in column 3 are constant and that the rates across column 1
obey the condition (37),

wc0→cA
1
wcA

1
→c2

wc2→cA
1
wcA

1
→c0

=
wc0→cB

1
wcB

1
→c2

wc2→cB
1
wcB

1
→c0

=
q2

p
. (53)

Hence, as explained in the previous section, the process fulfills the constraint (33).

The most important time-integrated current of the form (19) with a clear physical meaning is the
total interface height which increases (decreases) by one whenever a deposition (evaporation) happens.
The corresponding modified generator is given by

L̂h(z) =















2q + p+ 2 −4pez −ez 0 −2qe−z −2qe−z

−qe−z 4p+ 4q 0 −ez 0 0
−qe−z 0 q + 1 −pez 0 0

0 −4qe−z −qe−z 1 + p+ 3q −2ez −2ez

−2ez 0 0 −2qe−z +2+ 2q 0
−pez 0 0 −qe−z 0 2 + 2q















(54)

with the factor E = 1
4 ln

3q4

2p+p2 , given by relation (30). Again its lowest eigenvalue Îh(z) has to be

compared with the lowest eigenvalue Îs(z) of the corresponding modified generator for the entropy
current, which reads

L̂s(z) =















2q + p+ 2 −qz(4p)1−z −qz 0 −2q1−z −(2q)1−zpz

−q1−z(4p)z 4p+ 4q 0 −(4q)z 0 0
−q1−z 0 q + 1 −qzp1−z 0 0

0 −(4q)1−z −q1−zpz 1 + p+ 3q −2qz −21−zqz

−2qz 0 0 −2q1−z 2 + 2q 0
−(2q)zp1−z 0 0 −2zq1−z 0 2 + 2q















. (55)

Plotting the scaled cumulant generating function in Fig. 6 we can see that both are symmetric and not
proportional. Unfortunately, for L > 4 sites the height current is no longer symmetric because in this
case the network of transitions is not of the form shown in Fig. 1. In the next example, we introduce
a model where the space of states is of the form displayed in Fig. 1 for any system size.

Growth process with instantaneous monolayer completion

As a third example, let us define a growth process with deposition and evaporation which has the
special property that after a nucleation the actual monolayer is completed on a very short time scale.
The model is defined on a one-dimensional lattice with particles of species α and β, assuming that
only α particles can be deposited on top of β particles and vice versa (see Fig. 7). Once a particle is

deposited with rate dα,βi at site i on a flat surface, the subsequent event is either the completion of the

layer or the evaporation of the particle with rate eα,βi . This describes a limit in which a monolayer is
completed almost instantaneously after the first deposition. The transition rates for the completion of
a layer is 1 and the transition rate for the reversed event, that is, the evaporation of L− 1 particles of
a monolayer, is ǫ.
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Fig. 6 Scaled cumulant generating functions for the RSOS model for p = 0.02 and q = 10. The red line
corresponds to height (with z → z/E) and the black line to the entropy, they are obtained from the minimum
eigenvalue of (54) and (55), respectively.

d

2

α

d 2

α

e ε

1
β

β
e 4

4 1

ε

Fig. 7 Possible cycle of transitions for the case L = 4. The α particles are blue and the β particles red. The
left-most configuration is a flat interface with β particles.

The network of configurations of this model is of the form shown in Fig. 1 with Q = 4, where
c0 and c2 correspond to flat interface configurations while the columns c1 and c3 have L states, each
corresponding to a single particle nucleated at one of the L sites. In this model the physically relevant
time-integrated current of the form (19) is the interface height, which increases by 1/L when a particle
is deposited on a flat interface, and by (L− 1)/L whenever a monolayer is completed.

The product of rates on a forward and backward cycle through ci1 and cj3 are Tij = dαi d
β
j and

T ij = ǫ2eαi e
β
j while the escape rates are λ(ci1) = λα

i = 1 + eαi and λ(ci3) = λβ
i = 1 + eβi . Hence, the
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Fig. 8 Scaled cumulant generating functions for the growth model with fast monolayer completion. We used
L = 3, dα1 = 1, dα2 = 2, dα3 = 3, dβ

1
= 2, dβ

2
= 2, dβ

3
= 5, eα1 = eα2 = eα3 = 2, eβ

1
= eβ

2
= eβ

3
= 3, and ǫ = 0.05.

The black line is related to entropy and the red line to height.
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polynomials (26) with degree 2L− 2 are given by

f(x) =

L
∑

i=1

L
∑

j=1

dαi d
β
j

∏

l 6=i

(x− eαl − 1)
∏

m 6=j

(x− eβm − 1) (56)

f(x) = ǫ2
L
∑

i=1

L
∑

j=1

eαi e
β
j

∏

l 6=i

(x− eαl − 1)
∏

m 6=j

(x− eβm − 1) (57)

and for the factor (30) we get

E = ln

∑L
i,j=1 d

α
i d

β
j

ǫ2
∑L

i,j=1 e
α
i e

β
j

. (58)

The constraints (33) take the form

∑L
i,j=1 d

α
i d

β
j

ǫ2
∑L

i,j=1 e
α
i e

β
j

=

∑L
i,j=1 d

α
i d

β
j σk

[

λα
1 , . . . , λ

α
i−1, λ

α
i+1, . . . , λ

α
L, λ

β
1 , . . . , λ

β
j−1, λ

β
j+1, . . . , λ

β
L

]

ǫ2
∑L

i,j=1 e
α
i e

β
j σk

[

λα
1 , . . . , λ

α
i−1, λ

α
i+1, . . . , λ

α
L, λ

β
1 , . . . , λ

β
j−1, λ

β
j+1, . . . , λ

β
L

] , (59)

where k = 1, 2, . . . , 2L− 2. Whenever the deposition and evaporation rates fulfill the above equation,
the probability distribution of velocity will symmetric with respect to (58). Again, this symmetry is
generally different from the GCEM symmetry. As an example in Fig. 8 we plot the scaled cumulant
generating function for the entropy and height for a system with L = 3 sites, where the transition rates
are chosen in such a way that the escape rate is constant in columns c1 and c3 so that the relation
(59) is satisfied.

5 On the origin of the symmetry

In the following we demonstrate that the new symmetry we proved here also comes from time-reversal.
However, in order to see the symmetry we have to consider a functional of a group of trajectories
instead of a single trajectory. We will restrict our analysis to the four-state system shown in Fig. 3, but
we expect the same kind of proof to be valid for general networks of the form shown in Fig . 1. Before
going into detail, we provide a simple demonstration of the GCEM symmetry, where it becomes clear
that its physical origin is related to time-reversal.

A simple demonstration of the fluctuation theorem

As in Sect. 2 we consider stochastic trajectory with M jumps in the time interval [t0, tf ] and jumps

from c(ti) to c(ti+1) take place at times ti. We denote this trajectory by
−→
CM,t and its weight is given

by

W [
−→
CM,t] = exp[−λ(c(tM ))(tf − tM )]

M−1
∏

i=0

wc(ti)→c(ti+1) exp[−λ(c(ti))(ti+1 − ti)], (60)

where λ(c) is the scape rate from state c. We note that we should also multiply the weight by the
probability distribution of the initial state, but we are considering a uniform initial distribution of
states. The reversed trajectory, where the system starts at state c(tM ) at time tf (again with the
uniform distribution) and jumps from state c(ti+1) to state c(ti) at time tf + t0 − ti+1, is denoted by
←−
CM,tf+t0−t. The weight of this trajectory is written as

W [
←−
CM,tf+t0−t] = exp[−λ(c(tM ))(tf − tM )]

M−1
∏

i=0

wc(ti+1)→c(ti) exp[−λ(c(ti))(ti+1 − ti)]. (61)

15



The entropy current (7) is related to the weight of a trajectory divided by the weight of the time-
reversed trajectory by

exp(−Js[
−→
CM,t]]) =

W [
←−
CM,tf+t0−t]

W [
−→
CM,t]

, (62)

From (62) it follows that

W [
−→
CM,t] exp(−X)δ(Js[

−→
CM,t]−X) = W [

←−
CM,tf+t0−t]δ(Js[

−→
CM,t]−X) . (63)

Summing over all possible trajectories and using Js[
−→
CM,t] = −Js[

←−
CM,tf+t0−t] we obtain the fluctuation

theorem (8), i.e.,
P (Js = −X)

P (Js = X)
= exp(−X). (64)

This demonstrates that the GCEM symmetry is a direct consequence of the fact that the entropy is
the weight of a trajectory divided by the weight of the time-reversed trajectory.

Time-reversal of a group of trajectories

We now consider Markov jump process with the network of states given in Fig. 3. In the following we
will denote the states cA and cB by cA1 and cB1 , respectively. Here, instead of considering one stochastic
trajectory, we consider a certain group of trajectories (or class of trajectories), which can be defined
as follows. Two trajectories belong to the same class if they have the same number of jumps taking
place at the same times ti, following of the same sequence of columns. For example, the trajectories
c0 → cA1 → c2 → c0 and c0 → cB1 → c2 → c0 belong to the same class. More generally, a trajectory
that goes trough column 1 for K different times pertains to a class with 2K trajectories.

We denote this group of trajectories by {
−→
CM,t} and its weight, which is the sum of the weights of

each trajectory in the group, by R[{
−→
CM,t}]. We define a quantity J̃ such that

exp(−J̃ [{
−→
CM,t}]) =

R[{
←−
CM,tf+t0−t}]

R[{
−→
CM,t}]

, (65)

where R[{
←−
CM,tf+t0−t}] is the sum of the weights of the reversed trajectories in the group and are using

a tilde to denote functionals of the group of trajectories. Note that, unlike the entropy, the current J̃
is a functional of a group of trajectories. What we show next is that in the case λ1 = λ(cA1 ) = λ(cB1 )

(which is the sufficient condition (34) for the symmetry), then the the functional J̃r, which is generated

by the current Jr in the way explained below, is equal to J̃ , provided the increments θk defined in (19)
are chosen appropriately.

The difference between a current that is a functional of the stochastic path
−→
CM,t and a current

that is a functional of the group of paths {
−→
CM,t} is in the increment when there is a jump to an state

at column 1. For the second kind of currents the increment is as follows. Let us consider a trajectory
which at time ti−1 hops to a state c(ti) that pertains to the column c1, and stays in that state during

the time interval ti − ti−1. The contribution to the current J̃ [{
−→
CM,t}] is given by

ln
wc(ti−1)→cA

1
wcA

1
→c(ti+1) exp[−λ(c

A
1 )(ti − ti−1)] + wc(ti−1)→cB

1
wcB

1
→c(ti+1) exp[−λ(c

B
1 )(ti − ti−1)]

wc(ti+1)→cA
1
wcA

1
→c(ti−1) exp[−λ(c

A
1 )(ti − ti−1)] + wc(ti+1)→cB

1
wcB

1
→c(ti−1) exp[−λ(c

B
1 )(ti − ti−1)]

.

(66)
If the escape rate is constant at column 1 the above term becomes

ln
wc(ti−1)→cA

1
wcA

1
→c(ti+1) + wc(ti−1)→cB

1
wcB

1
→c(ti+1)

wc(ti+1)→cA
1
wcA

1
→c(ti−1) + wc(ti+1)→cB

1
wcB

1
→c(ti−1)

. (67)

Note that, the same relation holds if the relation (37) is valid at column 1. The fact that the scape
rates are constant simplify the situation considerably: in this case the dependence on the time interval
ti − ti−1 disappears. From now on we assume that the escape rates are constant at column 1.
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The current Jr is a functional that is invariant within the class of trajectories, i.e., all the trajectories
in the same group have the same value of Jr. This important property comes from the fact the the
current (19) is defined in a way such that it does not discriminate between different states in the same

column. Hence, Jr induces a current J̃r defined on a class of trajectories by the relation

J̃r[{
−→
CM,t}] = Jr[

−→
CM,t] for

−→
CM,t ∈ {

−→
CM,t}. (68)

If we consider the current Jr with the increments

θ0 = θ1 =
1

2
ln

wc0→cA
1
wcA

1
→c2 + wc0→cB

1
wcB

1
→c2

wc2→cA
1
wcA

1
→c0 + wc2→cB

1
wcB

1
→c0

, θ2 = ln
wc2→c0

wc0→c2

, (69)

then it is clear that J̃r[{
−→
CM,t}] is equal to the current given in (65). It then follows that

R[{
−→
CM,t}] exp(−X)δ(J̃r[{

−→
CM,t}]−X) = R[{

←−
CM,tf+t0−t}]δ(J̃r[{

−→
CM,t}]−X) . (70)

Now summing over all possible group of trajectories we get P (J̃r=−X)

P (J̃r=X)
= exp(−X). Since relation (68)

gives P (J̃r = X) = P (Jr = X) we finally obtain

P (Jr = −X)

P (Jr = X)
= exp(−X). (71)

This last relation implies the symmetry for the current Jr with the choice of increments (69). However,
as we proved in (22), at large time all the currents Jr are proportional for any choice of increments θk.
Therefore, this argument shows that the symmetry in the current Jr comes also from time-reversal, but
at a more coarse grained level. We point out that functionals of a group of paths have been considered
also in [29], however in a rather different context.

We believe that the same demonstration can be extended for the more general network of Fig. 1.
However, formalizing the proof for this more general case leads to much more cumbersome formulas.
We pretend to address this problem in future work.

6 Conclusion

In this paper we have investigated a new symmetry of time-integrated currents which is generally
different from the GCEM-symmetry of the entropy current in the long time limit. It is valid for a
very restricted class of Markov processes in the sense that they have the very peculiar network of
configurations shown in Fig. 1. Moreover, the symmetry appears only when the transition rates fulfill
a certain set of constraints. Nevertheless, to our knowledge, this is the only case where a current not
proportional to the entropy in the large deviation regime displays a symmetric large deviation function.

We showed three physical examples where this current is a relevant physical observable. We consid-
ered a toy model for a molecular model, where the mechanical work has a symmetric large deviation
function different from the one for the entropy. Moreover, we analyzed two growth models where the
height displays such a symmetry.

As is the case of the GCEM symmetry, the origin of our symmetry seems to be related to time-
reversal. However, as we showed in Sec 5 for a 4 states system, the symmetry becomes clear only
when we consider a functional of a group of stochastic trajectories. That is, the symmetric current
as a functional of the group of trajectories is given by the weight of the trajectories divided by the
weight of the reversed trajectories. We demonstrated the symmetry with this grouping of trajectories
argument only for the specific 4 states system, but we expect the same kind of proof also to be valid
for the whole class of networks considered here.

A natural extension of the this work is to look for other currents, in a more general space of states,
with a symmetric large deviation function. This can be done by looking for the conditions that the
transition rates have to fulfill in order for the characteristic polynomial of the modified generator
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to be symmetric. We expect that whenever this characteristic polynomial is symmetric, the origin
of the symmetry should be related to time-reversal (of a trajectory or a group of trajectories). One
might speculate about a situation where the characteristic polynomial of the modified generator is not
symmetric, however its minimum eigenvalue is still symmetric. In this case the origin of the symmetry
might be also related to time-reversal, but of some most probable stochastic trajectory dominating a
sum over different trajectories. Ultimately, it would be of great theoretical interest for nonequilibrium
statistical physics to find out which are the time-integrated currents with a symmetric large deviation
function and what might be the origin of these symmetries.
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26. Jülicher, F., Rev. Mod. Phys. 69, 1269 (1997)
27. Schmiedl, T., Seifert, U.: Euro Phys. Lett., 83, (2008)
28. Kardar, M., Parisi, G., Zhang, Y. -C.: Phys. Rev. Lett. 56, 889 (1986)
29. Rahav, S., Jarzynski, C.: J. Stat. Mech., P09012 (2007)

18


	1 Introduction
	2 Time-integrated currents and the fluctuation theorem
	3 A symmetric time-integrated current different from entropy
	4 Examples
	5 On the origin of the symmetry
	6 Conclusion

