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Support Vectors Machines Regression for
Estimation of Mars Surface Physical Properties
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1- MISTIS, INRIA Rhone-Alpes & Laboratoire Jean Kuntzmann, Grenoble, France
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Abstract. In this paper, the estimation of physical properties from
hyperspectral data with support vectors machines is addressed. Several
kernel functions were used, from classical to advanced ones. The results
are compared with Gaussian Regularized Sliced Inversion Regression and
Partial Least Squares, both in terms of accuracy and complexity. Experi-
ments on simulated data show that SVM produce highly accurate results,
for some kernels, but with an increased processing time. Inversion of real
images shows that SVM are robust and generalize well. In addition, the
analysis of the support vectors allows to detect saturation of the physical
model used to simulate data.

1 Introduction

Hyperspectral images are now a key tool for the analysis of remote planets [1].
The very high resolution in the spectral domain allows a fine characterization of
the physical properties of the scene. For instance, the OMEGA sensor acquires
the spectral radiance coming from the planet in more than 200 contiguous spec-
tral channels. A pixel of the image is represented by a spectrum/vector x € R%,
each component corresponds to a particular wavelength, d being the total num-
ber of wavelengths. Chemical composition, granularity, texture, and physical
state are some of the parameters that characterize the morphology of spectra
and thus the area of interest.

Deducing the physical parameters y from the observed spectra x is a central
problem in classical physics, called an inverse problem. Since it generally cannot
be solved analytically, optimization or statistical methods are necessary. Solving
inverse problems requires an adequate understanding of the fundamental physics,
i.e. a functional relation between x and y must be specified: x = g¢(y). Given
g, different methods can be used to deduce the parameter from new observations.
Current solutions to inverse problems can be divided into three main categories
(for further details and comparisons, see [2]):

1. Optimization algorithms: These methods minimize an objective quality
function that measures the fit between x and g(y). Inverse problems are
often ill-posed, therefore estimations can be unstable and a regularization
is needed. For instance, a prior distribution on model parameters can be
used.
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2. Look-up table (LUT) / k-nearest neighbors approach (k-NN): A large database

(LUT) is generated by radiative transfer for many parameter values. Each
observed spectrum is then compared with the LUT spectra in order to find
the best match (the nearest neighbor), according to an objective function
minimization. Parameters are then deduced from this best match.

3. Training approaches: A functional relation y = f(x) between spectra and
parameters is assumed, such as f~! = g, and a LUT is used to estimate f.
For instance, training approaches include neural network approaches.

Inversion algorithms for hyperspectral images must be defined with the following
constraints: a) Large datasets and various models require fast methodologies,
b) High-dimensional data and “curse of dimensionality” with the associated spar-
sity issues require simple model with few parameters, ¢) Noisy spectra require
robust algorithms. Optimization based approaches suffer from heavy computa-
tional cost and are thus not adapted to hyperspectral images. Nearest neighbors
algorithms are faster, but the solution is unstable and noise-sensitive. Problems
associated to training methods are the difficult interpretation of the estimated
function f and the choice of the model. Moreover, neural networks are in general
difficult to train for high dimensional data [3, Chapter 11].

The results presented in this paper follow previous research on hyperspectral
image inversion [4]. Support Vectors Machines (SVM) are proposed to estimate
the functional f. This training approaches is robust with respect to the dimen-
sionality and has good generalization abilities, see [3, Chapter 12] or [5] for the
classification of hyperspectral images. Using the kernel trick, the estimation of
non-linear functions f is possible. Similarly to neural networks, the choice of the
kernel function is not straightforward. In this article, several kernel functions
were investigated, from linear to non-linear, leading to different levels of accu-
racy. For linear SVM, the connection with a dimension reduction technique, the
Gaussian Regularized Sliced Inverse Regression (GRSIR) [4], is discussed. SVM
are compared with GRSIR and Partial Least Square regression both in terms of
accuracy and computing time.

SVM and the different kernels are presented in Section 2. Experimental
results are reported in Section 3 and discussed in Section 4.

2 Support Vectors Machines Regression

2.1 Regression Problem

SVM are a supervised methods for regression or estimation stemming from the
machine learning theory. For inversion problems, the algorithm, which is called
the e-SVR, approximates the functional f : y = f(x) using solutions of the form
f(x) = 3" a;k(x,x;) + b, where x; are samples from the training set, k is
a kernel function and ((ai)izl,m,m b) are the parameters of f which are found
during the training process. The kernel k is used to produce non-linear functions.
Given a training set, (X;,¥i)i=1,..n € R? x R, the training of an e-SVR entails



the following optimization problem:

min{lil(f(x-) yi) + A with I(f(x),y) = 0if |f(x) —yl <

n R ’ |f(x) — y| — € otherwise.
The e-SVR satisfies the sparsity constraint: Only some «; are non-null which
corresponding sample x; are called “Support Vectors” (SVs). Some limitations
come from the learning step: With a large training set, the processing time can
be very long. Moreover, the problem is exacerbated when several optimizations
for parameter selection are considered.

2.2 Kernel function

The choice of the kernel function is a crucial step with SVM. A kernel function
is a similarity measure between two samples and corresponds to a dot product in
some feature space. To be an acceptable kernel, the function should be positive
semi-definite [3, Chapter 12]. In this work, several kernels were investigated:

e The linear kernel k(x,z) = (x,z).

e The inhomogeneous polynomial kernel k(x,z) = ((x,z) + q)p, where ¢ > 0

induces a weight of each degree: ((x7 z) + q)p =37 (Z) (x,z)P~kqk.
e The Gaussian kernel k(x,z) = exp(—7|x — z||?).

e The spectral kernel k(x,z) = exp(—ya(x,2)?), a(x,z) = acos(%).

The spectral kernel was first introduced in hyperspectral imagery for the classi-
fication purposes [6]. It is based on the angle between two spectra. It is a scale
invariant kernel which is used in k-nn approaches or spectral unmixing [7].

Before running the algorithm, some hyperparameters need to be fitted: a) e:
Which controls the resolution of the estimation. Large values produce rough
approximations while small values produce fine estimations. It can be set using
some prior on the noise. b) A: Which controls the smoothness of the solution.
Large values imply nearly linear functions. c¢) Kernel parameters: ~ for the
Gaussian kernel, for instance. Cross-validation is used in this work to select the
optimal parameters.

3 Experiments

3.1 Datasets

In this paper, real and simulated datasets are used. Real data have been col-
lected during orbit 103 by the French imaging spectrometer OMEGA on board
Mars Express Mission. A detailed analysis of this image by an expert led to a
surface reflectance model. This model allows the generation of many synthetic
spectra with the corresponding parameters: The proportions of CO5, water and
dust; and the grain sizes of water and COy. Centered multiGaussian noise has
been added, its covariance matrix was determined experimentally from the real
image. For the validation sake, separate training and testing datasets have been



SVM |

Parameter ‘ GRSIR ‘ PLS }

lin. Gauss. Spect. 0-Pol 0.5-Pol 1-Pol 2-Pol |
Prop. of HpO 0.28 0.32 | 0.31 0.14 0.25 0.24 0.17 014  0.13
Prop. of COg 0.19 0.31 | 0.30 0.15 0.27 0.27 0.18 0.16  0.15
Prop. of dust 0.11 0.22 | 0.22 0.09 0.19 0.19 0.11 0.10 0.10
Grain size of HoO 0.34 0.39 | 0.39 0.15 0.34 0.33 0.23 0.19 0.18
Grain size of COg 0.16 0.24 | 0.25 0.11 0.21 0.20 0.14 012  0.11

[ CPU time (s) [ 016 [ 066 [ 357 10.30 5.89 5.98 10.20 60.30 478 |

Table 1: NRMSE and computing time for GRSIR, PLS and SVM with various kernels. “z-
Pol” is p = x in the polynomial kernel. The power of the polynomial kernel was fixed to 9
for each parameter, after cross-validation. The bottom line of the table corresponds to the
training time of parameter “Prop. of H2O” after the selection of optimal hyperparameters.

generated. The notations are the following: n (respectively n;) is the number
of spectra from the training data (respectively test data), x; € R%,i € 1,...,n
denotes the spectra from the training data and y;(p) € R,i € 1,...,n is one of
the 5 associated parameters (respectively X;" y§», j€1l,...,n;). In these experi-
ments, n = 3584, n; = 3528 and the number of spectral bands is d = 184. Each
parameter p = 1,...,5 takes a finite number of values y(p) regularly distributed
in a given interval of variation. The different realizations of the vector y; are
generated by building all possible combinations of the individual component val-
ues. In the following, the index p is omitted in y and in its associated functional

fr fp(x) =y(p) is written f(x) =1y.
3.2 Results

The quality of the estimation is assessed by computing the Normalized Root
Mean Square Errors (NRMSE):

nt n nt
NRMSE= | =3 3 -v)? [/~ > i -9 withy = — > yi (1)
i3 i i
where y; is the real value and y; the estimated one. It is close to zero when
the predicted values are accurate and becomes larger when predictions are poor.
SVM regression is compared with GRSIR and PLS. These methods are “training
approaches”, GRSIR and PLS both first reduce the dimension of the data using
x and y, and then perform the estimation in the reduced space. PLS is a linear
estimator while GRSIR is a piecewise linear one, for details see [8, 9].

From Table 1, it is clear that the worst results' in terms of accuracy are
obtained with linear algorithms: PLS and SVM with the linear kernel. Best accu-
racy are obtained with the SVM-Gaussian kernel, followed by SVM-inhomogeneous
polynomial kernels with ¢ > 1. However, the last ones require more time to be
trained. SVM with spectral or homogeneous polynomial kernel yield the lowest
accuracy. Considering the training time, SVM lead to longer processing times,
for every kernels.

Inversions are performed on the real image using the functional f. Results are
given in Fig. 1, for GRSIR and SVM-Gaussian kernel. The histogram of the

IResults for GRSIR and PLS differ from [4] because the selection of optimal parameters is
done in a different way, cross-validation in this article, and the simulated datasets are different.
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Fig. 1: Proportion of dust estimated by (a) GRSIR, (b) SVM with a Gaussian kernel from
the hyperspectral image observed from orbit 103 and (c) is the histogram of (a) and (b).
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estimated values is also reported and shows a shift between GRSIR and SVM
estimates (astrophysical interpretations are given in [10]). However, since no
ground data is available, the inversion accuracy of real image is difficult to ap-
preciate.

4 Discussion

With SVM, the training quality can be assessed by looking at the Support Vec-
tors (SVs). Selection of many SVs may indicate that the optimization problem
is hard (but not necessarily badly solved). Fig. 2.(a) shows the proportion of y
corresponding to SVs (light gray) from the training set (dark gray). The fraction
increases as y increases too. To understand why the problem becomes harder,
the spectral variance of the simulated spectra as a function of the wavelength
is reported in Fig. 2.(b). It is computed as the trace of the covariance matrix
of samples x for which y is constant. It can be seen that a high y value leads
to: on the one hand a small variance of the simulated spectra, see Fig. 2.(b),
and, on the other, a high number of SVs, see Fig. 2.(a). This phenomenon is
explained by the properties of the physical model: For some values, the model
saturates. Consequently when the saturation is reached, increasing the values
of the parameters has little consequences on the simulated spectra (and the
variance remains low) thus making the estimation more difficult, due to strong
non-linearity between x and y. The main practical implication is in the gener-
ation of the training samples: Looking at the SVs after a first training provides
information to possibly generate new samples for which the estimation is dif-
ficult. Finally, note that SVM and other training methods face difficulties in
estimating f when saturation is reached.

Unlike statistical methods such as GRSIR, interpretation of SVM’s functional
estimation is not possible, except for the linear kernel: f(x) = Y. a;(x,x;)
+b = (x,>r a;x;) + b = (x,w) + b. Surprisingly, the vector w is akin to
the vector 8 estimated with GRSIR [4], see Fig.2.(c). In GRSIR, § is used
to reduce the dimension and the estimation f’ is done in the reduced space:
f(x) = f'({x,8)). It explains why GRSIR performs better than linear SVM:
The estimation is done in the one-dimensional space spanned by [ (respectively
w) with a piecewise linear estimator (respectively linear estimator). The precise
theoretical comparison is omitted here for the sake of conciseness.
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Fig. 2: (a) Proportion of y (light gray) corresponding to SVs (Gaussian kernel) from the
training set (dark gray), y was “Prop. of dust”; (b) Spectral variance of simulated x as
function of y, y(p) was “Prop. of dust” ; (¢) GRSIR axis # and SVM (linear kernel) normal
vector w as function of the wavelength A.

As a conclusion of this work, SVM with non-linear kernels produce accurate
results for the inversion of hyperspectral images. Experiments on real data im-
ages confirm their robustness to the training set and to the high dimensionality
of the data. However, the training time can be dramatically increased for some
kernel, making the use of SVM in a practical situations sensitive. Current re-
search is now oriented in the definition of kernel handling more efficiently the
saturation in the physical model.
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