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1.  INTRODUCTION

Reversing the global decline in marine fish stocks
that is affecting commercial fisheries and the ecologi-
cal condition of the oceans (Jackson 2008) is the goal of
fisheries management. The Atlantic cod Gadus mor-
hua L. is an important commercial, continental-shelf
groundfish found in regions that have a mean 100 m
depth temperature ranging from 0 to 16°C (Sundby
2000) and an annual sea surface temperature (SST) be-
tween 0 and 14°C (Fig. 1). Between 1980 and 2000,
North Atlantic cod stocks halved from 1.6 to 0.8 Mt
(Brander 2003). In some regions where cod has
declined in abundance, trophic cascades have been
observed altering ecosystem trophodynamics (e.g.
Frank et al. 2005). As with most other commercially ex-
ploited marine species, overfishing is considered re-
sponsible for the decline of cod. As a result, the man-
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Fig. 1. Gadus morhua. Mean annual sea surface tempera-
ture (SST) and the spatial distribution of the Atlantic cod 

(white area)
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agement of marine resources such as cod is focused on
controlling fishing mortality (e.g. the establishment of
quota controls to moderate top-down effects). How-
ever, despite a moratorium of more than 17 yr on cod
fishing in Newfoundland, and reduced fishing effort in
the North Sea, neither stock is recovering.

Recent strategies to sustain fish stocks have suggested
a move towards an ecosystem based fisheries manage-
ment (EBFM) approach (Pikitch et al. 2004). While EBFM
considers the effect of fishing at the ecosystem level, be-
yond the effect on the target species, it generally strug-
gles with climate-driven environmental variability that
can exert bottom-up control of fish stocks (Beaugrand et
al. 2003, Platt et al. 2003). Lack of consideration of envi-
ronmental effects is especially surprising when contem-
porary biogeography indicates that many spatial pat-
terns in species’ distributions reflect climate (Lomolino et
al. 2006), and it is at a time when the biosphere is expe-
riencing rapid climate change (IPCC 2007).

The potential spatial distribution of a species can be
estimated by identifying its ecological niche (Lomolino
et al. 2006). In the present study we assessed the niche
of adult cod using sea surface temperature (SST). We
assume that climate exerts its major influence on cod
through the effects of temperature on larval develop-
ment and plankton food availability, since the pelagic
larval stage is a critical life cycle phase affecting re-
cruitment (Beaugrand et al. 2003). Our studies of the
Atlantic cod indicate that the position of a fish stock
within its thermal niche will influence its vulnerability
to climate, and hence the relative importance of envi-
ronmental variation (bottom-up controls) and commer-
cial fishing (top-down controls) on abundance.

2.  MATERIALS AND METHODS

2.1.  Plankton data

Plankton data were collected by the continuous
plankton recorder (CPR) survey, an upper-layer plank-
ton monitoring programme operated on a routine
monthly basis in the North Atlantic and North Sea
since 1946 (Reid et al. 2003). Sampling is by a high-
speed upper-layer plankton recorder towed at a stan-
dard depth of  ~6.5 m behind merchant ships. Sea-
water enters the CPR through a front aperture, and the
plankton is retained on a moving band of silk gauze
with a 270 µm mesh size that is slowly wound into a
tank of formalin. In the laboratory, the silk gauze is cut
into sections (a CPR sample), each representing the
plankton from 3 m3 of water taken during 10 nautical
miles (18 km). The methods of CPR sampling and
analysis remain consistent throughout the time series.
Up to 450 taxa are identified and enumerated.

2.2.  Calculation of plankton indicators

The calculation of the plankton index of larval cod
survival is presented in Beaugrand et al. (2003) and
reflects the quality and quantity of potential zooplank-
ton prey. The index is based on the fact that larval cod
occur between March and September. Feeding of cod
larvae/juveniles gradually progresses from mainly
copepod eggs to copepod and euphausiid nauplii and
then to a copepod dominated diet until July and finally
to a progressive replacement of the copepod-based
diet by euphausiids and other fish larvae from August.
Among copepods, Calanus finmarchicus and Pseudo-
calanus spp. are the main prey. The index is based on
the abundance (no. of individuals per CPR sample) of
Calanus finmarchicus, Pseudocalanus spp., and euph-
ausiids. The size composition of prey (calanoid cope-
pod) is also included and calculated by assuming all
copepods are females (minimum size), which holds
true in CPR samples. Total calanoid copepod biomass
per CPR sample was used as a quantitative indicator of
food for larval/juvenile cod and was estimated from the
size of each calanoid copepod (a total of 108 calanoid
species), their abundance, and allometric relationships
(Beaugrand et al. 2003). All parameters were then
combined and a standardised principal component
analysis (PCA) was applied with observations as years
(period 1958 to 2007) and months between March and
September, and biological indicators (a total of 5 indi-
cators) as variables. Since the occurrence of Calanus
helgolandicus is unusual around Iceland it was not
included this time. The spatial domain around Iceland
was between 62° and 66° N and 27° and 11° W (a total
of 7078 CPR samples was considered, an average of
141 per annum) and for the North Sea it was between
50.5° and 60.5° N and 3.5° and 9.5° E (a total of 54507
CPR samples was considered, an average of 1091 per
annum). More information on the plankton index can
be found in Beaugrand & Kirby (2009).

2.3.  Cod data

Cod recruitment data (1 yr old for the North Sea and
3 yr old for Iceland) and spawning stock biomass (SSB)
were obtained from ICES (www.ices.dk). Data of prob-
ability of cod occurrence was obtained from Fishbase
(http://www.fishbase.org).

2.4.  Temperature data

Observed SST data (1960 to 2005) were extracted
from the International Comprehensive Ocean-Atmos-
phere Data Set (http://icoads.noaa.gov). To assess the
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potential impact of changes in SST, data (1990 to 2100)
from the European Centre Hamburg (ECHAM) 4
model were used; these data are projections of monthly
skin temperature equivalent above the sea to SST
(http://ipcc-ddc.cru.uea.ac.uk). Data used here are
modeled data based on scenarios A2 (concentration of
carbon dioxide of 856 ppm by 2100) and B2 (concentra-
tion of carbon dioxide of 621 ppm by 2100) (IPCC 2007).
Scenario A2 supposes an increase of CO2 similar to that
currently observed. Scenarios A2 and B2 reflect world
populations of 15.1 and 10.4 billion people in 2100, re-
spectively (IPCC 2007).

2.5.  Calculation of the thermal niche of cod

The thermal niche of cod was assessed by represent-
ing data of cod occurrence from Fishbase as a function
of SST. First, only maximum values were retained to
draw the contour of the niche. Second, a 1-order sim-

ple moving average was applied on maximum values.
This was done to diminish the influence of outliers.

2.6.  Correlation analyses

Correlations were calculated to assess the strength
of the relationships between plankton and cod recruit-
ment in the North Sea (cod recruitment at age 1) and
around Iceland (cod recruitment at age 3). The proba-
bility of significance of the coefficient of correlation
was adjusted to correct for temporal autocorrelation
(Pyper & Peterman 1998).

3.  RESULTS

The thermal niche shows that the optimal conditions
for cod lie between 4 and 9°C (Fig. 2a). In the North
Sea, the examination of cod recruitment as a function
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Fig. 2. Gadus morhua. Thermal niche of cod and the effect of spawning stock biomass (SSB) and the plankton index on cod re-
cruitment. (a) Thermal niche of the Atlantic cod based on mean annual SST during the period 1960 to 2005 and probability of cod
occurrence. Both observed (1960 to 2005, shaded bars, white text and arrows) and projected (scenario A2, 1990 to 2100, black text
and arrows) ranges in annual SST are indicated for Iceland (solid vertical lines) and the North Sea (dashed vertical lines). Sce-
nario B2 (not represented) was also used and gave a similar range of variation in annual SST. (b) Recruitment of cod (as number)
at age 1 as a function of SSB (in t) and the plankton index (1 yr lag) in the North Sea. (c) Recruitment of cod (as number) at age 3 

as a function of SSB (in t) and the plankton index (3 yr lag) in Iceland. Black arrows indicate the direction of change
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of SSB and a plankton index (a measure of the quality
and quantity of plankton food) reveals that the path-
way of change in recruitment parallels that in the
plankton index (Fig. 2b). Correlations between the
plankton index and cod recruitment at age 1 (with a
1 yr lag) were highly positive (r = 0.68, probability cor-
rected for temporal autocorrelation pACF < 0.001).
When no lag was considered, the correlation de-
creased to 0.51 and was not significant (r = 0.51, p =
0.09). In contrast, towards the centre of the current dis-
tribution and thermal niche of cod around Iceland
(Figs. 1 & 2a), similar fluctuations in temperature and
the plankton index have less effect, and so here fishing
is the most plausible explanation for the decline in SSB
(Fig. 2c); the correlation between the plankton index
and cod recruitment at age 3 with a 3 yr lag was small
and not significant (r = 0.11, pACF > 0.01). We doubt that
the low value in the correlation is due either to the
reduced sampling effort, which is 1 order of magnitude
less than in the North Sea (see ‘Materials and Meth-
ods’), or the fact that we could only calculate the rela-
tionships between the plankton index and cod recruit-
ment at age 3. While the correlation between SST and
the plankton index was significantly negative in the
North Sea (r = –0.66, p = 0.01), this was not so around
Iceland (r = 0.35, p = 0.15), which suggests that the
mechanisms at play in the 2 areas are likely to be dif-
ferent.

4.  DISCUSSION

Our analysis of the influence of the thermal regime
on an important commercial fish species shows that
the importance of climate can vary depending upon
the location of a fish stock within its thermal niche, a
result also found by Planque & Fredou (1999). In the
case of cod, climate-mediated changes in the plank-
ton environment are a strong driver of stock abun-
dance towards the southern limit of its spatial distrib-
ution, i.e. at the edge of the thermal niche (Fig. 2a).
For the North Sea, this indicates that a favourable
plankton environment (a positive plankton index) is
necessary for cod recovery. Beaugrand et al. (2008)
recently provided a macroecological explanation for
this spatial pattern in ecosystem sensitivity. Towards
the warmer edge of the thermal niche, small changes
in temperature will have a large effect on cod
through their impact on plankton. Towards the cen-
tre of the thermal niche, where the thermal profile
represents a broad plateau (Fig. 2a), similar changes
in temperature will have less of an effect on the
plankton environment, and so other factors, such as
fishing, may exert a greater influence of fish abun-
dance.

An understanding of climate variability and how its
effects are mediated through the food web appears to
be an important prerequisite to better managing ex-
ploited species across their spatial range, at least in the
case of Atlantic cod and perhaps also other species
(Rothschild & Shannon 2004). At the southern range of
cod, resistance (the capacity to tolerate disturbance) to
fishing is high due to the positive effect of the thermal
regime on growth (Fig. 2a). However, when tempera-
ture becomes too high, stock recovery can be affected
by the negative effect of temperature on the plankton
(Fig. 2a,b). In the North Sea, climate effects through
zooplankton are expected to make the stock more sen-
sitive to overfishing. The synergistic influence of fish-
ing and climate (Beaugrand et al. 2003, Brander 2007,
Kirby et al. 2009) exacerbates the probability that an
opportunistic species may then fill a vacated niche
favouring a trophic cascade through the ecosystem; this
could explain the collapse of cod in the Eastern Scotian
Shelf (Frank et al. 2005). Once such a shift happens, it is
unlikely to be reversed by management. In contrast, in
Icelandic waters, the negative effect of a colder regime
on growth may limit resistance to fishing. Here how-
ever, the potential for an alternative ecosystem state is
currently low because the plankton environment is
more stable at the centre of the niche (Fig. 2a,c).

Our results offer a way to reconcile the alternative
views that either fishing or environment control fish
stocks (Beaugrand et al. 2003, Myers et al. 1996). Pro-
jections of temperature change (IPCC 2007) indicate
that Iceland may adopt the thermal characteristics of
the North Sea, switching the main driver in Icelandic
waters from fishing to the environment (Fig. 2a). In the
North Sea, if temperature follows those projections,
cod will disappear inevitably as a commercially viable
species (Fig. 2a). Fishery biologists should anticipate
these scenarios by integrating both climate, plankton,
and fishing into EBFM.
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