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Abstract 

 

Cost-benefit analyses (CBA) of flood management plans usually require estimating 
expected annual flood damages on a study area, and rely on a complex modelling 
chain including hydrological, hydraulic and economic modelling as well as GIS-based 
spatial analysis. As most model-based assessments, these CBA are fraught with 
uncertainty. In this paper, we consider as a case-study the CBA of a set of flood-
control structural measures on the Orb Delta, France. We demonstrate the use of 
variance-based global sensitivity analysis (VB-GSA) to i) propagate uncertainty 
sources through the modelling chain and assess their overall impact on the outcomes 
of the CBA, and ii) rank uncertainty sources according to their contribution to the 
variance of the CBA outcomes. All uncertainty sources prove to explain a significant 
share of the overall output variance. Results show that the ranking of uncertainty 
sources depends not only on the economic sector considered (private housing, 
agricultural land, other economic activities), but also on a number of averaging-out 
effects controlled by the number and surface area of the assets considered, the number 
of land use types or the number of damage functions. 
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Introduction 

 

Flooding is recognised as one of the most damaging natural hazards, responsible for approximately one-third of the total 

economic losses due to natural hazards in Europe (EEA et al., 2008). Following the approval of the EU flood directive 

(2007/60/EC) in 2007, EU member states now have to establish flood risk management plans focused on prevention, 

protection and preparedness in all flood-prone river basins and coastal areas. To evaluate these plans, flood risk managers 

are advised to use cost-benefit analysis (CBA) as part of their appraisal (European Commission, 2008). In France since 

2011, using CBA is mandatory for local managers who claim national subsidies. Despite known limitations (European 

Commission, 2009), CBA is a useful tool that provides significant rational information to the decision makers. To consider 

the expected benefits related to flood management, CBA requires an accurate estimate of the amount of flood damage that 

will be reduced yearly by the appraised measures. We will use the term CBA-AD to refer to this implementation of CBA 

based on avoided damage. This estimate relies on a complex modelling chain, including hydrological, hydraulic and 

economic modelling as well as GIS-based spatial analysis (Messner et al., 2006). Two output indicators are commonly 

produced in such studies: the reduction of the expected annual flood damage costs (Arnell, 1989) and the net present value 

of the appraised measures (Erdlenbruch et al., 2008). These two indicators may also take into account the benefits and 

costs that are not directly related to flood management, such as environmental impacts or landscape modification, but this 

issue is not in the scope of the present paper. 

 

Meanwhile, there is a growing consensus (Apel et al., 2004) that flood damage assessments are fraught with uncertainties, 

which arise from inaccurate or missing data, model assumptions, measurement errors, incomplete knowledge, etc. —see 

Refsgaard et al. (2007) and Walker et al. (2003) for an enlightening discussion on the nature of uncertainty. Uncertainty 

analysis is thus required to identify and quantify the impacts of uncertainties in the modelling chain to i) increase the 

reliability of flood damage assessments and related CBA-AD (Mostert and Junier, 2009) and ii) inform relevant 

stakeholders with the best information possible for decision making (Ascough et al., 2008). Over the last few years, 

various methods of quantitative uncertainty analysis have been used in flood damage assessment research (Pappenberger 

and Beven, 2006; Pappenberger et al., 2006). Nevertheless, many authors first focused on the uncertainty in a single 

component of the flood damage assessment chain: hydraulic modelling (e.g., Bernardara et al., 2010; Gouldby et al., 2010; 

de Rocquigny, 2010), inundation mapping (Bales and Wagner, 2009, Stephens et al., 2012), damage functions (Kutschera, 

2009; Merz et al., 2004, 2009, 2010) or land use (Te Linde et al., 2011). To go further, a number of recent studies 

investigated how combinations of these uncertainty sources interact and propagate through flood damage assessments. 

They differ by the components under study (extreme value statistics, hydraulic model, potential dyke breach, inundation 

mapping, exposure assessment, damage functions) and by the uncertainty analysis method used. In some studies 

(Koivumäki et al., 2010; Merz and Thieken, 2009; de Moel and Aerts, 2011), the various components of the modelling 

chain were varied manually in a ‘one-factor-at-a-time’ (OAT) approach (Saltelli et al., 2008) to estimate the confidence 

bounds around the flood damage estimates. Other authors described uncertainty sources in a probabilistic setting and 

explored the space of input uncertainty within a Monte Carlo framework (Helton and Davis, 2006), which requires a large 

number of model evaluations (Apel et al., 2008; de Kort and Booij, 2007; de Moel et al., 2012; Weichel et al., 2007).  

 



 

Draft  Submitted  to J Flood Risk Management 

06/12/12 

Another related but distinct issue is to identify, in the flood damage assessment process, the main sources of uncertainty 

that contribute the most to the variability of damage estimates and CBA-AD outcomes, which is the role of sensitivity 

analysis methods (SA). These methods aim to study how the uncertainty of a model output can be apportioned to different 

sources of uncertainty in its inputs (Saltelli et al., 2008). SA is recognised as an essential component of model building 

(European Commission, 2009; US Environmental Protection Agency 2009) and is widely used in different fields (Cariboni 

et al. 2007; Tarantola et al. 2002). Ranking uncertainty sources, usually by so-called ‘sensitivity indices’ or ‘importance 

measures’ is useful to orientate further research, collect additional data on most influential inputs but also simplify the 

model under study by fixing non-influential inputs. While many quantitative SA approaches are available, most studies in 

the field of flood damage assessment used a ‘one-at-a-time’ and qualitative SA approach, manually comparing the separate 

effects of each uncertainty source on the damage estimates. They used the large number of model evaluations produced 

from uncertainty analysis either in a probabilistic setting or using various versions of input data (Apel et al. 2004; 

Koivumäki et al., 2010; de Moel and Aerts, 2011; Pappenberger et al., 2008;). To our knowledge, only the work of de 

Moel et al. (2012) was based on a quantitative global sensitivity analysis method (GSA), in which i) quantitative 

sensitivity indices are estimated for each uncertainty source and ii) all uncertain model inputs are varied at the same time, 

which allows the effect of their interactions on the overall output variability to be discussed. 

Nevertheless, to date, only the uncertainty on the flood damage assessments have been studied without questioning how 

this uncertainty may impact the robustness of the CBA-AD of flood management policies nor how to improve this 

robustness. Our paper is an attempt in this direction. We try to answer the following questions: how does uncertainty 

propagate through the CBA-AD of a flood management policy? What is the ranking of the uncertainty sources in such a 

CBA-AD?  

 

We discuss these questions through a case study of a CBA-AD applied to a flood risk management plan on the Orb River 

delta, France, where only structural flood-control measures are considered. Our goal is to check the robustness of the 

CBA-AD results and assess the contribution of uncertainty sources to the overall output variability. A modelling chain 

named NOE (Section 2) is used to estimate the potential flood damages at the scale of individual assets and perform a 

cost-benefit analysis of the flood control measures. Uncertainty sources are then described in a probabilistic framework, 

propagated through the NOE modelling chain with pseudo Monte Carlo simulations, and variance-based sensitivity 

indices are computed for each of them (Section 3). Only epistemic uncertainty (Refsgaard et al., 2009) is considered here 

because aleatory uncertainty is already accounted for in the definition of output CBA-AD indicators (average annual flood 

damages). The description of uncertainty sources is based on the literature, expert opinion or measurements using 

univariate or bivariate probability density functions or more complex models for spatially distributed uncertainty. The 

results (Section 4) include confidence bounds and empirical pdf of CBA-AD outputs and a ranking of the uncertainty 

sources based on their sensitivity indices. We discuss the outcomes of our approach and its limits in Section 5. 

 

Study site 

 

As a study area, we selected the Lower Orb River fluvial plain, known as the Orb delta, located in the south of France. We 

focused on a 15 km reach from Béziers to the Mediterranean sea that is bounded by an area of 63 sq. km and includes the 
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cities of Béziers, Portiragnes, Sauvian, Sérignan, Valras-Plage and Villeneuve-lès-Béziers (Figure 1). The Orb catchment 

has a typical Mediterranean sub-humid regime. The annual maximum discharge in Béziers (Tabarka gauge) varies from 

year to year between 100 and 1 500 m3/s (BCEOM and SMVO, 2000). The flood prone area in the Orb delta is home to 

approximately 16 290 permanent people (total population of the six localities: 90 000 people), 774 companies and 30 

seaside campgrounds (which attract up to 100 000 tourists in summertime). Approximately one-third of the area is devoted 

to agriculture. The flood of December 1995 - January 1996, with a peak discharge of 1 700 m3/s at the Tabarka gauge, 

caused a total amount of damage of 53 M€ (SMVOL, 2011). 

 

 

 

Figure 1 

 

In 2001, local authorities launched a flood risk management project, mainly based on various structural mitigation 

measures, including dyke strengthening around urban areas, restoration of sea outfalls and channel improvement. In 2011, 

to claim national subsidies, they completed a cost-benefit analysis of their project (Grelot et al., 2012). 

 

This study site was mainly chosen because it was a ‘real’ case-study, with a flood risk management plan under 

construction and a cost-benefit analysis produced by the local authorities. Moreover, the area was already documented 

with numerous available data. These data included aerial photographs, a high-resolution Digital Terrain Model (DTM) 

built from photogrammetry, the annual maximum flow series from 1967 to 2009 at the Tabarka gauge, and various spatial 

datasets on buildings, agricultural land and economic activities in the area (Erdlenbruch et al., 2008). 

 

Description of the NOE modelling chain 

 

Cost-benefit analysis based on avoided damages (CBA-AD) was used to evaluate the flood risk management project 

launched on the Orb River. In the literature, flood damage assessments and related CBA-AD vary in their scope and scale 
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as well as the data used and their outputs. Here, a complex modelling chain named NOE (Erdlenbruch et al., 2008) 

combines hydrological, hydraulic, GIS and economic modelling to estimate the flood damages on individual assets and 

compute two output indicators: i) the Average Annual Avoided Damage (∆AAD [€/year]) over the study area, which is 

defined as the amount of annual expected damage costs that are reduced due to the flood mitigation measures; and ii) the 

Net Present Value (NPV [€]) of the flood mitigation measures. The modelling chain consists of seven steps that are further 

described in this section (Figure 2). 

 

Flood scenarios 

 

The calculation of the Average Annual Avoided Damage requires damage estimation for a number of relevant flood 

scenarios with different characteristics to represent the aleatory uncertainty associated with flood hazard in the study area. 

The first step of the NOE modelling chain is thus to choose a range of potential flood events of various magnitudes. Six 

flood scenarios e1 to e6 were selected, characterised by a maximum discharge qi at Tabarka gauge (Table 1). e1 is supposed 

to be the smallest flood event that induces damage (q1 = 1 000 m3/s).  

 

 

 

Figure 2 

 

 

Scenarios e2 to e5 include historical floods and design floods. Scenario e6 is an extreme flood, which would result in an 

over-topping of all existing flood-control dykes. 

 

Flood frequency analysis 

The return intervals T1 to T6 and exceedance frequencies f1 to f6 associated with flood scenarios e1 to e6 were deduced 

(Table 1) from the discharge-frequency Gumbel curve (Q-f), which was fitted on the annual maximum flow series at the 

Tabarka gauging station available from 1967 to 2009 (AMFS 1967-2009).  
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Flood hazard modelling 

For each flood scenario, a typical flood hydrograph was first generated based on expert opinion (BCEOM and SMVO, 

2000). The 1D, step-backwater hydraulic ISIS Flow model (unsteady flow) was then used to propagate the hydrographs 

within the floodplain. The ISIS Flow model solves the full 2D, depth-averaged momentum and continuity equations for 

free-surface flow (ISIS, 2012). Two different floodplain flow simulations were produced for each flood scenario e2 to e6: 

one describing the present situation and the other describing future situation with enforced mitigation measures. The 

floodplain flow simulations were then combined with a high-resolution DTM to produce two sets of raster surfaces with a 

5 m cell size, giving spatially explicit maximum water depths for each flood event over the study area: these hazard maps 

are denoted by H(e2) to H(e6) (present situation) and H(e2’) to H(e6’) (future situation). 

 

Flood exposure modelling 

 

Four economic sectors were considered in the exposure analysis: private housing, agricultural land, campgrounds and 

other economic activities. Flood exposure was assessed at the scale of small individual assets (buildings, plots of 

cultivated land, etc.). Data from various sources were collected to build a land use geo-database (LU-GDB) over the study 

area, including digital cadastral maps, a dataset of the regional Chamber of Commerce and Industry (2009), and the 

national agricultural land use statistics (RPG dataset, 2009). An extensive field survey was also conducted to collect 

additional data on assets, such as ground floor elevation of buildings. In the end, the LU-GDB dataset describes private 

housing units (individual buildings), plots of cultivated land, campgrounds and other economic activities by individual 

polygonal features in a single GIS vector layer (Table 2). Plots of cultivated land were further characterised by a subtype 

(wheat, vineyard, etc.), while economic activities were classified into sixty categories following the French classification 

of economic activities NAF2008 (INSEE, 2008).  

 

The flood exposure of assets was then assessed by confronting the LU-GDB dataset with water depth maps H(e2) to H(e6) 

and H(e2’) to H(e6’). For each exposed object (represented by a polygonal feature in LU-GDB dataset) and each 

inundation map, the average water depth over the object was extracted as an attribute column by a simple overlay analysis. 

To compute meaningful average water depths for very large objects (e.g., large plots of cultivated land), we first divided 

all features into pieces of 40 000 sq. m max by intersecting features of the LU-GDB dataset with a regular square grid of 

200 m cell size. 

 

 

Damage estimation 

 

The following module of the NOE modelling chain estimates the total damage costs (D) within the study area for each 

flood scenario e1 to e6, for the present (D(e1) to D(e6)) and future (D(e1’) to D(e6’)) situations. We will denote by ∆D1 to 

∆D6 the damage reduction brought by the mitigation measures for each flood scenario: ∆Di = D(ei ) - D(ei’). As scenario e1 

was defined as the “flood event where damage to property begins”, the damage estimates D(e1 )
 and D(e1’)

 are both 
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assumed to be equal to zero. For scenarios e2 to e6, as a coarse estimation, only direct and tangible monetary losses were 

considered—Merz et al. (2010) present the other types of damages that should be estimated for a more complete analysis.  

 

Damage functions were used (Table 3), which depend mainly on the following parameters: type and floor surface area of 

the exposed object, average water depth, and season of occurrence (campgrounds and agriculture). Flood velocity and 

flood duration were considered to be homogeneous. These damage functions were taken from the recommendations of 

the French State (MEDDTL, 2011). For a complete description, see the original study (Grelot et al., 2012). In the end, a 

total of 94 depth-damage relationships were used, one for each land use type and subtype. 

 

Average Annual Avoided Damages  

 

The average annual damage cost from flooding (AAD [€/year]) is a common performance indicator used to measure 

potential flood damages over a given territory (Arnell, 1989; Messner et al., 2006). It is equal to the area under the 

damage-frequency curve, which is the graph of damage D against exceedance frequency f = 1/T: 

∫
1

0
)( dffD=AAD   (1) 

To assess the benefits of the flood risk management project launched on the Orb River in 2001, we computed the potential 

reduction of the average annual damage costs brought by the mitigation measures, i.e., the variation ∆AAD = AAD – 

AAD’
 from the present to the future situation. This Average Annual Avoided Damage (∆AAD [€/year]) is also equal to:  

∫ ∆∆
1

0
)( dffD=AAD      (2) 

It can be computed from the range of flood scenarios e1 to e6 and corresponding avoided damages ∆D1 to ∆D6 by 

estimating the integral (Eqn 2) with a simple trapezoidal rule (Figure 3). 

 

Net Present Value of the mitigation measures 

 

The last step of the NOE modelling chain is the cost-benefit analysis, which evaluates the efficiency of the flood 

mitigation measures by comparing their costs with their expected benefits. The costs of the mitigation measures include 

the initial investment (CI = 35.2 M€) and maintenance costs (CM = 1.6 M€/year). The benefits of the project are measured 

by the ∆AAD indicator. The Net Present Value (NPV [€]) of the flood mitigation measures is then calculated by 

comparing the discounted costs and benefits over a time period of R = 30 years (Eqn 2). 

( )∑
=

×−∆+−=
R

i

iCMAADCINPV
0

τ (3) 

where τi is the discount coefficient for year i. A positive NPV value means that the benefits generated by the flood risk 

management project outweigh its costs. The larger the NPV value, the more efficient the flood mitigation measures are.  
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Figure 3 

 

 

Uncertainty and sensitivity analysis 

 

Uncertainty and sensitivity analyses of the NOE modelling chain (Figure 4) were performed using variance-based global 

sensitivity analysis approach (Saltelli et al., 2008). In the first step of the analysis, sources of uncertainty in the NOE 

modelling chain were identified and modelled in a probabilistic framework, and a set of random realisations was sampled 

for each uncertain modelled input. Next, pseudo-Monte Carlo simulations were used to explore the space of input 

uncertainty and assess the resulting variance of model outputs (∆AAD and NPV indicators). Finally, variance-based 

sensitivity indices were computed to rank the sources of uncertainty, depending on their contribution to the variance of 

output indicators. 

Modelling sources of uncertainty 

Table 4 lists the epistemic uncertainty sources that we took into account in the uncertainty and sensitivity analyses of the 

NOE modelling chain. Each source of uncertainty was modelled in a probabilistic framework using measurement or expert 

opinion. 

 
 

Figure 4 
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Flood frequency analysis 

Uncertainty in the flood frequency analysis may arise from i) stream gauge measurement errors (Neppel et al., 2009); ii) 

possible non-stationarity of the series due to climate change (Khaliq et al., 2006) and iii) uncertain fitting of a discharge-

frequency (Q-f) relationship to the AMFS 1967-2009 dataset (Countryman and Tustison, 2008). Here, only the latter 

uncertainty was modelled and simulated. After a log transformation leading to the usual linear regression context, standard 

joint distributions (Maidment, 1993) for the parameters of the fitted Gumbel curve were calculated (Figure 5). A set of n1 

= 103 Gumbel curves was then randomly sampled from the parameter joint distribution. From this set of curves, 103 

exceedance frequencies fi and according return intervals Ti = 1/fi (Figure 6) were generated for each discharge value qi (i = 

1 to 6).  

 

Flood hazard modelling 

Another major source of uncertainty in the NOE modelling chain is the inundation mapping process, which includes 

hydraulic modelling and combination with a high-resolution DTM, to derive water depth maps H(e2) to H(e6) and H(e2’) 

to H(e6’). For the sake of simplicity, a restrictive choice was assumed in considering the error on the high-resolution 

Digital Terrain Model as the single uncertainty source in water depth maps. Including more detailed descriptions of the 

hydraulic uncertainties in this study was impossible as the ISIS hydraulic model used for initial flow simulations was not 

available to us. This choice may be partly justified by the findings of both Bales and Wagner (2009) and Koivumäki et al. 

(2010), who investigated the various sources of error encountered in this process and conclude that high-resolution 

topographic data is the most important factor required for accurate inundation maps. The DTM—a raster surface of 5 m 

cell size—was initially built by stereo-photogrammetry. Both measurement errors and interpolation errors affect the 

quality of this input data (Wechsler, 2007). These errors were modelled by a Gaussian noise without spatial correlation, 

whose characteristics were determined from a set of 500 control field points (mean = 0 cm, s.d. = 17 cm). A set of n2 = 100 

random realisations of the Gaussian random error field was generated and added as « noise » to the initial water depth 

maps H(e2) to H(e6) and H(e2’) to H(e6’). We may note that this procedure induces independent variations of the water 

levels for each exposed asset; it differs from the study of de Moel and Aerts (2011), who described uncertainty in the 

water levels with a spatially uniform bias. 

 

Flood exposure modelling 

The third source of uncertainty is the location and attribute data errors in the LU-GDB dataset (Koivumäki et al., 2010). 

The error in the land use GIS layer may stem from the following: i) misclassification of polygonal features representing 

assets; ii) error on the ground floor elevation of buildings; and iii) error on the surface area of features. Other sources of 

uncertainty were identified: geometric errors (Bonin, 2006; Girres, 2010), errors in the asset locations, and the evolution of 

land use over time (Te Linde et al., 2011). Although in some studies (de Moel and Aerts, 2011) the uncertainty of the land 

use data was represented by using a small number of different datasets, here each uncertainty source was 

modelled in a probabilistic setting. To describe the misclassification of polygonal features, which may arise in the process 

of photo-interpretation, a confusion matrix (Fisher, 1991) was built based on expert opinion, giving a confusion 

probability pa,b for each pair of land use types (a,b) (Table 5). Then, to model the variability of the ground floor elevation 

of buildings, measurements were taken during a field survey on a sample of 100 buildings. The study area was divided 

into five homogeneous zones; in each zone, the distribution of ground floor elevation was described by an empirical 
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histogram (Figure 7). Random ground floor elevation was also attributed to campgrounds, plots of agricultural land and 

other economic activities (Table 4). Next, the surface area of the buildings was also randomised, as the features area 

extracted from cadastral maps differ from the effective surface area of buildings that should be taken into account for flood 

damage estimation (e.g., wall width should be subtracted). To cope with this issue, the nominal surface of each building 

was multiplied by a corrective random coefficient drawn independently in a uniform pdf in [0.75; 0.85], considering a 

digitalising error of 0.3 mm at the map scale (Hengl, 2006). Finally, from this probabilistic description of the uncertainty in 

the LU-GDB dataset (confusion matrix, empirical distribution of ground floor elevations, corrective coefficient for surface 

areas), a set of n3 = 1 000 random LU-GDB datasets was sampled.  

 

  

 

 

Figure 5 
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Figure 6 

 

Damage estimation 

The fourth uncertain model input is the set of 94 depth-damage curves (one for each land use type and subtype) used for 

the damage estimation. Uncertainty about the damage functions has been extensively discussed in previous studies 

(Koivumäki et al., 2010; Kutschera, 2009; Merz et al., 2004, 2010; Merz and Thieken, 2009; de Moel and Aerts, 2011). In 

these papers, uncertainty was mainly represented by using two or three different sets of damage functions coming from 

various studies. Only de Moel and Aerts (2011) used a parametric uncertainty model (beta pdf) derived from Egorova et 

al. (2008). Here, to treat all uncertainty sources in a probabilistic framework, we made the choice to use a single set of 

depth-damage curves and represent their uncertainty by a uniform pdf, defining a -50% to +50% uncertainty range around 

nominal curves (Figure 8). Depth-damage curves associated with each land use type and subtype were assumed to vary 

independently—contrary to de Moel and Aerts (2011), where they were sampled collectively from a single p-value. A total 

of n4 = 1 000 random sets of depth-damage relations was sampled this way. 

 

 
 

 

Figure 7 

 

 

Figure 8 
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Project costs 

Finally, the last source of uncertainty in the NOE modelling chain is related to the costs of the flood risk management 

project. Based on expert opinion, investment costs CI and maintenance costs CM were assumed to follow a triangular pdf 

with the parameters shown in Table 4. 

 

Propagating uncertainty 

 

Once uncertainty had been modelled for each source of uncertainty, it was propagated through the NOE modelling chain 

using Monte Carlo simulation and a specific sampling scheme following Lilburne and Tarantola (2009). It uses two 

independent quasi-random LP-τ matrices A and B (Sobol, 1967), here of length Nbase=4 096—this sampling size was 

chosen to fill the necessary conditions for the LP-τ samples (Nbase must be a power of 2) and large enough to obtain a 

satisfactory level of accuracy for the sensitivity indices estimates. These two matrices were combined through several 

permutations to explore the uncertainty domain of the five model inputs considered, respectively: exceedance frequencies; 

inundation maps; LU-GDB dataset; depth-damage curves; and project costs. The ith line of sample A or B is a set (l1
(i)

, l2
(i)

, 

l3
(i)

, l4
(i) 

,l5
(i)

) where each li
(i)

 is a random integer label sampled from {1, ..., nj} associated with a single random realisation 

of the jth model input (from the set of nj random realisations that was previously generated). One can note that the number 

nj of random realisations is not the same for each model input: these numbers were chosen under the constraints of CPU 

time and storage space. Next, the NOE modelling chain was run for each line of samples A, B and a number of 

combinations of A and B—more details on the procedure can be found in Lilburne and Tarantola (2009). The total number 

of model runs was Ntot = 28 672 (this number depends on the initial sample size Nbase and the number of uncertain model 

inputs considered) for a total CPU time of 24 hours on a 6-nodes cluster computer.  

 

Variance-based sensitivity indices 

 

Uncertainty propagation results in a set of Ntot = 28 672 values for the following outputs of interest: 

- avoided flood damages per scenario (∆D1 to ∆D6) 

- Average Annual Avoided Damages (∆AAD) 

- Average Annual Avoided Damages per type of assets 

- Net Present Value of mitigation measures (NPV)  

Then, the variance-based total-order sensitivity indices of each source of uncertainty with respect to each output of interest 

were estimated using the expressions given by Lilburne and Tarantola (2009). These sensitivity indices, denoted by STi, 

measure the contribution of a given source of uncertainty, denoted by Ui, and all its interactions with other sources of 

uncertainty, denoted by U~i, to the variance of a given model output, denoted by Y:  

[ ]( )
( )YVar

UYVarE
=ST

i

i

~
 (3) 
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STi is the expected part of output variance Var(Y) that would remain if all sources of uncertainty but Xi were fixed. Please 

refer to Saltelli et al. (2008) for more details on global sensitivity analysis and the estimation of sensitivity indices. 

 

Results 

 

Uncertainty analysis 

  

Table 6 summarises the outcome of the uncertainty analysis. For each output of interest, it gives descriptive statistics over 

the Ntot = 28 672 model runs. It displays mean values of avoided damages per flood scenario, ranging from 9.593 M€ to 

111.5 M€. The largest avoided damage is reached for scenario e5 (100-year design flood), with a total reduction ∆D5 = 

111.5 M€, whereas the mitigation measures performed worst for the extreme flood scenario e6, with a mean avoided 

damage ∆D6 = 9.593 M€ and a negative minimum value of -4.695 M€, meaning that the damage costs might increase from 

the present to the future situation for this scenario. The Average Annual Avoided Damage indicator shows a mean value of 

∆AAD = 5.459 M€/year. Table 6 clearly suggests that the contribution of the four types of assets to this total indicator is 

uneven: while the economic activities and private housing account respectively for 64% and 34% of the total ∆AAD, the 

share of campgrounds and cultivated land is only equal to 1.3% and 0.7%, respectively. Finally the effect of the flood 

mitigation measures appears to be heavily dependent on the type of assets considered. Despite all input uncertainties, the 

∆AAD indicator on private housing and economic activities (other than agriculture and campgrounds) prove to be always 

positive in this uncertainty analysis. In contrast, the mitigation measures will most likely result in an increase in the 

average annual damage for agricultural land as ∆AAD is negative in this sector for all model runs. Regarding 

campgrounds, no conclusion can be drawn from the study as ∆AAD is positive in this sector for only 72.6% of the model 

runs. It can also be noted that all flood damage indicators display a coefficient of variation ranging from 11.76% to 

44.80%. 

 

 
Figure 9 
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Finally, Figure 9 shows the empirical distribution of the Net Present Value of the flood mitigation measures over Ntot = 

28 672 simulations. With a mean value of +34.29 M€, the flood risk management project seems to be a sound investment. 

The NPV indicator also appears to be positive for 96% of model runs, which we interpret to mean that despite all the 

uncertainty sources that were considered in the NOE modelling chain, the benefits of the flood mitigation measures still 

prove to almost certainly outweigh their costs.  

 

Sensitivity analysis 

 

The total order variance-based sensitivity indices were computed for each uncertain model input with respect to each 

output of interest (Table 7). First, the variance of the total ∆AAD indicator can be observed to be almost equally explained 

by the uncertainty in the exceedance frequencies, water depth maps, depth-damage curves and LU-GDB dataset, with 

sensitivity indices ranging from 0.18 to 0.33. No main source of uncertainty can be identified, meaning that they are in a 

sense “well-balanced”. 

However, sensitivity indices with respect to the partial ∆AAD indicator for each economic sector give a very different 

picture. The variance of ∆AAD on private housing appears to be mainly explained by the uncertainty of the depth-damage 

curves (sensitivity index: 0.78). For campgrounds and agricultural land, the depth-damage curves also prove to be the most 

important source of uncertainty (sensitivity index: 0.6 and 0.4, respectively), followed by the uncertainty of the LU-GDB 

dataset (sensitivity index: 0.38 for both sectors). 

 

 

Figure 10 

 

In addition, for private housing, agricultural land and campgrounds, the uncertainty in the water depth maps is almost non-

influential (sensitivity index < 0.02), while it is the second most important source of uncertainty for other economic 

activities (sensitivity index: 0.38). Finally, Table 7 also indicates that the variance of the Net Present Value of flood 

mitigation project is mainly due to the uncertainty on its benefits (measured by total ∆AAD) rather than the uncertainty on 

its costs, which contribute to only 12% of the NPV variance. 

 

To further identify the factors that explain the variance of ∆AAD indicator, sensitivity analysis can also be based on a 

graphical analysis. Figure 10 displays the sampled flood exceedance frequencies f1 to f6 against the estimated avoided 
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damages ∆D1 to ∆D6 for all Ntot = 28 672 model runs, along with the curves associated with the nominal, minimum and 

maximum values of the ∆AAD indicator, which is equal to the area under the curve. It may be noted that as the damage 

and frequency estimates of each flood scenario are correlated, the extremum values of the ∆AAD indicator do not always 

correspond to the extremum points in the damage-frequency graph for all flood scenarios. Figure 9 supports the conclusion 

that the variance of the ∆AAD indicator is mainly due to the uncertain position of scenarios e1 (first flood event where the 

damage to property begins) and e2 (10-year design flood) on this damage-frequency graph. Flood scenarios e3 to e5 show a 

larger dispersion of estimated avoided damages, but their position on the x-axis (exceedance frequency) is less spread; 

hence their contribution to the total variance of the ∆AAD indicator is small. 

 

Discussion 

 

Assessing robustness of a flood risk CBA study 

 

Our first goal was to assess the robustness of the cost-benefit analysis of the structural flood mitigation measures on the 

Orb River through an uncertainty analysis of the NOE modelling chain. Our approach was strongly motivated by prior 

publications in which uncertainty analysis was used to evaluate the robustness of flood damage assessments. We 

completed these works by propagating uncertainty up to the cost-benefit analysis of the flood mitigation measures, which 

had not been performed before. We obtained empirical descriptive statistics for the two CBA-AD outcomes, the Average 

Annual Avoided Damages and the Net Present Value of flood mitigation measures, displaying quite large coefficients of 

variation of 20.33% and 61.27%, respectively. The visualisation of the Monte Carlo simulations on a damage-frequency 

graph (Figure 10) gave us a new insight on the robustness of the ∆AAD indicator, proving that its variance is mainly 

explained by the uncertain characterisation (in terms of exceedance frequency and estimated damages) of flood scenarios 

with small return intervals (5 and 10-year floods). We also found (Figure 9) that the probability of the project costs 

outweighing the project benefits appears to be lower than 5%. We are convinced that these results may prove useful to 

provide water managers and stakeholders with a more complete picture on the cost-benefit analysis and the associated 

uncertainty, even though we know that they are usually untrained in coping with the uncertainty related to scientific 

information in flood risk studies (Morss et al. 2005). 

 

Improving the NOE modelling chain 

 

Our research also sought to identify the main sources of uncertainty in the NOE modelling chain to find ways to improve 

it. Although variance-based sensitivity analysis is widely used for that purpose in many disciplines, it had never been 

applied, to our knowledge, to a CBA-AD of flood control measures. We demonstrated the use of Sobol' sensitivity indices 

(Table 7) to rank the sources of uncertainty, depending on their contribution to the variance of the ∆AAD and NPV 

indicators. A first conclusion is that, on a global scale, sources of uncertainty are well-balanced, meaning that they all 

explain a significant share of the variance of the ∆AAD and NPV indicators. Yet, more useful lessons can be learnt from 

looking at each economic sector separately. The uncertainty on the depth-damage curves proved to be the key factor that 
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explains the variance of the average annual damages on private housing, campgrounds and agricultural land. This result is 

in line with those of Apel et al. (2008) and de Moel and Aerts (2011), who found that in damage assessment of a single 

flood event, the choice of damage functions is a much more important factor than the choice of a hazard model. It thus 

supports the conclusion that improving the depth-damage curves and more generally the damage functions are priorities to 

make more robust flood damage assessments in these sectors. Our results also indicate that there is almost a third of the 

variance of the ∆AAD and NPV indicators that cannot be reduced as it stems from the variance of the flood return interval 

estimates. This observation corroborates the conclusions of Apel et al. (2004), who stated that reliable extreme value 

statistics were crucially important for reducing the uncertainty of the risk assessment. Unfortunately, reducing this input 

uncertainty would require longer time series of maximum discharges at Tabarka gauging station, which are not available. 

Finally, the uncertainty on the floor elevation of buildings proved to have a negligible contribution to the variability of the 

annual damage estimates for private housing. This finding fits well with the results of Koivumäki et al. (2010), who 

showed that adding a single elevation value per building was inadequate to obtain more accurate damage estimates. Of 

course, these findings are specific to the Orb River study site: in a different case-study, ranking of the various uncertainty 

sources may be significantly different. 

 

Averaging-out effects 

 

The sensitivity analysis also provided an interesting insight on how the uncertainty on  inundation maps influence the 

variance of damage estimation. Our results offer evidence that improving water depth estimation would be of almost no 

use in reducing variance of ∆AAD estimates for campgrounds, agricultural land and private housing, while it is the second 

most important source of uncertainty for other economic activities. This finding is in apparent conflict with the 

conclusions of Apel et al. (2004, 2008) or de Moel and Aerts (2011), who reported that uncertainty in the water depths is 

less important than other uncertainty sources without distinction of the economic sector considered. This discrepancy may 

be explained by two different “averaging-out effects”: one based on the surface area of assets and the other based on the 

number of assets. On one hand, campgrounds and agricultural land have a large surface area compared with other types of 

assets (33 000 and 9 000 sq. m. in average, Table 2): as a result, the error on water depths, if unbiased, is reduced when it 

is averaged over the large surface area of these assets. Hence, for both sectors, the contribution of the water depth maps to 

the variance of the ∆AAD indicator is low. On the other hand, the polygonal features classified as “private housing” or 

“economic activities” have a rather small surface area (83 sq. m. and 904 sq. m. on average, respectively), and the 

uncertainty in the average water depth for each individual asset is thus large. Nevertheless, the number of features 

classified as “private housing” (16 436) is much larger than the number of assets classified as “other economic activities” 

(691), which results in a “number averaging-out effect”: the dispersion of water depth errors is averaged over the large 

number of housing polygons scattered across the study area. A similar “number averaging-out effect” may partly explain 

why the uncertainty on depth-damage curves appears to be more influential on the private housing sector, which is 

described with only one depth-damage curve, than for the other economic activities, which are described by 60 damage 

curves that are assumed to vary independently. These findings support the conclusion that various averaging-out effects 

(related not only to the surface area of assets and the number of assets but also to the number of land use types considered, 

the number of damage functions used, etc.) control the ranking of the uncertainty sources in the NOE modelling chain. 
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Saint-Geours et al. (2012) discussed this issue from a theoretical point of view and showed that the ranking of the 

uncertainty sources is closely related to the spatial support (and thus to the scale) of the model output. This result is in 

agreement with the call of Koivumäki et al. (2010) for further research on what constitutes a reasonable ‘scale-accuracy 

relationship’ in flood damage assessments: our results suggest that the ‘scale-accuracy-sensitivity’ relationship must be 

further investigated. 

 

Limits 

 

It should be noted that our work is based on hypotheses that may limit the strength of some of its results. First, some 

sources of uncertainty were identified in the NOE modelling chain but not taken into account in the uncertainty and 

sensitivity analysis: the evolution of land use over the next thirty years, errors arising from uncertainty on friction 

coefficients in hydraulic modelling, errors on the location and shape of polygonal features in the LU-GDB dataset, etc. 

Why were they ignored? Because the data required to rigorously characterise them in a probabilistic framework were not 

available. Even if we can assume that some of these uncertainty sources would prove to be negligible in the NOE 

modelling chain, (e.g., errors on the location of assets in the LU-GDB dataset), others are definitely not (e.g., biased errors 

in hydraulic modelling).  

Moreover, even for those sources of uncertainty that were included in the study, the models of uncertainty are sometimes 

only based on expert opinion. The results of our study heavily depend on such uncertainty parameters. To cope with this 

issue, a second-level uncertainty analysis could be performed by exploring how the output uncertainty and the sensitivity 

indices change for given sets of uncertainty parameters. 

 

Conclusion 

 

This work was performed with a view toward promoting the use of Monte Carlo uncertainty analysis and variance-based 

sensitivity analysis in flood damage assessments and related CBA-AD through a case-study on the Orb Delta, France. For 

this case-study, we derive the following main conclusions: 

(1) Monte Carlo uncertainty analysis allows empirical pdf and confidence bounds on the economic indicators of a 

cost-benefit analysis applied to flood mitigation measures to be computed. 

(2) The variance of the Average Annual Avoided Damages is mainly due to the uncertain characterisation of flood 

scenarios with small return intervals. 

(3) Approximately one-third of the variance of the ∆AAD and NPV indicators cannot be reduced as it stems from a 

flood frequency analysis based on short time series. 

(4) The ranking of uncertainty sources depend on the economic sector considered (private housing, agricultural land, 

economic activities) 

(5) Uncertainty in the depth-damage curves is a prominent factor for computing the ∆AAD for private housing and 

agricultural land. 

(6) The ranking of uncertainty sources is influenced by various averaging-out effects that depend on the number and 

surface area of the assets considered, the number of land use types, the number of damage functions, etc. 
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Further research is now needed to extend the reach of our study by trying to reduce the uncertainty in the input data 

identified as being influential in the study and including in the analysis uncertainty sources that were ignored so far. 
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Captions of figures 

 
Figure 1 The study site is located in Hérault département, south of France. The Orb River flows southward. 

Source: www.geoportail.fr 

 

Figure 2 Flowchart of the NOE modelling chain  

 
Figure 3 Computation of Average Annual Avoided Damage  

 

Figure 4 Flowchart for uncertainty and sensitivity analysis 

 

Figure 5 Annual maximum flow series AMFS 1967-2009 and fitted Gumbel distribution (red solid line) with 95% confidence bounds 

(dotted blue lines) 

 

Figure 6 Empirical distributions of return intervals T for flood scenarios e1 to e6 

 
 

Figure 7 Empirical distribution of the elevation of ground floor of buildings over zones A (top) to F (bottom) 

 

Figure 8 Nominal depth-damage curve for private housing (red solid line) with a [-50%; +50%] uncertainty range (blue dotted lines) 

 

Figure 9 Empirical distribution of NPV indicator over Ntot=28 672 simulations and mean value (solid line) 

 

Figure 10 Avoided damages against exceedance frequency: nominal curve (solid line), first 500 simulations (dots), curves 

associated with minimum and maximum ∆AAD (dashed lines) 
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Tables 

 
Table 1 Flood scenarios. 

 Scenario description 
Max. discharge 

q [m
3
/s] 

Exceedance 

frequency  

f [ ]  

Return 

interval 

T = 1/f 

[years] 

e1 
Smallest flood event 

that induces damage 
1 018 0.2 5 

e2 10-year design flood 1 287 0.1 10 

e3 
Historical flood 

 (December, 1987) 
1 696 0.0333 30 

e4 
Historical flood  

(January, 1996) 
1 882 0.02 50 

e5 Large design flood 2 133 0.01 100 

e6 
Probable maximum flood 

(over-topping dykes) 
3 000 0.001 1 000 

 
 
Table 2 Content of land use dataset LU-GDB 

Type of assets Data source 

Number 

of 

objects 

Total 

surface 

[sq. km] 

Average 

surface  

[sq. m] 

Private housing 
Cadastral map 

+ field survey 
16 436 1.37 83 

Agricultural land 
National agricultural land use 

statistics (2009) 
707 23.36 33 044 

Campgrounds 
Cadastral map 

+ field survey 
111 1.02 9 203 

Other economic 

activities 

Cadastral map 

+ CCI dataset (2009) 
691 0.62 904 

 
 

Table 3 Damage functions 

Type of assets 
Type of 

approach 

Sub-types 

number 
Parameters 

Private housing 

Empirical 

(data collected after 

flood events) 

1 
water depth;  

floor surface area 

Agricultural land 

Synthetic approach 

(based on 

questionnaires) 

15 

water depth; 

surface area; 

season 

Campgrounds 

Synthetic approach 

(based on 

questionnaires) 

18 
water depth; 

surface area 

Other economic 

activities 
Synthetic approach 60 water depth 
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Table 4 Sources of uncertainty in NOE modelling chain 

Model input Nature of uncertainty 
Modelling uncertainty 

(U: uniform pdf) 

Sample 

size n 

Hazard maps 

H(e1 ) to H(e6 ) 

Errors in hydraulic modelling 

Errors in DTM 

Only DTM error is considered: Gaussian noise without spatial 

correlation (mean = 0 cm, s.d. 17 cm). 
100 

LU-GDB 

dataset 

● Misclassification of land use types and subtypes 

 

● Variability of ground floor elevation of buildings 

(lack of data) 

 

 

 

 

 

● Shape and surface of polygonal features 

(measurement errors) 

● Confusion matrix for land use misclassification. 

 

● Empirical distribution of ground floor elevation of assets from field 

survey: 

- private housing: empirical histograms on five homogeneous zones  

- campgrounds: U[-0.3m; +0.3m] 

- plots of cultivated land: U[-0.2m; +0.2m] 

- other economic activities: U[0.4m; 0.6m] 

 

● Random multiplying coefficient for surface area of buildings: 

U[0.75; 0.85] 

1 000 

Return intervals 

T1 to T6 

Lack of data 

(short time series of annual maximum discharge). 
Confidence interval on the fitted Q-f relation 1 000 

Depth-damage 

curves 
Lack of data 

For each depth-damage curve, random multiplying coefficient εi 

drawn from U[0.5; 1.5]. εi are independent. 
1 000 

Project costs 

CI and CM 
Lack of knowledge 

Based on expert opinion. 

Triangular distributions with parameters [M€]: 

CI 
(min) 

= 28.6 ; CI 
(mode) 

= 38.6 ; CI 
(max) 

=35.2 

CM 
(min)

 =1.3 ; CM 
(mode) 

= 1.6 ; CM 
(max) 

=1.8  

4 096 

 
 
Table 5 Confusion matrix of LU-GDB dataset 

Land use type Number of 
sub-types 

Probability of confusion 

between sub-types 

Private 
housing 

1 No confusion. 

Agricultural 
land 

15 25% chance of confusion between 
durum wheat and bread wheat; 10% 
chance of confusion between colza, 
maize, barley and sunflower; 25% 
chance of confusion between 
permanent and temporary grassland. 

Campgrounds 18 No confusion. 

Other 
economic 
activities 

60 0.17% chance of belonging to each 
other class of economic activities. 
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Table 6 Descriptive statistics for each output of interest over Ntot = 28672 simulations 

Output mean s.d. 
2.5% 
perc. 

97.5% 
perc. 

c.var. 

Avoided damage per flood scenario (∆D [M€]) 

∆D1 0 0 0 0 - 
∆D2 20.21  7.796 11.164 40.6443 38.57% 
∆D3 48.84  8.972 29.307 65.927 18.37% 
∆D4 58.28  10.63  39.491 84.334 18.24% 
∆D5 111.5  13.11  84.410 136.405 11.76% 
∆D6 9.593 4.298  1.967 20.149 44.80% 

Average Annual Avoided Damage (∆AAD [M€/year]) 

Total 5.459 1.11 3.6109 7.9816 20.33% 
Eco. 

activities 
3.506 0.9406 2.0995 5.77331 26.83% 

Private 
housing 

1.887 0.4465 1.1002 2.8317 23.66% 

Camp 
grounds 

0.071 0.129 -0.213 0.3116 18.23% 

Agricultural 
land 

-5.274.10-3 1.912.10-3 -9.25.10-3 -1.965.10-3  36.25% 

Net Present Value (NPV [M€]) 

NPV 34.29 21.01 -40.83 106.5 61.27% 

 
 
Table 7 Total order sensitivity indices with respect to the different outputs of interest. Grey cases indicate the most important 

sources of uncertainty 

  Total-order sensitivity index of: 

  
Exceed. 

Prob. 
Water 
depths 

Depth-
damage 
curves 

LU-
GDB 

dataset 

Project 
costs 

Average Annual Avoided Damage 

Total 0.33 0.29 0.18 0.21 0 
Eco. activities 0.4 0.38 0.2 0.3 0 

Private housing 0.22 0.005 0.78 0.03 0 
Campgrounds 0.2 0.01 0.6 0.38 0 

Agricultural land 0.27 0.02 0.4 0.38 0 

Net Present Value  

W
ith

 r
es

pe
ct

 to
: 

NPV 0.25 0.18 0.23 0.21 0.12 

 

 


