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Abstract. We study the dynamics of a nonlinear one-dimensional disordered system

from a spectral point of view. The spectral entropy and the Lyapunov exponent are

extracted from the short time dynamics, and shown to give a pertinent characterization

of the different dynamical regimes. The chaotic and self-trapped regimes are governed

by log-normal laws whose origin is traced to the exponential shape of the eigenstates

of the linear problem. These quantities satisfy scaling laws depending on the initial

state and explain the system behaviour at longer times.

PACS numbers: 05.45.-a,71.23.An,05.45.Mt

1. Introduction

The motion of non-interacting particles in disordered lattices has been intensely studied

over the last decades. In one and two dimensions, and for a sufficient amount of disorder

in three dimensions, it has been shown that the spreading of quantum wavepackets

is suppressed, a phenomenon known as Anderson localization [1, 2]. However, the

celebrated Anderson model that leads to this prediction is a highly simplified model

which in particular neglects particle-particle interactions, so that a crucial question is:

Do interactions destroy (or, on the contrary, enhance) Anderson localization?

A burst of interest on the subject was recently driven by the demonstration that

these questions could be studied experimentally and theoretically with an unprecedented

degree of cleanness and precision using ultracold atoms. This has produced an impressive

number of results, concerning both Anderson localization (AL) [3, 4, 5, 6, 7, 8] and the

Anderson transition [9, 10, 11, 12], observed in 3D systems. Moreover, systems of

ultracold bosons turned out to be very well modeled by mean-field approaches [13, 14],

in contrast to fermionic systems where such a simplification of the corresponding many-

body problem is not possible.

From the theoretical and numerical point of view, ultracold bosons in a 1D optical

disordered lattice can be described rather realistically by a simple generalization of the

original Anderson model including a nonlinear term taking into account interactions in

a mean-field description. Numerical studies of the model suggest that the long term
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motion of the particles is subdiffusive [15, 16, 17, 18, 19, 20, 21]. These studies pointed

out in particular the central role of chaotic dynamics in the destruction of AL.

This approach has however two important drawbacks. The first is that the timescale

of subdiffusion is larger by several orders of magnitude than the timescale of the single-

particle dynamics, implying very long computer calculations which make difficult a

full study of the interplay between disorder and interactions. The second is that the

nonlinearity leads to a strong dependence on the initial conditions which also makes

it difficult to give a “global” characterization of the different dynamical regimes. In

previous works, we have shown the existence of scaling laws with respect to the width

of the initial state, allowing, to some extent, such a global characterization [21], and

demonstrated that these scaling laws are robust with respect to decoherence effects [22]

(which can also destroy AL).

In the present work we tackle the problem of interacting ultracold bosons in a 1D

disordered lattice using a spectral analysis that does not require such long computational

times, as the information on the chaotic behaviour is “inscribed” even in early times in

the spectrum of the dynamics. This allows us to perform a more complete and precise

study of the problem over a large range of parameters. A central quantity in our

study, the spectral entropy, proves very useful to characterize the dynamic behaviours,

confirmed by comparing the information extracted from the spectral entropy to the

Lyapunov exponent, another well-known measure of chaotic behaviour. Moreover, we

show that such behaviours are described by “log-normal” laws which can be scaled with

respect to the initial conditions, and we propose a simple physical interpretation of our

findings.

2. The model

We use here the discrete nonlinear Schrödinger equation with diagonal disorder. It is

essentially the same model used in previous works [21, 22], so we only give an outline

of it here.

The mean-field theory applied to ultracold bosons in an optical (ordered) lattice

leads to the so-called Gross-Pitaevskii equation:

i~φ̇(x) =

[

p2

2m
+ V (x) + g1DN |φ(x)|2

]

φ(x)

where φ is the macroscopic wavefunction (or order parameter) describing a Bose-Einstein

condensate well below the critical temperature, V (x) = −V0 cos(2kLx) is the optical

potential and g1D the 1D coupling constant [23]. Tight-binding equations are obtained by

decomposing the wavefunction φ(x) =
∑

n cn(t)wn(x) onto the set of localized Wannier

functions of the first band wn(x) associated to the nth lattice site:

iċn = vncn − cn−1 − cn+1 + g |cn|2 cn, (1)

where we kept only (symmetric) nearest-neighbours couplings, which is justified if the

Wannier functions are strongly localized, that is, for large enough V0. According to usual
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conventions, we measure distances in steps of the lattice and write energies in units of the

coupling constant of neighbour sites T = −
∫

dxwn(x)[p
2/2m+V (x)]wn+1(x) ‡. Finally,

times are written in units of ~/T . The coefficient vn =
∫

dxwn(x)[p
2/2m+V (x)]wn(x)/T

is the diagonal on-site energy and the effect of interactions is taken into account, in

a mean-field approach, by adding the nonlinear term g |cn|2 where the dimensionless

interacting strength is

g =
g1DN

∫

dx|w0|4
T

.

In the absence of disorder, the on-site energy vn does not depend on the site index n and

can be thus set to 0. According to the Anderson’s postulate [1], we introduce diagonal

disorder by picking random on-site energies vn uniformly in an interval [−W/2,W/2].
For g = 0, (1) describes the standard Anderson model, and we shall call the

corresponding eigenstates (eigenvalues) “Anderson” eigenstates (eigenvalues). A few

facts about it will be useful in what follows. The eigenstates are exponentially localized

in average cνn ∼ exp (−|n|/lν) (the overbar indicates the averaging over realizations of

the disorder) with a localization length lν(W ) ∼ 96(1 − ǫ2ν/4)/W
2 [24]. For g 6= 0 the

equation becomes nonlinear, and it is useful, if not strictly rigorous, to interpret the

nonlinear term as a “dynamical correction” to the on-site energy vNL
n = g|cn|2. Previous

works [15, 16, 17, 20, 18, 21] put into evidence the existence of three main dynamical

regimes: For g ≪ W , Anderson localization is expected to survive for very long times,

a regime that we shall call “quasi-localized”. For g ∼ W , the nonlinear correction

vNL
n induces chaotic dynamics leading to subdiffusion and the destruction of AL. For

g ≫W , the very large nonlinear term vNL
n decouples all sites whose populations are not

nearly equal (even in the absence of the disorder), suppressing the diffusive behaviour

and leading to another type of localization, called self-trapping. This dynamics does not

rely on quantum interference and is therefore very robust against external perturbations,

including decoherence [22].

Our aim is to characterize the global dynamics on a relatively short timescale. We

thus study the evolution according to (1) of bosons in a 1D box containing L sites

(typically, L = 101) and put an exponential absorber at each end of the box in order

to prevent wavepacket reflection. The norm of the wavepacket is thus not anymore

conserved as soon as it “touches” the borders, and we characterize the diffusive behaviour

by calculating the survival probability p(t) =
∑

n |cn|2; a value p(t) < 1 indicates that

the packet has diffused outside the box. As in ref. [21], we restrict the analysis to initial

wavepackets of the form

cn(t = 0) =

{

L
−1/2
0 exp (iθn) |n| ≤ (L0 − 1) /2

0 overwise

with L0 ≪ L §.
‡ Wannier functions have the translation property wn(x) = w0(x− n).
§ As discussed in more detail in ref. [21], this form of wavepacket has the advantage of, on the average,

projecting onto all Anderson eigenstates, thus rendering the dynamics roughly independent of the

wavepacket energy.
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Figure 1. Survival probability p at time t = 105 vs interaction strength g for W = 4

and different widths of the initial state : L0 =3 (blue squares), 7 (green triangles), 13

(red diamonds), 21 (cyan stars), 31 (magenta circles), 41 (yellow inverted triangles).

The typical behaviour of the survival probability is illustrated in figure 1, which

represents p(g, t = 105) as a function of the interaction strength g for W = 4 and

for various values of L0. To obtain such smooth curves, the survival probability was

averaged over typically 500 realizations of the disorder and of the initial phases θn. Such

long times are necessary in order to clearly put into evidence the three different regimes

mentioned above, which are then easily identifiable: At low g, the survival probability

is close to one, corresponding to the quasi-localized regime in which AL survives. For

intermediate values of g, the decrease of p indicates that the wave packet has spread

along the box and part of it has been absorbed at the borders, corresponding to a

chaotic regime induced by the nonlinearity that destroys AL. For large values of g, the

survival probability increases again and gets close to 1, indicating that the packet is

self-trapped [15, 16, 21] and has never touched the borders if initially it was thin enough

(e.g. in the L0 = 3 case). In the next section, we show that a complementary way

to describe the dynamics allows to a very precise characterization within much shorter

computation times.

3. Characterizing chaotic dynamics with the spectral entropy

Spectral analysis is a very useful way of analyzing a chaotic dynamics, be it in classical,

“quantum” ‖ or quantum nonlinear chaotic systems [25]. The spectral entropy is a

measure of the “richness” of a spectrum. Chaotic behaviours are associated to continuous

spectra, and thus to a high spectral entropy. Given a quantity M(t), its power spectrum

is defined as

Sf [M(t)] =

∣

∣

∣
M̃(f)

∣

∣

∣

2

∫ fmax

0
df

∣

∣

∣
M̃(f)

∣

∣

∣

2 , f ∈ [0, fmax]

‖ Traditionally the term “quantum chaos” designates the behaviour of a quantum (linear) system whose

classical (nonlinear) counterpart is chaotic.
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where M̃(f) is the Fourier transform of M(t) for t ∈ [0, tmax]. The choice of the value

of tmax determines the resolution of the spectrum. In our case, we chose tmax = 200,

which is a very small value compared to the typical time of emergence of the interacting

regime (t ∼ 105) but which will be shown to be sufficiently high to characterize the

dynamics from a spectral point a view. As we do not expect excitations whose timescale

is inferior to the tunneling time (1 in our rescaled units), we set fmax = 1 ¶. From the

power spectrum, one defines the spectral entropy as

H = −
∫

df S(f) logS(f)

log(fmax)
. (2)

For a perfectly monochromatic signal Sf = δ(f − f0), the spectral entropy is zero,

whereas for a white noise (Sf = 1/fmax) H = 1. The spectral entropy “counts” the

number of frequencies which are present in the signal, and is a good indicator of the

chaoticity of the system [26]. The spectral entropy obviously strongly depends on the

choice of the observable, and its usefulness as a dynamics indicator is reliant on this

choice.

A good observable in the present problem is the so-called “participation number”

P with respect to the Anderson eigenstates, which is defined, in the present case, as

follows. For a given realization of disorder {vn}, we calculate the Anderson eigenstates

in the Wannier basis, φν(x) =
∑

n d
(ν)
n wn(x) corresponding to an energy ǫν , which are

solutions of (1) with g = 0 (the d
(ν)
n replacing the cn). Back to the g 6= 0 case, Equation

(1) allows us to calculate the evolution of the wavepacket ψ(t) =
∑

cn(t)wn(x) under the

action of both disorder and nonlinearity+. At any time, we can express the wavepacket

in the Anderson eigenstates basis

ψ(t) =
∑

ν

qν(t)φν(x), (3)

from which, trivially, qν(t) =
∑

n d
(ν)
n cn(t). The participation number is then defined as:

P =

∑

ν |qν |2
∑

ν |qν |4
. (4)

If g = 0, the φν are the exact eigenstates of the problem, so that the populations |qν |2
are constant. In the non-interacting case g 6= 0, the |qν |2 evolve under the action of

the nonlinearity. The participation number roughly “counts” the number of Anderson

eigenstates participating significantly in the dynamics∗ and its time evolution thus

reflects the apparition of Anderson eigenstates that were not initially populated.

Figure 2 shows the spectral power S(f) of the participation number P in the three

interacting regimes: (a) g = 1 in the quasi-localized regime, (b) g = 100 in the chaotic

regime, and (c) g = 1000 in the self-trapping regime. For g = 1, the dynamics is very

similar to the linear case: The populations of Anderson eigenstates practically do not

¶ None of our results is modified if we set fmax = 2.
+ We use a standard Crank-Nicholson scheme with time-step 0.01 < dt < 0.1.
∗ To see this intuitively, consider two limit cases: If only one ν = ν0 Anderson eigenstate is populated,

|qν |2 = δν,ν0 and thus P = 1; if L0 eigenstates are equally populated, |qν |2 = L−1

0 and P = L0.
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Figure 2. Example of spectral power S(f) for the three different regimes : a) localized

g = 1, b) chaotic g = 100 and c) self-trapped g = 1000 . Other parameters are W = 3,

L0 = 3 and tmax = 200.

evolve in time, as well as the participation number P and the spectrum is dominated

by low frequencies. As a consequence, the spectral entropy, calculated according to (2),

is relatively small: H = 10−2. For g = 100, Anderson eigenstates are strongly coupled

by the nonlinear term, each pair of coupled states generating a Bohr frequency (shifted

by the nonlinear correction), that is ∼ ǫν + g |qν |2 − ǫν′ − g |qν′ |2. In this regime, most

Anderson eigenstates are coupled to each other, so that the power spectrum is almost

flat (with important local fluctuations) at high frequencies, and the spectral entropy

increases by almost an order of magnitude H = 10−1 with respect to the preceding

case. For g = 1000 the wavepacket is self-trapped and only a relatively small number

of Anderson eigenstates whose populations happen to be close enough can interact.

The spectrum is therefore dominated by a finite number of frequencies and the spectral

entropy is reduced, H = 2 × 10−2. However, although populations are stable in this

case, quantum phases may evolve chaotically under the action of the nonlinearity [27].

Our definition of the spectral entropy from the participation number – which does not

directly depends on the phases – excludes this “phase dynamics” from the corresponding

spectrum.

We display in figure 3a the averaged spectral entropy as a function of the

nonlinearity parameter g for different widths L0 of the initial state. One clearly sees the

crossover from the quasi-localized to the chaotic regime, signalled by a marked increase

of H . The smaller the value of L0, the smaller the value of the crossover. This is easily

understandable, as a more concentrated wavepacket leads to a stronger nonlinear term

vNL. On the right side of the plot, one also sees, especially for low values of L0 the

beginning of a decrease of H due to self-trapping.

It is interesting to compare the information obtained from the spectral entropy to

another relevant quantity characterizing chaos, the Lyapunov exponent, which indicates

how exponentially fast neighbour trajectories diverge. This quantity is usually defined

for classical systems, but can be extended, with a little care, for quantum nonlinear

systems [25]. We present in Appendix A a method for calculating the Lyapunov

exponent of a quantum trajectory defined by amplitudes cn [Equation (1)]. Figure 3b

displays the Lyapunov exponent λ obtained with the same parameters as in figure 3a. It

displays a monotonous increase with the nonlinear parameter, even in the region where
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Figure 3. (a) Spectral entropyH and (b) Lyapunov exponent λ vs interaction strength

g for W = 4 and different widths of the initial state : L0 =3 (blue squares), 7 (green

triangles), 13 (red diamonds), 21 (cyan stars), 31 (magenta circles), 41 (yellow inverted

triangles).

the spectral entropy decreases due to self-trapping, evidencing the presence of a regime

of “phase chaos” mentioned above. This clearly shows that H and λ provide different

information on the dynamics of the system, and that H is clearly more adapted to

distinguish the three dynamical regimes.

In section 4 we will discuss the shape of these curves, their scaling properties, and

suggest a physical mechanism explaining such properties.

4. Log-normal law and scaling

As we shall see below, log-normal functions are ubiquitous in the dynamics described

in the present work, and so in various contexts which are not obviously related to

each other. A first example can be found in figure 1, where each curve representing

p(log g) can be fitted with a rather good accuracy by a inverted Gaussian function.

More generally, a log-normal function is defined as

f(x) =
1

x
exp

[

−(log x− µ)2

2σ2

]

= exp(−µ+
σ2

2
) exp

[

−(log x− µ+ σ2)2

2σ2

]

In physics, such a function appears more often as a “log-normal distribution”, related

to the statistics of quantities which are a product of randomly distributed terms [28].

Log-normal statistics is very different from normal (Gaussian) statistics; for example,

the most probable value of a log-normally distributed quantity is different from its

average value. In the following, we shall not only consider statistical distributions over

the realizations of the disorder: figure 1 does not display the distribution of p over the

realizations of disorder but its average as a function of the interacting strength, so does

figure 3a for the spectral entropy. However and more interestingly, we now show that
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Figure 4. Histograms of the spectral entropy H (a) and the Lyapunov exponent λ

(b) for W = 3, L0 = 41 and two interacting strengths : g = 10 (left hand-side blue

histogram), g = 100 (right hand-side red histogram). Black solid lines correspond to

log-normal fits.

the statistical distribution of the spectral entropy and of the Lyapunov exponent are

indeed log-normal.

Let us thus study the distribution of these two quantities over the realizations of

the disorder vn and of the initial phases θn. Figure 4a displays the distributions of

values of H over 104 realizations of the disorder for two values of g, and figure 4b the

corresponding distribution for the Lyapunov exponent λ. As shown by the black fitting

lines, both curves are perfectly fitted by a log-normal function.

In order to have an idea of the origin of these shapes, one can consider a simple,

heuristic model. The destruction of AL is due to the nonlinear coupling between

Anderson eigenstates. Initially unpopulated eigenstates, which, in the absence of

nonlinearity, would never be populated, can be thus excited thanks to a nonlinear

transfer of population. The goal of the simple model developed below is to characterize

the statistical distribution of such excitations. Projecting the wavepacket in the

Anderson eigenbasis [cf. Equation (3)], (1) then reads:

iq̇ν = ǫνqν + g
∑

ν1,ν2,ν3

q∗ν1qν2qν3I(ν, ν1, ν2, ν3) (5)

with I(ν, ν1, ν2, ν3) =
∑

n d
(ν)
n d

(ν1)
n d

(ν2)
n d

(ν3)
n . Populations exchanges are controlled by the

overlap I of four coefficients. The population transfer from eigenstate µ to eigenstate ν

depends on J1 = I(µ, µ, ν, ν), J2 = I(µ, µ, µ, ν) and J3 = I(µ, ν, ν, ν) , the term due to

J1 being for instance :

d |qν |2
dt

= 2gJ1 Im
(

q∗2ν q
2
µ

)

In order to evaluate the probability distribution of J1, we make the assumption that

the coupled Anderson eigenstates are exponentially localized with the same localization

length ξ. The exponential localization is valid on the average and the localization length

is the same if the eigenstates have close enough eigenenergies. We thus write

d(ν)n
2 = tanh

(

1

ξ

)

exp

(

−2|n|
ξ

)
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d(µ)n
2 = tanh

(

1

ξ

)

exp

(

−2|n− l(µ, ν)|
ξ

)

.

The overlap sum J1 can then be written as

J1 = tanh2

(

1

ξ

)

e−2l(µ,ν)/ξ

[

2

1− e−4/ξ
+ l(µ, ν)− 1

]

(6)

where, for simplicity, we have supposed that the spatial distance between the eigenstates,

l(µ, ν), is an integer. The most important term in (6) is e−2l(µ,ν)/ξ . In the limit ξ → 0:

J1 = e−2l(µ,ν)/ξ [l(µ, ν) + 1]

The inverse localization length Λ = 1/ξ follows a normal distribution [29, 24]

P (Λ) ∝ exp[−(Λ− Λ0)
2/2σ2]

we obtain for the distribution of values of the overlap J1

P (J1) = P (Λ)

∣

∣

∣

∣

dΛ

dJ1

∣

∣

∣

∣

∝ 1

J1
exp

[

−(Λ − Λ0)
2

2σ2

]

∝ 1

J1
exp

[

−(log J1 −G)2

2σ̃2

]

where G = log [l(µ, ν) + 1]− 2l(µ, ν)Λ0 and σ̃2 = 4l(µ, ν)2σ2. The overlap sum J1 thus

obeys a log-normal distribution.

We conjecture that overlap sums like J1, controlling the coupling between Anderson

eigenstates, in fact control the destruction of the Anderson localization, and thus

explain the log-normal shapes we observed for H and λ. The above heuristic argument

undoubtedly presents various assumptions that are not rigorously justified, but it has the

merit of putting into evidence the intimate relation between the log-normal distribution

and the exponential localization of the Anderson eigenstates. The link between the

exponential shape and the emergence of log-normal statistics has also been studied in

the case of the conductance of disordered systems [30, 31, 24].

Let us now consider the averaged spectral entropy. In previous works [21, 22],

we showed that suitable scaling with respect to the initial state width L0 allowed a

classification of dynamic regimes independently of the shape of the initial state. In

particular the interacting strength g was scaled as g̃ = gL−s
0 with s ≈ 3/4. This scaling

is meaningless for low values of L0 because in this case, the initial participation number

is not of the order of L0 but is of the order of the maximum Anderson localization

length ℓ0(W ) ∼ 96/W 2. Figure 5a shows that scaling with g̃ and H̃ = HLs
0 make the

curves H(g) corresponding to L0 & 20 collapse to a single curve, except in the strong

self-trapped region. Figure 5b shows the Lyapunov exponent as a function of g̃; the

curves also collapse for L0 & 12. The Lyapunov exponent itself is independent of L0

(with no scaling of the variable λ), which is not surprising as it does not measure

the absolute distance between two quantum trajectories but the timescale of their

exponential divergence.
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Figure 5. (a) rescaled spectral entropy H̃ = HLs

0 with s ≈ 3/4 and (b) Lyapunov

exponent λ vs the rescaled interaction strength g̃ for W = 4 and for L0 =3 (blue

squares), 7 (green triangles), 13 (red diamonds), 21 (cyan stars), 31 (magenta circles),

41 (yellow inverted triangles).

As shown by the black solid line in figure 5a, the scaled spectral entropy H̃ is very

well fitted (outside the strong self-trapped region g̃ > 100) by the log-normal law:

H̃ =
h0

g̃
√
2πσ2

exp

[

−(log g̃ −G)2

2σ2

]

(7)

with three free parameters, the amplitude h0, the center G of the distribution and

the “standard deviation” σ. The study of these fitting parameters as a function of

the disorder W provides a full characterization of the dynamic regime. Instead of

representing the fit parameters h0 and G, we prefer to use more physical quantities,

namely the maximum value of H̃, H̃max =
[

h0 (2πσ
2)

−1/2
]

exp (σ2/2−G) (figure 6a)

and the rescaled interaction strength g̃c = exp (G− σ2) (figure 6b) corresponding to

this maximum. The dependence of the standard deviation σ on W is displayed in

figure 6c. The quantity H̃max is a decreasing function of W : as the localization length

decreases with W , so does the overlap between two neighbour Anderson eigenstates. On

the contrary, g̃c is an increasing function of W : The number of resonances is maximum

when vNL
n is comparable to the typical energy between two neighbour states, itself of

the order of the bandwidth ∼ 4 +W ; g̃c is thus independent of W at low disorders and

increases with W for larger disorders. Finally, in figure 6c, one can notice that the log-

normal curve becomes sharper when the disorder increases, which can be attributed to

the fact that Anderson Localization is more robust against interactions at high disorders.

The fact that the spectral entropy can be determined from a relatively short time

interval also allows one to follow the evolution of the dynamics. Figure 7 shows the

evolution of the spectral entropy H(t), defined as the spectral entropy calculated in an

interval [t, t + 200] , that we shall call, for short, the dynamic spectral entropy. For

the low value of g = 10 (figure 7a), after the destruction of AL, the diffusion of the

wavepacket produces a dilution and a consequent diminution of the nonlinearity that

reduces the chaoticity, and thus the spectral entropy of the system. For the high value

of g = 1000 (figure 7b) one sees a more complex interplay of different regimes: The
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Figure 6. a) Maximum entropy H̃max, b) corresponding interaction strength g̃c and

c) resonant width σ vs disorder W .
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Figure 7. Evolution of the spectral entropy H(t) for W = 4, L0 = 41. For (a) g = 10

one essentially sees the effect of dilution, which progressively weakens the chaoticity

of the system. For (b) g = 103, there is a first phase, in which the self-trapping

is progressively destroyed which is followed by a slow transition towards the chaotic

regime.

initial state is initially frozen in a self-trapping regime, but this regime is unstable (for

this particular set of parameters): If a fraction of the packet escapes the self-trapped

region, the nonlinear contribution vNL
n decreases which leads to a weakening of the

trapping. The destruction of the self-trapping regime takes a much longer time that

the destruction of the AL. One first observes a small decrease of the spectral entropy,

as some eigenstates leave the box and do not interact anymore. Then, when vNL
n has

decreased sufficiently in the center of the packet, the system enters the chaotic regime.

In plots a and b of figure 8 we represented the dynamic spectral entropy H(t) for

three values of L0, corresponding to a same value of g̃ (0.62 in a, 6.17 in b and c).

The curves converge for long times, putting into evidence the existence of a universal

asymptotic regime, independent of the initial state, once the proper scaling on g̃ is

applied. Additional scaling can even be used to describe the transition from the self-

trapping regime to the chaotic regime, as shown in figure 8c. Although we have presently

no physical explanation for the exponents appearing in these scaling laws, these results

strongly support the idea that the features of the nonlinear dynamics should be scaled

again with respect to the initial state [21].
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Figure 8. Scaling of the spectral entropy H(t) for W = 4 and L0 = 13 (blue full

line), L0 = 21 (green dotted) and L0 = 41 (red dashed). The use of the same values

of the scaled nonlinearity g̃ = gL−s

0
[g̃ = 0.62 (a) and g̃ = 6.17 (b)] shows that there is

a universal asymptotic regime. Comparison of plots (b) and (c) shows that additional

adhoc scaling gives an even more universal character to this behaviour.

5. Conclusion

We have shown that the spectral entropy is a very good indicator of the chaoticity

of the dynamics, and allows a very good characterization of the dynamics regimes.

Moreover, it can be calculated dynamically and also gives information on the evolution

of the dynamics. The Lyapunov exponent gives, in the present context, a less complete

characterization of the dynamics. It describes very well the progressive destruction of

the Anderson Localization by the onset of chaotic behaviour, exactly as the spectral

entropy, but it does not give information in the self trapping regime, where “phase

chaos” is still present.

The argument presented in section 4 suggests that the log-normal shape is linked

to the exponential localization of the Anderson eigenstates. It is a bit surprising to find

this link between the behaviour of a strongly nonlinear system and the eigenstates of the

corresponding linear system. From a mathematical viewpoint, spectral analysis (in the

sense of the determination of eigenvalues and eigenvectors) cannot be directly applied to

nonlinear systems, and, presently, there is no alternative analytical method for analyzing

nonlinear systems. The results discussed in the present work and in refs. [21, 22] indicate

that scaling over the initial state is a promising tool for the study of the emerging field

of nonlinear quantum mechanics. In this context, it is worth noting that we have

presently no convincing explanation for the precise values of the exponents appearing

in these scaling laws, and that we have considered only a particularly simple family of

initial states. Moreover, there is no experimental verification of these scaling laws. It

thus appears that a large field of investigations is opened for both theoreticians and

experimentalists in the near future.
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Appendix A. Lyapunov exponent of a quantum trajectory

We are interested in calculating the Lyapunov exponent of the quantum trajectory

c ≡ (cn). Considering two initial conditions ca, cb, which are separated by an

infinitesimal distance d0, the Lyapunov exponent measures the rate of their exponential

divergence.

λ = lim
t→∞

1

t
log

d(t)

d0
(A.1)

where d(t) = |cb(t) − ca(t)|. In principle, one could use directly (A.1) but it turns out

that the trajectories do not evolve in an ensemble of infinite volume. As a consequence

the distance d(t) rapidly saturates and λ tends to 0. The common method to get rid

of this drawback is to let trajectories evolve during a short time period dt and then

evaluate the corresponding Lyapunov exponent

λ0 =
1

dt
log

d1
d0

(A.2)

where d1 = |cb(dt) − ca(dt)|. Before letting the system evolve for another time

interval dt, we rescale trajectories so that the distance between a and b is set to d0 keeping

their relative orientation unchanged. Usually, people rescale the second trajectory

c̃b = cb + d0
d1
(cb − ca)♯ satisfying immediately both requirements. We then obtain

λ1, λ2, .. by iterating the three-steps operation : (i) evolution during a short time dt (ii)

calculation of the corresponding Lyapunov exponent from (A.2) (iii) renormalization of

the trajectories. We finally deduce the final Lyapunov exponent :

λ = lim
N→∞

1

N

N
∑

i=1

λi

where N represents the number of iterations. Unfortunately, the crucial rescaling

operation changes the norm of the second trajectory cb : in the case of quantum systems,

the procedure is therefore based on non-physical states. Here we propose to modify the

step (iii) rescaling both trajectories using the following scheme :

c̃a = αca + βcb

c̃b = γca + δcb

where (α, β, γ, δ) satisfy the following conditions†† :

c̃b − c̃a =
d0
d1

(

cb − ca
)

(A.3)

|c̃a|2 = 1 (A.4)

|c̃b|2 = 1 (A.5)

♯ see for example

http://sprott.physics.wisc.edu/chaos/lyapexp.htm.
††We calculate the Lyapunov exponent without using an absorber potential so that the norm |c|2 is a

conserved quantity.
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Given that d1 = |cb−ca|, the first equation is nothing but the usual scaling condition

which is used for classical systems. Projecting (A.3) on ca and on cb, one immediately

obtains

γ = α− d0
d1

δ = β +
d0
d1

Subtracting (A.4) from (A.5), and using 2ℜ〈ca|cb〉 = 2− d21, we obtain

β = α− d0
d1

and finally from (A.4), we can choose

α =
d0
2d1

+
1

2

√

4− d20
4− d21

to finally deduce β, γ, δ. This method allows an accurate calculation of the Lyapunov

exponent in the discrete system considered in the present work, but it can in principle

be also applied to the continuous Gross-Pitaevskii equation.
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